针对当前钢材表面缺陷检测模型存在的结构复杂、参数量大、实时性差和检测精度不高等问题,提出了一种基于改进YOLOv5s的轻量化模型。该模型首先将YOLOv5的主干网络替换为MobileNetV3,以实现模型轻量化并提升检测速度。其次,引入在线卷...针对当前钢材表面缺陷检测模型存在的结构复杂、参数量大、实时性差和检测精度不高等问题,提出了一种基于改进YOLOv5s的轻量化模型。该模型首先将YOLOv5的主干网络替换为MobileNetV3,以实现模型轻量化并提升检测速度。其次,引入在线卷积重参数化(Online Convolutional Re-parameterization, OREPA)技术,进一步降低了训练成本,并使用K-means++算法聚类先验框来提高先验框聚类的准确性和收敛速度。最后,采用EIoU(Extended Intersection over Union)代替CIoU(Complete Intersection over Union)损失函数,加快了收敛并改善了回归精度。实验数据表明,相较于原始YOLOv5s模型,改进后模型的平均精度均值提高2.8个百分点,参数量减少84.0%,体积减小81.4%,检测速度提升60.8%,实现了模型轻量化和检测精度的平衡,易于部署,可满足钢材实际生产中实时检测的需求。展开更多
飞机机动识别在量化飞行员训练效果、预测对方战术意图及获取战场主动权等方面有着重要意义,然而战场数据的高度不平衡性严重制约了该技术的实际应用。近年来,生成式人工智能迅猛发展,其中,去噪扩散概率模型(Denoising Diffusion Probab...飞机机动识别在量化飞行员训练效果、预测对方战术意图及获取战场主动权等方面有着重要意义,然而战场数据的高度不平衡性严重制约了该技术的实际应用。近年来,生成式人工智能迅猛发展,其中,去噪扩散概率模型(Denoising Diffusion Probability Model,DDPM)在视觉领域展现出卓越的样本生成能力,受此启发,本文提出了一种基于马尔可夫转移场(Markov Transfer Field,MTF)的时序数据可视化方法:通过将飞机机动时序数据转换为二维图像,并结合DDPM生成新样本,有效解决样本不平衡问题,同时将时序分类任务转化为图像分类任务。为此,本文设计了一种新型分类网络架构,深度融合MobileNetV3的高效局部特征提取能力与Swin-Transformer的全局注意力机制优势,构建了融合可视化方法、DDPM生成模型与分类网络的飞机机动识别方法。实验结果表明,该方法在飞机机动识别任务中的精度显著优于图像分类领域的其他经典模型。展开更多
为实现汽车车牌的自动读取,设计了一种基于深度学习的轻量化车牌检测系统。在YOLOv8网络模型的基础上,用MobileNetV3网络更换主干网络,减少了模型的参数量,提升了车牌检测速度;引入全维度动态卷积来调整Neck模块的扩展率,提升了车牌检...为实现汽车车牌的自动读取,设计了一种基于深度学习的轻量化车牌检测系统。在YOLOv8网络模型的基础上,用MobileNetV3网络更换主干网络,减少了模型的参数量,提升了车牌检测速度;引入全维度动态卷积来调整Neck模块的扩展率,提升了车牌检测精度。在用目标检测网络对车牌识别后,利用PaddleOCR软件进行了字符识别。利用PyQt5软件对检测系统的操作界面进行设计,并对软件的操作过程进行了说明。在选用的中国城市停车数据集(Chinese City Parking Dataset,CCPD)上进行了实验验证。验证结果表明:改进后网络模型的运算复杂度GFLOPs为7.8,检测平均精度mAP50为89.77%,运算速度FPS为86.1帧/s。相较于现有车牌检测算法所用网络模型,改进后网络模型有效地兼顾了轻量化和检测精度要求,可以满足汽车车牌实时检测的需要。展开更多
文摘针对当前钢材表面缺陷检测模型存在的结构复杂、参数量大、实时性差和检测精度不高等问题,提出了一种基于改进YOLOv5s的轻量化模型。该模型首先将YOLOv5的主干网络替换为MobileNetV3,以实现模型轻量化并提升检测速度。其次,引入在线卷积重参数化(Online Convolutional Re-parameterization, OREPA)技术,进一步降低了训练成本,并使用K-means++算法聚类先验框来提高先验框聚类的准确性和收敛速度。最后,采用EIoU(Extended Intersection over Union)代替CIoU(Complete Intersection over Union)损失函数,加快了收敛并改善了回归精度。实验数据表明,相较于原始YOLOv5s模型,改进后模型的平均精度均值提高2.8个百分点,参数量减少84.0%,体积减小81.4%,检测速度提升60.8%,实现了模型轻量化和检测精度的平衡,易于部署,可满足钢材实际生产中实时检测的需求。
文摘飞机机动识别在量化飞行员训练效果、预测对方战术意图及获取战场主动权等方面有着重要意义,然而战场数据的高度不平衡性严重制约了该技术的实际应用。近年来,生成式人工智能迅猛发展,其中,去噪扩散概率模型(Denoising Diffusion Probability Model,DDPM)在视觉领域展现出卓越的样本生成能力,受此启发,本文提出了一种基于马尔可夫转移场(Markov Transfer Field,MTF)的时序数据可视化方法:通过将飞机机动时序数据转换为二维图像,并结合DDPM生成新样本,有效解决样本不平衡问题,同时将时序分类任务转化为图像分类任务。为此,本文设计了一种新型分类网络架构,深度融合MobileNetV3的高效局部特征提取能力与Swin-Transformer的全局注意力机制优势,构建了融合可视化方法、DDPM生成模型与分类网络的飞机机动识别方法。实验结果表明,该方法在飞机机动识别任务中的精度显著优于图像分类领域的其他经典模型。
文摘为实现汽车车牌的自动读取,设计了一种基于深度学习的轻量化车牌检测系统。在YOLOv8网络模型的基础上,用MobileNetV3网络更换主干网络,减少了模型的参数量,提升了车牌检测速度;引入全维度动态卷积来调整Neck模块的扩展率,提升了车牌检测精度。在用目标检测网络对车牌识别后,利用PaddleOCR软件进行了字符识别。利用PyQt5软件对检测系统的操作界面进行设计,并对软件的操作过程进行了说明。在选用的中国城市停车数据集(Chinese City Parking Dataset,CCPD)上进行了实验验证。验证结果表明:改进后网络模型的运算复杂度GFLOPs为7.8,检测平均精度mAP50为89.77%,运算速度FPS为86.1帧/s。相较于现有车牌检测算法所用网络模型,改进后网络模型有效地兼顾了轻量化和检测精度要求,可以满足汽车车牌实时检测的需要。