期刊文献+
共找到1,325篇文章
< 1 2 67 >
每页显示 20 50 100
Computation Partitioning in Mobile Cloud Computing: A Survey 被引量:1
1
作者 Lei Yang Jiannong Cao 《ZTE Communications》 2013年第4期8-17,共10页
Mobile devices are increasingly interacting with clouds,and mobile cloud computing has emerged as a new paradigm.An central topic in mobile cloud computing is computation partitioning,which involves partitioning the e... Mobile devices are increasingly interacting with clouds,and mobile cloud computing has emerged as a new paradigm.An central topic in mobile cloud computing is computation partitioning,which involves partitioning the execution of applications between the mobile side and cloud side so that execution cost is minimized.This paper discusses computation partitioning in mobile cloud computing.We first present the background and system models of mobile cloud computation partitioning systems.We then describe and compare state-of-the-art mobile computation partitioning in terms of application modeling,profiling,optimization,and implementation.We point out the main research issues and directions and summarize our own works. 展开更多
关键词 mobile cloud computing offloading computation partitioning
在线阅读 下载PDF
Computational Offloading and Resource Allocation for Internet of Vehicles Based on UAV-Assisted Mobile Edge Computing System
2
作者 Fang Yujie Li Meng +3 位作者 Si Pengbo Yang Ruizhe Sun Enchang Zhang Yanhua 《China Communications》 2025年第9期333-351,共19页
As an essential element of intelligent trans-port systems,Internet of vehicles(IoV)has brought an immersive user experience recently.Meanwhile,the emergence of mobile edge computing(MEC)has enhanced the computational ... As an essential element of intelligent trans-port systems,Internet of vehicles(IoV)has brought an immersive user experience recently.Meanwhile,the emergence of mobile edge computing(MEC)has enhanced the computational capability of the vehicle which reduces task processing latency and power con-sumption effectively and meets the quality of service requirements of vehicle users.However,there are still some problems in the MEC-assisted IoV system such as poor connectivity and high cost.Unmanned aerial vehicles(UAVs)equipped with MEC servers have become a promising approach for providing com-munication and computing services to mobile vehi-cles.Hence,in this article,an optimal framework for the UAV-assisted MEC system for IoV to minimize the average system cost is presented.Through joint consideration of computational offloading decisions and computational resource allocation,the optimiza-tion problem of our proposed architecture is presented to reduce system energy consumption and delay.For purpose of tackling this issue,the original non-convex issue is converted into a convex issue and the alternat-ing direction method of multipliers-based distributed optimal scheme is developed.The simulation results illustrate that the presented scheme can enhance the system performance dramatically with regard to other schemes,and the convergence of the proposed scheme is also significant. 展开更多
关键词 computational offloading Internet of Vehicles mobile edge computing resource optimization unmanned aerial vehicle
在线阅读 下载PDF
Energy-Optimal and Delay-Bounded Computation Offloading in Mobile Edge Computing with Heterogeneous Clouds 被引量:27
3
作者 Tianchu Zhao Sheng Zhou +3 位作者 Linqi Song Zhiyuan Jiang Xueying Guo Zhisheng Niu 《China Communications》 SCIE CSCD 2020年第5期191-210,共20页
By Mobile Edge Computing(MEC), computation-intensive tasks are offloaded from mobile devices to cloud servers, and thus the energy consumption of mobile devices can be notably reduced. In this paper, we study task off... By Mobile Edge Computing(MEC), computation-intensive tasks are offloaded from mobile devices to cloud servers, and thus the energy consumption of mobile devices can be notably reduced. In this paper, we study task offloading in multi-user MEC systems with heterogeneous clouds, including edge clouds and remote clouds. Tasks are forwarded from mobile devices to edge clouds via wireless channels, and they can be further forwarded to remote clouds via the Internet. Our objective is to minimize the total energy consumption of multiple mobile devices, subject to bounded-delay requirements of tasks. Based on dynamic programming, we propose an algorithm that minimizes the energy consumption, by jointly allocating bandwidth and computational resources to mobile devices. The algorithm is of pseudo-polynomial complexity. To further reduce the complexity, we propose an approximation algorithm with energy discretization, and its total energy consumption is proved to be within a bounded gap from the optimum. Simulation results show that, nearly 82.7% energy of mobile devices can be saved by task offloading compared with mobile device execution. 展开更多
关键词 mobile edge computing heterogeneous clouds energy saving delay bounds dynamic programming
在线阅读 下载PDF
Efficient Computation Offloading in Mobile Cloud Computing for Video Streaming Over 5G 被引量:1
4
作者 Bokyun Jo MdJalil Piran +1 位作者 Daeho Lee Doug Young Suh 《Computers, Materials & Continua》 SCIE EI 2019年第8期439-463,共25页
In this paper,we investigate video quality enhancement using computation offloading to the mobile cloud computing(MCC)environment.Our objective is to reduce the computational complexity required to covert a low-resolu... In this paper,we investigate video quality enhancement using computation offloading to the mobile cloud computing(MCC)environment.Our objective is to reduce the computational complexity required to covert a low-resolution video to high-resolution video while minimizing computation at the mobile client and additional communication costs.To do so,we propose an energy-efficient computation offloading framework for video streaming services in a MCC over the fifth generation(5G)cellular networks.In the proposed framework,the mobile client offloads the computational burden for the video enhancement to the cloud,which renders the side information needed to enhance video without requiring much computation by the client.The cloud detects edges from the upsampled ultra-high-resolution video(UHD)and then compresses and transmits them as side information with the original low-resolution video(e.g.,full HD).Finally,the mobile client decodes the received content and integrates the SI and original content,which produces a high-quality video.In our extensive simulation experiments,we observed that the amount of computation needed to construct a UHD video in the client is 50%-60% lower than that required to decode UHD video compressed by legacy video encoding algorithms.Moreover,the bandwidth required to transmit a full HD video and its side information is around 70% lower than that required for a normal UHD video.The subjective quality of the enhanced UHD is similar to that of the original UHD video even though the client pays lower communication costs with reduced computing power. 展开更多
关键词 5G video streaming cloud computation offloading energy efficiency upsampling MOS
在线阅读 下载PDF
DDPG-Based Intelligent Computation Offloading and Resource Allocation for LEO Satellite Edge Computing Network
5
作者 Jia Min Wu Jian +2 位作者 Zhang Liang Wang Xinyu Guo Qing 《China Communications》 2025年第3期1-15,共15页
Low earth orbit(LEO)satellites with wide coverage can carry the mobile edge computing(MEC)servers with powerful computing capabilities to form the LEO satellite edge computing system,providing computing services for t... Low earth orbit(LEO)satellites with wide coverage can carry the mobile edge computing(MEC)servers with powerful computing capabilities to form the LEO satellite edge computing system,providing computing services for the global ground users.In this paper,the computation offloading problem and resource allocation problem are formulated as a mixed integer nonlinear program(MINLP)problem.This paper proposes a computation offloading algorithm based on deep deterministic policy gradient(DDPG)to obtain the user offloading decisions and user uplink transmission power.This paper uses the convex optimization algorithm based on Lagrange multiplier method to obtain the optimal MEC server resource allocation scheme.In addition,the expression of suboptimal user local CPU cycles is derived by relaxation method.Simulation results show that the proposed algorithm can achieve excellent convergence effect,and the proposed algorithm significantly reduces the system utility values at considerable time cost compared with other algorithms. 展开更多
关键词 computation offloading deep deterministic policy gradient low earth orbit satellite mobile edge computing resource allocation
在线阅读 下载PDF
Intelligent Task Offloading and Collaborative Computation in Multi-UAV-Enabled Mobile Edge Computing 被引量:7
6
作者 Jingming Xia Peng Wang +1 位作者 Bin Li Zesong Fei 《China Communications》 SCIE CSCD 2022年第4期244-256,共13页
This article establishes a three-tier mobile edge computing(MEC) network, which takes into account the cooperation between unmanned aerial vehicles(UAVs). In this MEC network, we aim to minimize the processing delay o... This article establishes a three-tier mobile edge computing(MEC) network, which takes into account the cooperation between unmanned aerial vehicles(UAVs). In this MEC network, we aim to minimize the processing delay of tasks by jointly optimizing the deployment of UAVs and offloading decisions,while meeting the computing capacity constraint of UAVs. However, the resulting optimization problem is nonconvex, which cannot be solved by general optimization tools in an effective and efficient way. To this end, we propose a two-layer optimization algorithm to tackle the non-convexity of the problem by capitalizing on alternating optimization. In the upper level algorithm, we rely on differential evolution(DE) learning algorithm to solve the deployment of the UAVs. In the lower level algorithm, we exploit distributed deep neural network(DDNN) to generate offloading decisions. Numerical results demonstrate that the two-layer optimization algorithm can effectively obtain the near-optimal deployment of UAVs and offloading strategy with low complexity. 展开更多
关键词 mobile edge computing MULTI-UAV collaborative cloud and edge computing deep neural network differential evolution
在线阅读 下载PDF
Deep Q-Learning Based Computation Offloading Strategy for Mobile Edge Computing 被引量:6
7
作者 Yifei Wei Zhaoying Wang +1 位作者 Da Guo FRichard Yu 《Computers, Materials & Continua》 SCIE EI 2019年第4期89-104,共16页
To reduce the transmission latency and mitigate the backhaul burden of the centralized cloud-based network services,the mobile edge computing(MEC)has been drawing increased attention from both industry and academia re... To reduce the transmission latency and mitigate the backhaul burden of the centralized cloud-based network services,the mobile edge computing(MEC)has been drawing increased attention from both industry and academia recently.This paper focuses on mobile users’computation offloading problem in wireless cellular networks with mobile edge computing for the purpose of optimizing the computation offloading decision making policy.Since wireless network states and computing requests have stochastic properties and the environment’s dynamics are unknown,we use the modelfree reinforcement learning(RL)framework to formulate and tackle the computation offloading problem.Each mobile user learns through interactions with the environment and the estimate of its performance in the form of value function,then it chooses the overhead-aware optimal computation offloading action(local computing or edge computing)based on its state.The state spaces are high-dimensional in our work and value function is unrealistic to estimate.Consequently,we use deep reinforcement learning algorithm,which combines RL method Q-learning with the deep neural network(DNN)to approximate the value functions for complicated control applications,and the optimal policy will be obtained when the value function reaches convergence.Simulation results showed that the effectiveness of the proposed method in comparison with baseline methods in terms of total overheads of all mobile users. 展开更多
关键词 mobile edge computing computation offloading resource allocation deep reinforcement learning
在线阅读 下载PDF
Survey on Three Components of Mobile Cloud Computing: Offloading, Distribution and Privacy 被引量:2
8
作者 Anirudh Paranjothi Mohammad S. Khan Mais Nijim 《Journal of Computer and Communications》 2017年第6期1-31,共31页
Mobile Cloud Computing (MCC) brings rich computational resource to mobile users, network operators, and cloud computing providers. It can be represented in many ways, and the ultimate goal of MCC is to enable executio... Mobile Cloud Computing (MCC) brings rich computational resource to mobile users, network operators, and cloud computing providers. It can be represented in many ways, and the ultimate goal of MCC is to enable execution of rich mobile application with rich user experience. Mobility is one of the main characteristics of MCC environment where user can be able to continue their work regardless of movement. This literature review paper presents the state-of-the-art survey of MCC. Also, we provide the communication architecture of MCC and taxonomy of mobile cloud in which specifically concentrates on offloading, mobile distribution computing, and privacy. Through an extensive literature review, we found that MCC is a technologically beneficial and expedient paradigm for virtual environments in terms of virtual servers in a distributed environment, multi-tenant architecture and data storing in a cloud. We further identified the drawbacks in offloading, mobile distribution computing, privacy of MCC and how this technology can be used in an effective way. 展开更多
关键词 cloud computing mobile cloud computing offloading DISTRIBUTION and PRIVACY
在线阅读 下载PDF
Adaptive Application Offloading Decision and Transmission Scheduling for Mobile Cloud Computing 被引量:6
9
作者 Junyi Wang Jie Peng +2 位作者 Yanheng Wei Didi Liu Jielin Fu 《China Communications》 SCIE CSCD 2017年第3期169-181,共13页
Offloading application to cloud can augment mobile devices' computation capabilities for the emerging resource-hungry mobile application, however it can also consume both much time and energy for mobile device off... Offloading application to cloud can augment mobile devices' computation capabilities for the emerging resource-hungry mobile application, however it can also consume both much time and energy for mobile device offloading application remotely to cloud. In this paper, we develop a newly adaptive application offloading decision-transmission scheduling scheme which can solve above problem efficiently. Specifically, we first propose an adaptive application offloading model which allows multiple target clouds coexisting. Second, based on Lyapunov optimization theory, a low complexity adaptive offloading decision-transmission scheduling scheme has been proposed. And the performance analysis is also given. Finally, simulation results show that,compared with that all applications are executed locally, mobile device can save 68.557% average execution time and 67.095% average energy consumption under situations. 展开更多
关键词 mobile cloud computing application offloading decision transmission scheduling scheme Lyapunov optimization
在线阅读 下载PDF
Joint Optimization of Task Caching,Computation Offloading and Resource Allocation for Mobile Edge Computing 被引量:1
10
作者 Zhixiong Chen Zhengchuan Chen +3 位作者 Zhi Ren Liang Liang Wanli Wen Yunjian Jia 《China Communications》 SCIE CSCD 2022年第12期142-159,共18页
Applications with sensitive delay and sizeable data volumes,such as interactive gaming and augmented reality,have become popular in recent years.These applications pose a huge challenge for mobile users with limited r... Applications with sensitive delay and sizeable data volumes,such as interactive gaming and augmented reality,have become popular in recent years.These applications pose a huge challenge for mobile users with limited resources.Computation offloading is a mainstream technique to reduce execution delay and save energy for mobile users.However,computation offloading requires communication between mobile users and mobile edge computing(MEC) servers.Such a mechanism would difficultly meet users’ demand in some data-hungry and computation-intensive applications because the energy consumption and delay caused by transmissions are considerable expenses for users.Caching task data can effectively reduce the data transmissions when users offload their tasks to the MEC server.The limited caching space at the MEC server calls for judiciously decide which tasks should be cached.Motivated by this,we consider the joint optimization of computation offloading and task caching in a cellular network.In particular,it allows users to proactively cache or offload their tasks at the MEC server.The objective of this paper is to minimize the system cost,which is defined as the weighted sum of task execution delay and energy consumption for all users.Aiming at establishing optimal performance bound for the system design,we formulate an optimization problem by jointly optimizing the task caching,computation offloading,and resource allocation.The problem is a challenging mixed-integer non-linear programming problem and is NP-hard in general.To solve it efficiently,by using convex optimization,Karmarkar ’s algorithm and the proposed fast search algorithm,we obtain an optimal solution of the formulated problem with manageable computational complexity.Extensive simulation results show that in comparison to some representative benchmark methods,the proposed solution can effectively reduce the system cost. 展开更多
关键词 mobile edge computing computation offloading CACHING resource allocation
在线阅读 下载PDF
Computation Offloading and Scheduling in Edge-Fog Cloud Computing
11
作者 Dadmehr Rahbari Mohsen Nickray 《Journal of Electronic & Information Systems》 2019年第1期26-36,共11页
Resource allocation and task scheduling in the Cloud environment faces many challenges,such as time delay,energy consumption,and security.Also,executing computation tasks of mobile applications on mobile devices(MDs)r... Resource allocation and task scheduling in the Cloud environment faces many challenges,such as time delay,energy consumption,and security.Also,executing computation tasks of mobile applications on mobile devices(MDs)requires a lot of resources,so they can offload to the Cloud.But Cloud is far from MDs and has challenges as high delay and power consumption.Edge computing with processing near the Internet of Things(IoT)devices have been able to reduce the delay to some extent,but the problem is distancing itself from the Cloud.The fog computing(FC),with the placement of sensors and Cloud,increase the speed and reduce the energy consumption.Thus,FC is suitable for IoT applications.In this article,we review the resource allocation and task scheduling methods in Cloud,Edge and Fog environments,such as traditional,heuristic,and meta-heuristics.We also categorize the researches related to task offloading in Mobile Cloud Computing(MCC),Mobile Edge Computing(MEC),and Mobile Fog Computing(MFC).Our categorization criteria include the issue,proposed strategy,objectives,framework,and test environment. 展开更多
关键词 cloud computing EDGE computing FOG computing offloading SCHEDULING
在线阅读 下载PDF
Computation Offloading Algorithms in Mobile Edge Computing System: A Survey
12
作者 Zhenyue Chen Siyao Cheng 《国际计算机前沿大会会议论文集》 2019年第1期223-225,共3页
With the rapid development of the internet of things (IoT), the number of devices that can connect to the network has exploded. More computation intensive task appear on mobile terminals, and mobile edge computing has... With the rapid development of the internet of things (IoT), the number of devices that can connect to the network has exploded. More computation intensive task appear on mobile terminals, and mobile edge computing has emerged. Computation offloading technology is a key technology in mobile edge computing. This survey reviews the state of the art of computation offloading algorithms. It was classified into three categories: computation offloading algorithms in MEC system with single user, computation offloading algorithms in MEC system with multiple users, computation offloading algorithms in MEC system with enhanced MEC server. For each category of algorithms, the advantages and disadvantages were elaborated, some challenges and unsolved problems were pointed out, and the research prospects were forecasted. 展开更多
关键词 Internet of THINGS computation offloading mobile EDGE computing
在线阅读 下载PDF
Energy-Efficient Computation Offloading and Resource Allocation in Fog Computing for Internet of Everything 被引量:23
13
作者 Qiuping Li Junhui Zhao +1 位作者 Yi Gong Qingmiao Zhang 《China Communications》 SCIE CSCD 2019年第3期32-41,共10页
With the dawning of the Internet of Everything(IoE) era, more and more novel applications are being deployed. However, resource constrained devices cannot fulfill the resource-requirements of these applications. This ... With the dawning of the Internet of Everything(IoE) era, more and more novel applications are being deployed. However, resource constrained devices cannot fulfill the resource-requirements of these applications. This paper investigates the computation offloading problem of the coexistence and synergy between fog computing and cloud computing in IoE by jointly optimizing the offloading decisions, the allocation of computation resource and transmit power. Specifically, we propose an energy-efficient computation offloading and resource allocation(ECORA) scheme to minimize the system cost. The simulation results verify the proposed scheme can effectively decrease the system cost by up to 50% compared with the existing schemes, especially for the scenario that the computation resource of fog computing is relatively small or the number of devices increases. 展开更多
关键词 FOG computing cloud computing resource ALLOCATION computation offloading IoE
在线阅读 下载PDF
On Cost Aware Cloudlet Placement for Mobile Edge Computing 被引量:6
14
作者 Qiang Fan Nirwan Ansari 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2019年第4期926-937,共12页
As accessing computing resources from the remote cloud inherently incurs high end-to-end(E2E)delay for mobile users,cloudlets,which are deployed at the edge of a network,can potentially mitigate this problem.Although ... As accessing computing resources from the remote cloud inherently incurs high end-to-end(E2E)delay for mobile users,cloudlets,which are deployed at the edge of a network,can potentially mitigate this problem.Although some research works focus on allocating workloads among cloudlets,the cloudlet placement aiming to minimize the deployment cost(i.e.,consisting of both the cloudlet cost and average E2E delay cost)has not been addressed effectively so far.The locations and number of cloudlets have a crucial impact on both the cloudlet cost in the network and average E2E delay of users.Therefore,in this paper,we propose the Cost Aware cloudlet PlAcement in moBiLe Edge computing(CAPABLE)strategy,where both the cloudlet cost and average E2E delay are considered in the cloudlet placement.To solve this problem,a Lagrangian heuristic algorithm is developed to achieve the suboptimal solution.After cloudlets are placed in the network,we also design a workload allocation scheme to minimize the E2E delay between users and their cloudlets by considering the user mobility.The performance of CAPABLE has been validated by extensive simulations. 展开更多
关键词 cloudLET PLACEMENT mobile cloud computing mobile EDGE computing
在线阅读 下载PDF
Deep reinforcement learning-based joint task offloading and bandwidth allocation for multi-user mobile edge computing 被引量:32
15
作者 Liang Huang Xu Feng +2 位作者 Cheng Zhang Liping Qian Yuan Wu 《Digital Communications and Networks》 SCIE 2019年第1期10-17,共8页
The rapid growth of mobile internet services has yielded a variety of computation-intensive applications such as virtual/augmented reality. Mobile Edge Computing (MEC), which enables mobile terminals to offload comput... The rapid growth of mobile internet services has yielded a variety of computation-intensive applications such as virtual/augmented reality. Mobile Edge Computing (MEC), which enables mobile terminals to offload computation tasks to servers located at the edge of the cellular networks, has been considered as an efficient approach to relieve the heavy computational burdens and realize an efficient computation offloading. Driven by the consequent requirement for proper resource allocations for computation offloading via MEC, in this paper, we propose a Deep-Q Network (DQN) based task offloading and resource allocation algorithm for the MEC. Specifically, we consider a MEC system in which every mobile terminal has multiple tasks offloaded to the edge server and design a joint task offloading decision and bandwidth allocation optimization to minimize the overall offloading cost in terms of energy cost, computation cost, and delay cost. Although the proposed optimization problem is a mixed integer nonlinear programming in nature, we exploit an emerging DQN technique to solve it. Extensive numerical results show that our proposed DQN-based approach can achieve the near-optimal performance。 展开更多
关键词 mobile edge computing Joint computation offloading and resource allocation Deep-Q network
在线阅读 下载PDF
Research on Mobile Internet Mobile Agent System Dynamic Trust Model for Cloud Computing 被引量:5
16
作者 Weijin Jiang Yang Wang +3 位作者 Yirong Jiang Jiahui Chen Yuhui Xu Lina Tan 《China Communications》 SCIE CSCD 2019年第7期174-194,共21页
This paper analyzes the reasons for the formation of security problems in mobile agent systems, and analyzes and compares the security mechanisms and security technologies of existing mobile agent systems from the per... This paper analyzes the reasons for the formation of security problems in mobile agent systems, and analyzes and compares the security mechanisms and security technologies of existing mobile agent systems from the perspective of blocking attacks. On this basis, the host protection mobile agent protection technology is selected, and a method to enhance the security protection of mobile agents (referred to as IEOP method) is proposed. The method first encrypts the mobile agent code using the encryption function, and then encapsulates the encrypted mobile agent with the improved EOP protocol IEOP, and then traces the suspicious execution result. Experiments show that using this method can block most malicious attacks on mobile agents, and can protect the integrity and confidentiality of mobile agents, but the increment of mobile agent tour time is not large. 展开更多
关键词 mobile internet cloud computing mobile agent system SUBJECTIVE TRUST dynamic TRUST management
在线阅读 下载PDF
Joint Resource Allocation Using Evolutionary Algorithms in Heterogeneous Mobile Cloud Computing Networks 被引量:10
17
作者 Weiwei Xia Lianfeng Shen 《China Communications》 SCIE CSCD 2018年第8期189-204,共16页
The problem of joint radio and cloud resources allocation is studied for heterogeneous mobile cloud computing networks. The objective of the proposed joint resource allocation schemes is to maximize the total utility ... The problem of joint radio and cloud resources allocation is studied for heterogeneous mobile cloud computing networks. The objective of the proposed joint resource allocation schemes is to maximize the total utility of users as well as satisfy the required quality of service(QoS) such as the end-to-end response latency experienced by each user. We formulate the problem of joint resource allocation as a combinatorial optimization problem. Three evolutionary approaches are considered to solve the problem: genetic algorithm(GA), ant colony optimization with genetic algorithm(ACO-GA), and quantum genetic algorithm(QGA). To decrease the time complexity, we propose a mapping process between the resource allocation matrix and the chromosome of GA, ACO-GA, and QGA, search the available radio and cloud resource pairs based on the resource availability matrixes for ACOGA, and encode the difference value between the allocated resources and the minimum resource requirement for QGA. Extensive simulation results show that our proposed methods greatly outperform the existing algorithms in terms of running time, the accuracy of final results, the total utility, resource utilization and the end-to-end response latency guaranteeing. 展开更多
关键词 heterogeneous mobile cloud computing networks resource allocation genetic algorithm ant colony optimization quantum genetic algorithm
在线阅读 下载PDF
Task offloading mechanism based on federated reinforcement learning in mobile edge computing 被引量:4
18
作者 Jie Li Zhiping Yang +2 位作者 Xingwei Wang Yichao Xia Shijian Ni 《Digital Communications and Networks》 SCIE CSCD 2023年第2期492-504,共13页
With the arrival of 5G,latency-sensitive applications are becoming increasingly diverse.Mobile Edge Computing(MEC)technology has the characteristics of high bandwidth,low latency and low energy consumption,and has att... With the arrival of 5G,latency-sensitive applications are becoming increasingly diverse.Mobile Edge Computing(MEC)technology has the characteristics of high bandwidth,low latency and low energy consumption,and has attracted much attention among researchers.To improve the Quality of Service(QoS),this study focuses on computation offloading in MEC.We consider the QoS from the perspective of computational cost,dimensional disaster,user privacy and catastrophic forgetting of new users.The QoS model is established based on the delay and energy consumption and is based on DDQN and a Federated Learning(FL)adaptive task offloading algorithm in MEC.The proposed algorithm combines the QoS model and deep reinforcement learning algorithm to obtain an optimal offloading policy according to the local link and node state information in the channel coherence time to address the problem of time-varying transmission channels and reduce the computing energy consumption and task processing delay.To solve the problems of privacy and catastrophic forgetting,we use FL to make distributed use of multiple users’data to obtain the decision model,protect data privacy and improve the model universality.In the process of FL iteration,the communication delay of individual devices is too large,which affects the overall delay cost.Therefore,we adopt a communication delay optimization algorithm based on the unary outlier detection mechanism to reduce the communication delay of FL.The simulation results indicate that compared with existing schemes,the proposed method significantly reduces the computation cost on a device and improves the QoS when handling complex tasks. 展开更多
关键词 mobile edge computing Task offloading QoS Deep reinforcement learning Federated learning
在线阅读 下载PDF
"Smart Cafe":A Mobile Local Computing System Based On Indoor Virtual Cloud 被引量:2
19
作者 PU Lingjun XU Jingdong +1 位作者 YU Bowen ZHANG Jianzhong 《China Communications》 SCIE CSCD 2014年第4期38-49,共12页
With network developing and virtualization rising, more and more indoor environment (POIs) such as care, library, office, even bus and subway can provide plenty of bandwidth and computing resources. Meanwhile many peo... With network developing and virtualization rising, more and more indoor environment (POIs) such as care, library, office, even bus and subway can provide plenty of bandwidth and computing resources. Meanwhile many people daily spending much time in them are still suffering from the mobile device with limited resources. This situation implies a novel local cloud computing paradigm in which mobile device can leverage nearby resources to facilitate task execution. In this paper, we implement a mobile local computing system based on indoor virtual cloud. This system mainly contains three key components: 1)As to application, we create a parser to generate the "method call and cost tree" and analyze it to identify resource- intensive methods. 2) As to mobile device, we design a self-learning execution controller to make offtoading decision at runtime. 3) As to cloud, we construct a social scheduling based application-isolation virtual cloud model. The evaluation results demonstrate that our system is effective and efficient by evaluating CPU- intensive calculation application, Memory- intensive image translation application and I/ O-intensive image downloading application. 展开更多
关键词 mobile local computing system application partition dynamic offloading strategy virtual cloud model social scheduling
在线阅读 下载PDF
Service Caching and Task Offloading for Mobile Edge Computing-Enabled Intelligent Connected Vehicles 被引量:4
20
作者 HUANG Mengting YI Yuhan ZHANG Guanglin 《Journal of Shanghai Jiaotong university(Science)》 EI 2021年第5期670-679,共10页
The development of intelligent connected vehicles(ICVs)has tremendously inspired the emergence of a new computing paradigm called mobile edge computing(MEC),which meets the demands of delay-sensitive on-vehicle applic... The development of intelligent connected vehicles(ICVs)has tremendously inspired the emergence of a new computing paradigm called mobile edge computing(MEC),which meets the demands of delay-sensitive on-vehicle applications.Most existing studies focusing on the issue of task offloading in ICVs assume that the MEC server can directly complete computation tasks without considering the necessity of service caching.However,this is unrealistic in practice because a large number of tasks require the use of corresponding third-party libraries and databases,that is,service caching.Therefore,we investigate the delay optimization in an MEC-enabled ICVs system with multiple mobile vehicles,resource-limited base stations(BSs),and one cloud server.We aim to determine the optimal service caching and task offloading decisions to minimize the overall system delay using mixed-integer nonlinear programming.To address this problem,we first convert it into a quadratically constrained quadratic program and then propose an efficient semidefinite relaxation-based joint service caching and task offloading(JSCTO)algorithm to obtain the service caching and task offloading decisions.In the simulations,we validate the efficiency of our proposed method by setting different numbers of vehicles and the storage capacity of BSs.The results show that our proposed JSCTO algorithm can significantly decrease the total delay of all offloaded tasks compared with the cloud processing only scheme. 展开更多
关键词 intelligent connected vehicle(ICV) mobile edge computing(MEC) service caching task offloading delay cost
原文传递
上一页 1 2 67 下一页 到第
使用帮助 返回顶部