Most existing work on survivability in mobile ad-hoc networks(MANETs) focuses on two dimensional(2D) networks.However,many real applications run in three dimensional(3D) networks,e.g.,climate and ocean monitoring,and ...Most existing work on survivability in mobile ad-hoc networks(MANETs) focuses on two dimensional(2D) networks.However,many real applications run in three dimensional(3D) networks,e.g.,climate and ocean monitoring,and air defense systems.The impact on network survivability due to node behaviors was presented,and a quantitative analysis method on survivability was developed in 3D MANETs by modeling node behaviors and analyzing 3D network connectivity.Node behaviors were modeled by using a semi-Markov process.The node minimum degree of 3D MANETs was discussed.An effective approach to derive the survivability of k-connected networks was proposed through analyzing the connectivity of 3D MANETs caused by node misbehaviors,based on the model of node isolation.The quantitative analysis of node misbehaviors on the survivability in 3D MANETs is obtained through mathematical description,and the effectiveness and rationality of the proposed approach are verified through numerical analysis.The analytical results show that the effect from black and gray attack on network survivability is much severer than other misbehaviors.展开更多
The evolution of smart mobile devices has significantly impacted the way we generate and share contents and introduced a huge volume of Internet traffic.To address this issue and take advantage of the short-range comm...The evolution of smart mobile devices has significantly impacted the way we generate and share contents and introduced a huge volume of Internet traffic.To address this issue and take advantage of the short-range communication capabilities of smart mobile devices,the decentralized content sharing approach has emerged as a suitable and promising alternative.Decentralized content sharing uses a peer-to-peer network among colocated smart mobile device users to fulfil content requests.Several articles have been published to date to address its different aspects including group management,interest extraction,message forwarding,participation incentive,and content replication.This survey paper summarizes and critically analyzes recent advancements in decentralized content sharing and highlights potential research issues that need further consideration.展开更多
A main shortcoming of mobile Ad-hoc network's reactive routing protocols is the large volume of far-reaching control traffic required to support the route discovery (RD) and route repair (RR) mechanism. Using a ra...A main shortcoming of mobile Ad-hoc network's reactive routing protocols is the large volume of far-reaching control traffic required to support the route discovery (RD) and route repair (RR) mechanism. Using a random mobility model, this paper derives the probability equation of the relative distance (RDIS) between any two mobile hosts in an ad-hoc network. Consequently, combining with average equivalent hop distance (AEHD), a host can estimate the routing hops between itself and any destination host each time the RD/RR procedure is triggered, and reduce the flooding area of RD/RR messages. Simulation results show that this optimized route repair (ORR) algorithm can significantly decrease the communication overhead of RR process by about 35%.展开更多
Mobile computing is the most powerful application for network com-munication and connectivity,given recent breakthroughs in thefield of wireless networks or Mobile Ad-hoc networks(MANETs).There are several obstacles th...Mobile computing is the most powerful application for network com-munication and connectivity,given recent breakthroughs in thefield of wireless networks or Mobile Ad-hoc networks(MANETs).There are several obstacles that effective networks confront and the networks must be able to transport data from one system to another with adequate precision.For most applications,a frame-work must ensure that the retrieved data reflects the transmitted data.Before driv-ing to other nodes,if the frame between the two nodes is deformed in the data-link layer,it must be repaired.Most link-layer protocols immediately disregard the frame and enable the high-layer protocols to transmit it down.In other words,because of asset information must be secured from threats,information is a valu-able resource.In MANETs,some applications necessitate the use of a network method for detecting and blocking these assaults.Building a secure intrusion detection system in the network,which provides security to the nodes and route paths in the network,is a major difficulty in MANET.Attacks on the network can jeopardize security issues discovered by the intrusion detection system engine,which are then blocked by the network’s intrusion prevention engine.By bringing the Secure Intrusion Detection System(S-IDS)into the network,a new technique for implementing security goals and preventing attacks will be developed.The Secure Energy Routing(SER)protocol for MANETs is introduced in this study.The protocol addresses the issue of network security by detecting and preventing attacks in the network.The data transmission in the MANET is forwarded using Elliptical Curve Cryptography(ECC)with an objective to improve the level of security.Network Simulator–2 is used to simulate the network and experiments are compared with existing methods.展开更多
This work presents a multi-criteria analysis of the MAC (media access control) layer misbehavior of the IEEE (Institute of Electrical and Electronics Engineers) 802.11 standard, whose principle is to cheat at the ...This work presents a multi-criteria analysis of the MAC (media access control) layer misbehavior of the IEEE (Institute of Electrical and Electronics Engineers) 802.11 standard, whose principle is to cheat at the protocol to increase the transmission rate by greedy nodes at the expense of the other honest nodes. In fact, IEEE 802.11 forces nodes for access to the channel to wait for a back off interval, randomly selected from a specified range, before initiating a transmission. Greedy nodes may wait for smaller back-off intervals than honest nodes, and then obtaining an unfair assignment. In the first of our works a state of art on the research on IEEE 802.11 MAC layer misbehavior are presented. Then the impact of this misbehavior at the reception is given, and we will generalize this impact on a large scale. An analysis of the correlation between the throughput and the inter-packets time is given. Afterwards, we will define a new metric for measuring the performance and capability of the network.展开更多
Due to the fading characteristics of wireless channels and the burstiness of data traffic,how to deal with congestion in Ad-hoc networks with effective algorithms is still open and challenging.In this paper,we focus o...Due to the fading characteristics of wireless channels and the burstiness of data traffic,how to deal with congestion in Ad-hoc networks with effective algorithms is still open and challenging.In this paper,we focus on enabling congestion control to minimize network transmission delays through flexible power control.To effectively solve the congestion problem,we propose a distributed cross-layer scheduling algorithm,which is empowered by graph-based multi-agent deep reinforcement learning.The transmit power is adaptively adjusted in real-time by our algorithm based only on local information(i.e.,channel state information and queue length)and local communication(i.e.,information exchanged with neighbors).Moreover,the training complexity of the algorithm is low due to the regional cooperation based on the graph attention network.In the evaluation,we show that our algorithm can reduce the transmission delay of data flow under severe signal interference and drastically changing channel states,and demonstrate the adaptability and stability in different topologies.The method is general and can be extended to various types of topologies.展开更多
Control signaling is mandatory for the operation and management of all types of communication networks,including the Third Generation Partnership Project(3GPP)mobile broadband networks.However,they consume important a...Control signaling is mandatory for the operation and management of all types of communication networks,including the Third Generation Partnership Project(3GPP)mobile broadband networks.However,they consume important and scarce network resources such as bandwidth and processing power.There have been several reports of these control signaling turning into signaling storms halting network operations and causing the respective Telecom companies big financial losses.This paper draws its motivation from such real network disaster incidents attributed to signaling storms.In this paper,we present a thorough survey of the causes,of the signaling storm problems in 3GPP-based mobile broadband networks and discuss in detail their possible solutions and countermeasures.We provide relevant analytical models to help quantify the effect of the potential causes and benefits of their corresponding solutions.Another important contribution of this paper is the comparison of the possible causes and solutions/countermeasures,concerning their effect on several important network aspects such as architecture,additional signaling,fidelity,etc.,in the form of a table.This paper presents an update and an extension of our earlier conference publication.To our knowledge,no similar survey study exists on the subject.展开更多
High-quality services in today’s mobile networks require stable delivery of bandwidth-intensive network content.Multipath QUIC(MPQUIC),as a multipath protocol that extends QUIC,can utilize multiple paths to support s...High-quality services in today’s mobile networks require stable delivery of bandwidth-intensive network content.Multipath QUIC(MPQUIC),as a multipath protocol that extends QUIC,can utilize multiple paths to support stable and efficient transmission.The standard coupled congestion control algorithm in MPQUIC synchronizes these paths to manage congestion,meeting fairness requirements and improving transmission efficiency.However,current algorithms’Congestion Window(CWND)reduction approach significantly decreases CWND upon packet loss,which lowers effective throughput,regardless of the congestion origin.Furthermore,the uncoupled Slow-Start(SS)in MPQUIC leads to independent exponential CWND growth on each path,potentially causing buffer overflow.To address these issues,we propose the CC-OLIA,which incorporates Packet Loss Classifcation(PLC)and Coupled Slow-Start(CSS).The PLC distinguishes between congestion-induced and random packet losses,adjusting CWND reduction accordingly to maintain throughput.Concurrently,the CSS module coordinates CWND growth during the SS,preventing abrupt increases.Implementation on MININET shows that CC-OLIA not only maintains fair performance but also enhances transmission efficiency across diverse network conditions.展开更多
With technological advancements,high-speed rail has emerged as a prevalent mode of transportation.During travel,passengers exhibit a growing demand for streaming media services.However,the high-speed mobile networks e...With technological advancements,high-speed rail has emerged as a prevalent mode of transportation.During travel,passengers exhibit a growing demand for streaming media services.However,the high-speed mobile networks environment poses challenges,including frequent base station handoffs,which significantly degrade wireless network transmission performance.Improving transmission efficiency in high-speed mobile networks and optimizing spatiotemporal wireless resource allocation to enhance passengers’media experiences are key research priorities.To address these issues,we propose an Adaptive Cross-Layer Optimization Transmission Method with Environment Awareness(ACOTM-EA)tailored for high-speed rail streaming media.Within this framework,we develop a channel quality prediction model utilizing Kalman filtering and an algorithm to identify packet loss causes.Additionally,we introduce a proactive base station handoffstrategy to minimize handoffrelated disruptions and optimize resource distribution across adjacent base stations.Moreover,this study presents a wireless resource allocation approach based on an enhanced genetic algorithm,coupled with an adaptive bitrate selection mechanism,to maximize passenger Quality of Experience(QoE).To evaluate the proposed method,we designed a simulation experiment and compared ACOTM-EA with established algorithms.Results indicate that ACOTM-EA improves throughput by 11%and enhances passengers’media experience by 5%.展开更多
Unmanned aerial vehicles(UAVs)have become one of the key technologies to achieve future data collection due to their high mobility,rapid deployment,low cost,and the ability to establish line-of-sight communication lin...Unmanned aerial vehicles(UAVs)have become one of the key technologies to achieve future data collection due to their high mobility,rapid deployment,low cost,and the ability to establish line-of-sight communication links.However,when UAV swarm perform tasks in narrow spaces,they often encounter various spatial obstacles,building shielding materials,and high-speed node movements,which result in intermittent network communication links and cannot support the smooth comple-tion of tasks.In this paper,a high mobility and dynamic topol-ogy of the UAV swarm is particularly considered and the high dynamic mobile topology-based clustering(HDMTC)algorithm is proposed.Simulation and real flight verification results verify that the proposed HDMTC algorithm achieves higher stability of net-work,longer link expiration time(LET),and longer node lifetime,all of which improve the communication performance for UAV swarm networks.展开更多
On-demand routing protocols are widely used in mobile Ad-hoc network (MANET). Flooding is an important dissemination scheme in routing discovering of on-demand routing protocol. However, in high-density MANET redund...On-demand routing protocols are widely used in mobile Ad-hoc network (MANET). Flooding is an important dissemination scheme in routing discovering of on-demand routing protocol. However, in high-density MANET redundancy flooding packets lead to dramatic deterioration of the performance which calls broadcast storm problem (BSP). A location-aided probabilistic broadcast (LAPB) algorithm for routing in MANET is proposed to reduce the number of routing packets produced by flooding in this paper. In order to reduce the redundancy packets, only nodes in a specific area have the probability, computed by location information and neighbor knowledge, to propagate the routing packets. Simulation results demonstrate that the LAPB algorithm can reduce the packets and discovery delay (DD) in the routing discovery phase.展开更多
Traditional multi-path routing mechanisms aim to establish complete node or link disjoint paths. However, under some circumstances if multiple paths cannot be established based on the current network topology, the tra...Traditional multi-path routing mechanisms aim to establish complete node or link disjoint paths. However, under some circumstances if multiple paths cannot be established based on the current network topology, the traditional multi-path routing mechanism will degenerate into single path routing mechanism, thus the advantages of multi-path routing cannot be exhibited. To enhance the end-to-end path reliability, an adaptive multi-path routing mechanism with path segment is proposed, in which multi-path can be established at part of the end-to-end path. In this way the reliability of the path can be enhanced. This path segment mechanism can divide the end-to-end path into several short segments, and a parallel forwarding mechanism is proposed for guaranteeing the quality of service of multimedia services over the wireless network. Simulations show that the network performance metrics such as the packet delivery ratio, the end-to-end delay and the number of route discoveries are all improved by using the adaptive multi-path routing mechanism.展开更多
Survivability refers to the ability of a network system to fulfill critical services in a timely manner to end users in the presence of failures and/or attacks. In order to establish a highly survivable system, it is ...Survivability refers to the ability of a network system to fulfill critical services in a timely manner to end users in the presence of failures and/or attacks. In order to establish a highly survivable system, it is necessary to measure its survivability to evaluate the performance of the system's services under adverse conditions. According to survivability requirements of large-scale mobile ad-hoc networks (MANETs), we propose a novel model for quantitative evaluation on survivability. The proposed model considers various types of faults and connection states of mobile hosts, and uses the continuous time Markov chain (CTMC) to describe the survivability of MANETs in a precise manner. We introduce the reliability theory to perform quantitative analysis and survivability evaluation of segment-by-segment routing (SSR), multipath-based segment-by-segment routing (MP-SSR), and segment-by-segment-based multipath routing (SS-MPR) in large-scale MANETs. The proposed model can be used to analyze the network performance much more easily than a simulation-based approach. Numerical validation shows that the proposed model can be used to obtain a better evaluation result on the survivability of large-scale MANETs.展开更多
Jamming attack is quite serious threat for Mobile networks that collapses all necessary communication infrastructure. Since mobile nodes in Mobile Ad Hoc Networks (MANET) communicate in a multi-hop mode, there is alwa...Jamming attack is quite serious threat for Mobile networks that collapses all necessary communication infrastructure. Since mobile nodes in Mobile Ad Hoc Networks (MANET) communicate in a multi-hop mode, there is always a possibility for an intruder to launch a jamming attack in order to intercept communication among communication nodes. In this study, a network simulation has been carried out in order to explore and evaluate the possible impacts of jamming attack on MACAW protocol. Ad-hoc network modelling is used to provide communication infrastructure among mobile nodes in order to modelling the simulation scenarios. In simulation model, these nodes have used AODV routing protocol which is designed for MANET while second scenario contains simulated MACAW node models for comparison. On the other hand, this paper is the first study that addresses performance evaluation of MACAW protocol under a constant Jamming Attack. The performance of MACAW protocol is simulated through OPNET Modeler 14.5 software.展开更多
Power saving is one of the key issues in Mobile Ad-Hoc Networks (MANETs). It can be realized in Medium Access Control (MAC) layer and network layer. However, previous attentions were mainly paid to MAC layer or ne...Power saving is one of the key issues in Mobile Ad-Hoc Networks (MANETs). It can be realized in Medium Access Control (MAC) layer and network layer. However, previous attentions were mainly paid to MAC layer or network layer with the aim of improving the channel utilization by adopting variable-range transmission power control. In this paper we focus on the power saving in both MAC layer and network layer, and propose a Power Adjusting Algorithm (PAA). In the presence of host's mobility, PAA is designed to conserve energy by adjusting the transmission power to maintain the route's connectivity and restarting the route discovery periodically to find a new route with better energy efficiency dynamically. After analyzing the operations of PAA, we find that the length of route discovery restarting period is a critical argument which will affect power saving, and an energy consumption model is abstracted to find the optimal value of the restarting period by analyzing the energy consumption of this algorithm. PAA can handle the mobility of MANET by adjusting the transmission power and in the meantime save energy by restarting route discovery periodically to balance the energy consumption on route discovery and packet delivering. Simulation results show that, PAA saves nearly 40% energy compared with Dynamic Source Routing protocol when the maximum speed of mobile hosts is larger than 8 m/s.展开更多
How to use a few defect samples to complete the defect classification is a key challenge in the production of mobile phone screens.An attention-relation network for the mobile phone screen defect classification is pro...How to use a few defect samples to complete the defect classification is a key challenge in the production of mobile phone screens.An attention-relation network for the mobile phone screen defect classification is proposed in this paper.The architecture of the attention-relation network contains two modules:a feature extract module and a feature metric module.Different from other few-shot models,an attention mechanism is applied to metric learning in our model to measure the distance between features,so as to pay attention to the correlation between features and suppress unwanted information.Besides,we combine dilated convolution and skip connection to extract more feature information for follow-up processing.We validate attention-relation network on the mobile phone screen defect dataset.The experimental results show that the classification accuracy of the attentionrelation network is 0.9486 under the 5-way 1-shot training strategy and 0.9039 under the 5-way 5-shot setting.It achieves the excellent effect of classification for mobile phone screen defects and outperforms with dominant advantages.展开更多
With the explosive growth of highdefinition video streaming data,a substantial increase in network traffic has ensued.The emergency of mobile edge caching(MEC)can not only alleviate the burden on core network,but also...With the explosive growth of highdefinition video streaming data,a substantial increase in network traffic has ensued.The emergency of mobile edge caching(MEC)can not only alleviate the burden on core network,but also significantly improve user experience.Integrating with the MEC and satellite networks,the network is empowered popular content ubiquitously and seamlessly.Addressing the research gap between multilayer satellite networks and MEC,we study the caching placement problem in this paper.Initially,we introduce a three-layer distributed network caching management architecture designed for efficient and flexible handling of large-scale networks.Considering the constraint on satellite capacity and content propagation delay,the cache placement problem is then formulated and transformed into a markov decision process(MDP),where the content coded caching mechanism is utilized to promote the efficiency of content delivery.Furthermore,a new generic metric,content delivery cost,is proposed to elaborate the performance of caching decision in large-scale networks.Then,we introduce a graph convolutional network(GCN)-based multi-agent advantage actor-critic(A2C)algorithm to optimize the caching decision.Finally,extensive simulations are conducted to evaluate the proposed algorithm in terms of content delivery cost and transferability.展开更多
Current you only look once(YOLO)-based algorithm model is facing the challenge of overwhelming parameters and calculation complexity under the printed circuit board(PCB)defect detection application scenario.In order t...Current you only look once(YOLO)-based algorithm model is facing the challenge of overwhelming parameters and calculation complexity under the printed circuit board(PCB)defect detection application scenario.In order to solve this problem,we propose a new method,which combined the lightweight network mobile vision transformer(Mobile Vi T)with the convolutional block attention module(CBAM)mechanism and the new regression loss function.This method needed less computation resources,making it more suitable for embedded edge detection devices.Meanwhile,the new loss function improved the positioning accuracy of the bounding box and enhanced the robustness of the model.In addition,experiments on public datasets demonstrate that the improved model achieves an average accuracy of 87.9%across six typical defect detection tasks,while reducing computational costs by nearly 90%.It significantly reduces the model's computational requirements while maintaining accuracy,ensuring reliable performance for edge deployment.展开更多
With the acceleration of the intelligent transformation of power systems,the requirements for communication technology are increasingly stringent.The application of 5G mobile communication technology in power communic...With the acceleration of the intelligent transformation of power systems,the requirements for communication technology are increasingly stringent.The application of 5G mobile communication technology in power communication is analyzed.In this study,5G technology features,application principles,and practical strategies are discussed,and methods such as network slicing,customized deployment,edge computing collaborative application,communication equipment integration and upgrading,and multi-technology collaboration and complementation are proposed.It aims to effectively improve the efficiency,reliability,and security of power communication,solve the problem that traditional communication technology is difficult to meet the diversified needs of power business,and achieve the effect of optimizing the power communication network and supporting the intelligent development of the power system.展开更多
In dynamic 5G network environments,user mobility and heterogeneous network topologies pose dual challenges to the effort of improving performance of mobile edge caching.Existing studies often overlook the dynamic natu...In dynamic 5G network environments,user mobility and heterogeneous network topologies pose dual challenges to the effort of improving performance of mobile edge caching.Existing studies often overlook the dynamic nature of user locations and the potential of device-to-device(D2D)cooperative caching,limiting the reduction of transmission latency.To address this issue,this paper proposes a joint optimization scheme for edge caching that integrates user mobility prediction with deep reinforcement learning.First,a Transformer-based geolocation prediction model is designed,leveraging multi-head attention mechanisms to capture correlations in historical user trajectories for accurate future location prediction.Then,within a three-tier heterogeneous network,we formulate a latency minimization problem under a D2D cooperative caching architecture and develop a mobility-aware Deep Q-Network(DQN)caching strategy.This strategy takes predicted location information as state input and dynamically adjusts the content distribution across small base stations(SBSs)andmobile users(MUs)to reduce end-to-end delay inmulti-hop content retrieval.Simulation results show that the proposed DQN-based method outperforms other baseline strategies across variousmetrics,achieving a 17.2%reduction in transmission delay compared to DQNmethods withoutmobility integration,thus validating the effectiveness of the joint optimization of location prediction and caching decisions.展开更多
基金Project(07JJ1010) supported by the Hunan Provincial Natural Science Foundation of China for Distinguished Young ScholarsProjects(61073037,60773013) supported by the National Natural Science Foundation of China
文摘Most existing work on survivability in mobile ad-hoc networks(MANETs) focuses on two dimensional(2D) networks.However,many real applications run in three dimensional(3D) networks,e.g.,climate and ocean monitoring,and air defense systems.The impact on network survivability due to node behaviors was presented,and a quantitative analysis method on survivability was developed in 3D MANETs by modeling node behaviors and analyzing 3D network connectivity.Node behaviors were modeled by using a semi-Markov process.The node minimum degree of 3D MANETs was discussed.An effective approach to derive the survivability of k-connected networks was proposed through analyzing the connectivity of 3D MANETs caused by node misbehaviors,based on the model of node isolation.The quantitative analysis of node misbehaviors on the survivability in 3D MANETs is obtained through mathematical description,and the effectiveness and rationality of the proposed approach are verified through numerical analysis.The analytical results show that the effect from black and gray attack on network survivability is much severer than other misbehaviors.
文摘The evolution of smart mobile devices has significantly impacted the way we generate and share contents and introduced a huge volume of Internet traffic.To address this issue and take advantage of the short-range communication capabilities of smart mobile devices,the decentralized content sharing approach has emerged as a suitable and promising alternative.Decentralized content sharing uses a peer-to-peer network among colocated smart mobile device users to fulfil content requests.Several articles have been published to date to address its different aspects including group management,interest extraction,message forwarding,participation incentive,and content replication.This survey paper summarizes and critically analyzes recent advancements in decentralized content sharing and highlights potential research issues that need further consideration.
文摘A main shortcoming of mobile Ad-hoc network's reactive routing protocols is the large volume of far-reaching control traffic required to support the route discovery (RD) and route repair (RR) mechanism. Using a random mobility model, this paper derives the probability equation of the relative distance (RDIS) between any two mobile hosts in an ad-hoc network. Consequently, combining with average equivalent hop distance (AEHD), a host can estimate the routing hops between itself and any destination host each time the RD/RR procedure is triggered, and reduce the flooding area of RD/RR messages. Simulation results show that this optimized route repair (ORR) algorithm can significantly decrease the communication overhead of RR process by about 35%.
文摘Mobile computing is the most powerful application for network com-munication and connectivity,given recent breakthroughs in thefield of wireless networks or Mobile Ad-hoc networks(MANETs).There are several obstacles that effective networks confront and the networks must be able to transport data from one system to another with adequate precision.For most applications,a frame-work must ensure that the retrieved data reflects the transmitted data.Before driv-ing to other nodes,if the frame between the two nodes is deformed in the data-link layer,it must be repaired.Most link-layer protocols immediately disregard the frame and enable the high-layer protocols to transmit it down.In other words,because of asset information must be secured from threats,information is a valu-able resource.In MANETs,some applications necessitate the use of a network method for detecting and blocking these assaults.Building a secure intrusion detection system in the network,which provides security to the nodes and route paths in the network,is a major difficulty in MANET.Attacks on the network can jeopardize security issues discovered by the intrusion detection system engine,which are then blocked by the network’s intrusion prevention engine.By bringing the Secure Intrusion Detection System(S-IDS)into the network,a new technique for implementing security goals and preventing attacks will be developed.The Secure Energy Routing(SER)protocol for MANETs is introduced in this study.The protocol addresses the issue of network security by detecting and preventing attacks in the network.The data transmission in the MANET is forwarded using Elliptical Curve Cryptography(ECC)with an objective to improve the level of security.Network Simulator–2 is used to simulate the network and experiments are compared with existing methods.
文摘This work presents a multi-criteria analysis of the MAC (media access control) layer misbehavior of the IEEE (Institute of Electrical and Electronics Engineers) 802.11 standard, whose principle is to cheat at the protocol to increase the transmission rate by greedy nodes at the expense of the other honest nodes. In fact, IEEE 802.11 forces nodes for access to the channel to wait for a back off interval, randomly selected from a specified range, before initiating a transmission. Greedy nodes may wait for smaller back-off intervals than honest nodes, and then obtaining an unfair assignment. In the first of our works a state of art on the research on IEEE 802.11 MAC layer misbehavior are presented. Then the impact of this misbehavior at the reception is given, and we will generalize this impact on a large scale. An analysis of the correlation between the throughput and the inter-packets time is given. Afterwards, we will define a new metric for measuring the performance and capability of the network.
基金supported by Institute of Information & communications Technology Planning & Evaluation (IITP) grant funded by the Korea government(MSIT) (No.RS-2022-00155885, Artificial Intelligence Convergence Innovation Human Resources Development (Hanyang University ERICA))supported by the National Natural Science Foundation of China under Grant No. 61971264the National Natural Science Foundation of China/Research Grants Council Collaborative Research Scheme under Grant No. 62261160390
文摘Due to the fading characteristics of wireless channels and the burstiness of data traffic,how to deal with congestion in Ad-hoc networks with effective algorithms is still open and challenging.In this paper,we focus on enabling congestion control to minimize network transmission delays through flexible power control.To effectively solve the congestion problem,we propose a distributed cross-layer scheduling algorithm,which is empowered by graph-based multi-agent deep reinforcement learning.The transmit power is adaptively adjusted in real-time by our algorithm based only on local information(i.e.,channel state information and queue length)and local communication(i.e.,information exchanged with neighbors).Moreover,the training complexity of the algorithm is low due to the regional cooperation based on the graph attention network.In the evaluation,we show that our algorithm can reduce the transmission delay of data flow under severe signal interference and drastically changing channel states,and demonstrate the adaptability and stability in different topologies.The method is general and can be extended to various types of topologies.
基金the Deanship of Graduate Studies and Scientific Research at Qassim University for financial support(QU-APC-2024-9/1).
文摘Control signaling is mandatory for the operation and management of all types of communication networks,including the Third Generation Partnership Project(3GPP)mobile broadband networks.However,they consume important and scarce network resources such as bandwidth and processing power.There have been several reports of these control signaling turning into signaling storms halting network operations and causing the respective Telecom companies big financial losses.This paper draws its motivation from such real network disaster incidents attributed to signaling storms.In this paper,we present a thorough survey of the causes,of the signaling storm problems in 3GPP-based mobile broadband networks and discuss in detail their possible solutions and countermeasures.We provide relevant analytical models to help quantify the effect of the potential causes and benefits of their corresponding solutions.Another important contribution of this paper is the comparison of the possible causes and solutions/countermeasures,concerning their effect on several important network aspects such as architecture,additional signaling,fidelity,etc.,in the form of a table.This paper presents an update and an extension of our earlier conference publication.To our knowledge,no similar survey study exists on the subject.
文摘High-quality services in today’s mobile networks require stable delivery of bandwidth-intensive network content.Multipath QUIC(MPQUIC),as a multipath protocol that extends QUIC,can utilize multiple paths to support stable and efficient transmission.The standard coupled congestion control algorithm in MPQUIC synchronizes these paths to manage congestion,meeting fairness requirements and improving transmission efficiency.However,current algorithms’Congestion Window(CWND)reduction approach significantly decreases CWND upon packet loss,which lowers effective throughput,regardless of the congestion origin.Furthermore,the uncoupled Slow-Start(SS)in MPQUIC leads to independent exponential CWND growth on each path,potentially causing buffer overflow.To address these issues,we propose the CC-OLIA,which incorporates Packet Loss Classifcation(PLC)and Coupled Slow-Start(CSS).The PLC distinguishes between congestion-induced and random packet losses,adjusting CWND reduction accordingly to maintain throughput.Concurrently,the CSS module coordinates CWND growth during the SS,preventing abrupt increases.Implementation on MININET shows that CC-OLIA not only maintains fair performance but also enhances transmission efficiency across diverse network conditions.
基金substantially supported by the National Natural Science Foundation of China under Grant No.62002263in part by Tianjin Municipal Education Commission Research Program Project under 2022KJ012Tianjin Science and Technology Program Projects:24YDTPJC00630.
文摘With technological advancements,high-speed rail has emerged as a prevalent mode of transportation.During travel,passengers exhibit a growing demand for streaming media services.However,the high-speed mobile networks environment poses challenges,including frequent base station handoffs,which significantly degrade wireless network transmission performance.Improving transmission efficiency in high-speed mobile networks and optimizing spatiotemporal wireless resource allocation to enhance passengers’media experiences are key research priorities.To address these issues,we propose an Adaptive Cross-Layer Optimization Transmission Method with Environment Awareness(ACOTM-EA)tailored for high-speed rail streaming media.Within this framework,we develop a channel quality prediction model utilizing Kalman filtering and an algorithm to identify packet loss causes.Additionally,we introduce a proactive base station handoffstrategy to minimize handoffrelated disruptions and optimize resource distribution across adjacent base stations.Moreover,this study presents a wireless resource allocation approach based on an enhanced genetic algorithm,coupled with an adaptive bitrate selection mechanism,to maximize passenger Quality of Experience(QoE).To evaluate the proposed method,we designed a simulation experiment and compared ACOTM-EA with established algorithms.Results indicate that ACOTM-EA improves throughput by 11%and enhances passengers’media experience by 5%.
基金supported by the National Key Research and Development Program of China(2024YFB4504500)Shanghai Collaborative Innovation Project(24xtcx00500).
文摘Unmanned aerial vehicles(UAVs)have become one of the key technologies to achieve future data collection due to their high mobility,rapid deployment,low cost,and the ability to establish line-of-sight communication links.However,when UAV swarm perform tasks in narrow spaces,they often encounter various spatial obstacles,building shielding materials,and high-speed node movements,which result in intermittent network communication links and cannot support the smooth comple-tion of tasks.In this paper,a high mobility and dynamic topol-ogy of the UAV swarm is particularly considered and the high dynamic mobile topology-based clustering(HDMTC)algorithm is proposed.Simulation and real flight verification results verify that the proposed HDMTC algorithm achieves higher stability of net-work,longer link expiration time(LET),and longer node lifetime,all of which improve the communication performance for UAV swarm networks.
基金supported by the National Natural Science Foundation of China (61272450,61662013,U1501252)the Guangxi Natural Science Foundation (2014GXNSFDA118036)+1 种基金the High Level of Innovation Team of Colleges and Universities in GuangxiOutstanding Scholars Program Funding
文摘On-demand routing protocols are widely used in mobile Ad-hoc network (MANET). Flooding is an important dissemination scheme in routing discovering of on-demand routing protocol. However, in high-density MANET redundancy flooding packets lead to dramatic deterioration of the performance which calls broadcast storm problem (BSP). A location-aided probabilistic broadcast (LAPB) algorithm for routing in MANET is proposed to reduce the number of routing packets produced by flooding in this paper. In order to reduce the redundancy packets, only nodes in a specific area have the probability, computed by location information and neighbor knowledge, to propagate the routing packets. Simulation results demonstrate that the LAPB algorithm can reduce the packets and discovery delay (DD) in the routing discovery phase.
基金supported by the Hi-Tech Research and Development Program of China (2008AA01A322)the National Natural Science Foundation of China (60772109)
文摘Traditional multi-path routing mechanisms aim to establish complete node or link disjoint paths. However, under some circumstances if multiple paths cannot be established based on the current network topology, the traditional multi-path routing mechanism will degenerate into single path routing mechanism, thus the advantages of multi-path routing cannot be exhibited. To enhance the end-to-end path reliability, an adaptive multi-path routing mechanism with path segment is proposed, in which multi-path can be established at part of the end-to-end path. In this way the reliability of the path can be enhanced. This path segment mechanism can divide the end-to-end path into several short segments, and a parallel forwarding mechanism is proposed for guaranteeing the quality of service of multimedia services over the wireless network. Simulations show that the network performance metrics such as the packet delivery ratio, the end-to-end delay and the number of route discoveries are all improved by using the adaptive multi-path routing mechanism.
基金supported by the National Basic Research 973 Program of China under Grant No.2003CB317003the Research Grants Council of the Hong Kong Special Administrative Region,China under Grant No.9041350(CityU 114908)+3 种基金CityU AppliedR&D Funding(ARD-(Ctr-)) under Grant Nos.9681001 and 9678002the Hunan Provincial Natural Science Foundation of China forDistinguished Young Scholars under Grant No.07J J1010the National Natural Science Foundation of China for Major Research Planunder Grant No.90718034the Program for Changjiang Scholars and Innovative Research Team in University under Grant No.IRT0661
文摘Survivability refers to the ability of a network system to fulfill critical services in a timely manner to end users in the presence of failures and/or attacks. In order to establish a highly survivable system, it is necessary to measure its survivability to evaluate the performance of the system's services under adverse conditions. According to survivability requirements of large-scale mobile ad-hoc networks (MANETs), we propose a novel model for quantitative evaluation on survivability. The proposed model considers various types of faults and connection states of mobile hosts, and uses the continuous time Markov chain (CTMC) to describe the survivability of MANETs in a precise manner. We introduce the reliability theory to perform quantitative analysis and survivability evaluation of segment-by-segment routing (SSR), multipath-based segment-by-segment routing (MP-SSR), and segment-by-segment-based multipath routing (SS-MPR) in large-scale MANETs. The proposed model can be used to analyze the network performance much more easily than a simulation-based approach. Numerical validation shows that the proposed model can be used to obtain a better evaluation result on the survivability of large-scale MANETs.
文摘Jamming attack is quite serious threat for Mobile networks that collapses all necessary communication infrastructure. Since mobile nodes in Mobile Ad Hoc Networks (MANET) communicate in a multi-hop mode, there is always a possibility for an intruder to launch a jamming attack in order to intercept communication among communication nodes. In this study, a network simulation has been carried out in order to explore and evaluate the possible impacts of jamming attack on MACAW protocol. Ad-hoc network modelling is used to provide communication infrastructure among mobile nodes in order to modelling the simulation scenarios. In simulation model, these nodes have used AODV routing protocol which is designed for MANET while second scenario contains simulated MACAW node models for comparison. On the other hand, this paper is the first study that addresses performance evaluation of MACAW protocol under a constant Jamming Attack. The performance of MACAW protocol is simulated through OPNET Modeler 14.5 software.
基金Supported by the National Natural Science Foundation of China under Grant Nos. 61070197, 61103049, Shenzhen Research Fund of China under Grant No. JC201005270342A.
文摘Power saving is one of the key issues in Mobile Ad-Hoc Networks (MANETs). It can be realized in Medium Access Control (MAC) layer and network layer. However, previous attentions were mainly paid to MAC layer or network layer with the aim of improving the channel utilization by adopting variable-range transmission power control. In this paper we focus on the power saving in both MAC layer and network layer, and propose a Power Adjusting Algorithm (PAA). In the presence of host's mobility, PAA is designed to conserve energy by adjusting the transmission power to maintain the route's connectivity and restarting the route discovery periodically to find a new route with better energy efficiency dynamically. After analyzing the operations of PAA, we find that the length of route discovery restarting period is a critical argument which will affect power saving, and an energy consumption model is abstracted to find the optimal value of the restarting period by analyzing the energy consumption of this algorithm. PAA can handle the mobility of MANET by adjusting the transmission power and in the meantime save energy by restarting route discovery periodically to balance the energy consumption on route discovery and packet delivering. Simulation results show that, PAA saves nearly 40% energy compared with Dynamic Source Routing protocol when the maximum speed of mobile hosts is larger than 8 m/s.
文摘How to use a few defect samples to complete the defect classification is a key challenge in the production of mobile phone screens.An attention-relation network for the mobile phone screen defect classification is proposed in this paper.The architecture of the attention-relation network contains two modules:a feature extract module and a feature metric module.Different from other few-shot models,an attention mechanism is applied to metric learning in our model to measure the distance between features,so as to pay attention to the correlation between features and suppress unwanted information.Besides,we combine dilated convolution and skip connection to extract more feature information for follow-up processing.We validate attention-relation network on the mobile phone screen defect dataset.The experimental results show that the classification accuracy of the attentionrelation network is 0.9486 under the 5-way 1-shot training strategy and 0.9039 under the 5-way 5-shot setting.It achieves the excellent effect of classification for mobile phone screen defects and outperforms with dominant advantages.
基金supported by the National Key Research and Development Program of China under Grant 2020YFB1807700the National Natural Science Foundation of China(NSFC)under Grant(No.62201414,62201432)+2 种基金the Qinchuangyuan Project(OCYRCXM-2022-362)the Fundamental Research Funds for the Central Universities and the Innovation Fund of Xidian University under Grant YJSJ24017the Guangzhou Science and Technology Program under Grant 202201011732。
文摘With the explosive growth of highdefinition video streaming data,a substantial increase in network traffic has ensued.The emergency of mobile edge caching(MEC)can not only alleviate the burden on core network,but also significantly improve user experience.Integrating with the MEC and satellite networks,the network is empowered popular content ubiquitously and seamlessly.Addressing the research gap between multilayer satellite networks and MEC,we study the caching placement problem in this paper.Initially,we introduce a three-layer distributed network caching management architecture designed for efficient and flexible handling of large-scale networks.Considering the constraint on satellite capacity and content propagation delay,the cache placement problem is then formulated and transformed into a markov decision process(MDP),where the content coded caching mechanism is utilized to promote the efficiency of content delivery.Furthermore,a new generic metric,content delivery cost,is proposed to elaborate the performance of caching decision in large-scale networks.Then,we introduce a graph convolutional network(GCN)-based multi-agent advantage actor-critic(A2C)algorithm to optimize the caching decision.Finally,extensive simulations are conducted to evaluate the proposed algorithm in terms of content delivery cost and transferability.
基金supported by the National Natural Science Foundation of China(Nos.62373215,62373219 and 62073193)the Natural Science Foundation of Shandong Province(No.ZR2023MF100)+1 种基金the Key Projects of the Ministry of Industry and Information Technology(No.TC220H057-2022)the Independently Developed Instrument Funds of Shandong University(No.zy20240201)。
文摘Current you only look once(YOLO)-based algorithm model is facing the challenge of overwhelming parameters and calculation complexity under the printed circuit board(PCB)defect detection application scenario.In order to solve this problem,we propose a new method,which combined the lightweight network mobile vision transformer(Mobile Vi T)with the convolutional block attention module(CBAM)mechanism and the new regression loss function.This method needed less computation resources,making it more suitable for embedded edge detection devices.Meanwhile,the new loss function improved the positioning accuracy of the bounding box and enhanced the robustness of the model.In addition,experiments on public datasets demonstrate that the improved model achieves an average accuracy of 87.9%across six typical defect detection tasks,while reducing computational costs by nearly 90%.It significantly reduces the model's computational requirements while maintaining accuracy,ensuring reliable performance for edge deployment.
文摘With the acceleration of the intelligent transformation of power systems,the requirements for communication technology are increasingly stringent.The application of 5G mobile communication technology in power communication is analyzed.In this study,5G technology features,application principles,and practical strategies are discussed,and methods such as network slicing,customized deployment,edge computing collaborative application,communication equipment integration and upgrading,and multi-technology collaboration and complementation are proposed.It aims to effectively improve the efficiency,reliability,and security of power communication,solve the problem that traditional communication technology is difficult to meet the diversified needs of power business,and achieve the effect of optimizing the power communication network and supporting the intelligent development of the power system.
基金supported by the Liaoning Provincial Education Department Fund,grant number JYTZD2023083.
文摘In dynamic 5G network environments,user mobility and heterogeneous network topologies pose dual challenges to the effort of improving performance of mobile edge caching.Existing studies often overlook the dynamic nature of user locations and the potential of device-to-device(D2D)cooperative caching,limiting the reduction of transmission latency.To address this issue,this paper proposes a joint optimization scheme for edge caching that integrates user mobility prediction with deep reinforcement learning.First,a Transformer-based geolocation prediction model is designed,leveraging multi-head attention mechanisms to capture correlations in historical user trajectories for accurate future location prediction.Then,within a three-tier heterogeneous network,we formulate a latency minimization problem under a D2D cooperative caching architecture and develop a mobility-aware Deep Q-Network(DQN)caching strategy.This strategy takes predicted location information as state input and dynamically adjusts the content distribution across small base stations(SBSs)andmobile users(MUs)to reduce end-to-end delay inmulti-hop content retrieval.Simulation results show that the proposed DQN-based method outperforms other baseline strategies across variousmetrics,achieving a 17.2%reduction in transmission delay compared to DQNmethods withoutmobility integration,thus validating the effectiveness of the joint optimization of location prediction and caching decisions.