期刊文献+
共找到24篇文章
< 1 2 >
每页显示 20 50 100
Effects of Meridional Flow Passage Shape on Hydraulic Performance of Mixed-flow Pump Impellers 被引量:19
1
作者 BING Hao CAO Shuliang +1 位作者 TAN Lei ZHU Baoshan 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2013年第3期469-475,共7页
During the process of designing the mixed-flow pump impeller, the meridional flow passage shape directly affects the obtained meridional flow field, which then has an influence on the three-dimensional impeller shape.... During the process of designing the mixed-flow pump impeller, the meridional flow passage shape directly affects the obtained meridional flow field, which then has an influence on the three-dimensional impeller shape. However, the meridional flow passage shape is too complicated to be described by a simple formula for now. Therefore, reasonable parameter selection for the meridional flow passage is essential to the investigation. In order to explore the effects of the meridional flow passage shape on the impeller design and the hydraulic performance of the mixed-flow pump, the hub and shroud radius ratio (HSRR) of impeller and the outlet diffusion angle (ODA) of outlet zone are selected as the meridional flow passage parameters. 25 mixed-flow pump impellers, with specific speed of 496 under the design condition, are designed with various parameter combinations. Among these impellers, one with HSRR of 1.94 and ODA of 90° is selected to carry out the model test and the obtained experimental results are used to verify accuracies of the head and the hydraulic efficiency predicted by numerical simulation. Based on SIMPLE algorithm and standard k-ε two-equation turbulence model, the three-dimensional steady incompressible Reynolds averaged Navier-Stokes equations are solved and the effects of different parameters on hydraulic performance of mixed-flow pump impellers are analyzed. The analysis results demonstrate that there are optimal values of HSRR and ODA available, so the hydraulic performance and the internal flow of mixed-flow pumps can be improved by selecting appropriate values for the meridional flow passage parameters. The research on these two parameters, HSRR and ODA, has further illustrated influences of the meridional flow passage shape on the hydraulic performance of the mixed-flow pump, and is beneficial to improving the design of the mixed-flow pump impeller. 展开更多
关键词 mixed-flow pump meridional flow passage numerical simulation hydraulic performance
在线阅读 下载PDF
Experimental Study of the Influence of Flow Passage Subtle Variation on Mixed-flow Pump Performance 被引量:5
2
作者 BING Hao CAO Shuliang 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2014年第3期615-621,共7页
In the mixed-flow pump design, the shape of the flow passage can directly affect the flow capacity and the internal flow, thus influencing hydraulic performance, cavitation performance and operation stability of the m... In the mixed-flow pump design, the shape of the flow passage can directly affect the flow capacity and the internal flow, thus influencing hydraulic performance, cavitation performance and operation stability of the mixed-flow pump. However, there is currently a lack of experimental research on the influence mechanism. Therefore, in order to analyze the effects of subtle variations of the flow passage on the mixed-flow pump performance, the frustum cone surface of the end part of inlet contraction flow passage of the mixed-flow pump is processed into a cylindrical surface and a test rig is built to carry out the hydraulic performance experiment. In this experiment, parameters, such as the head, the efficiency, and the shaft power, are measured, and the pressure fluctuation and the noise signal are also collected. The research results suggest that after processing the inlet flow passage, the head of the mixed-flow pump significantly goes down; the best efficiency of the mixed-flow pump drops by approximately 1.5%, the efficiency decreases more significantly under the large flow rate; the shaft power slightly increases under the large flow rate, slightly decreases under the small flow rate. In addition, the pressure fluctuation amplitudes on both the impeller inlet and the diffuser outlet increase significantly with more drastic pressure fluctuations and significantly lower stability of the internal flow of the mixed-flow pump. At the same time, the noise dramatically increases. Overall speaking, the subtle variation of the inlet flow passage leads to a significant change of the mixed-flow pump performance, thus suggesting a special attention to the optimization of flow passage. This paper investigates the influence of the flow passage variation on the mixed-flow pump performance by experiment, which will benefit the optimal design of the flow passage of the mixed-flow pump. 展开更多
关键词 mixed-flow pumps flow passage hydraulic performance pressure fluctuation model test
在线阅读 下载PDF
Research on the Critical Speed of a Mixed-Flow Turbocharger with Hybrid Ceramic Ball Bearing 被引量:3
3
作者 黄若 葛新滨 马朝臣 《Journal of Beijing Institute of Technology》 EI CAS 2009年第3期298-303,共6页
The critical speeds for a vehicle turbocharger with hybrid ceramic ball bearing are researched. The ball bearing-rotor system produces resonance when it working in critical speed and that makes the turbocharger injury... The critical speeds for a vehicle turbocharger with hybrid ceramic ball bearing are researched. The ball bearing-rotor system produces resonance when it working in critical speed and that makes the turbocharger injury working for a long time. The calculation and analysis methods of the critical speed for the vehicle turbocharger are described. The critical speed is computed by two methods including Riccati transfer matrix and DyRoBeS finite element method for a vehicle turbocharger with hybrid ceramic ball bearing. The vibration experiment had been taken to validate the calculating result, Comparison between the results by two calculation methods and the test results show that the first critical speed differences are 6.47 % and 5.66 %, the second critical speed differences are 2.87 % and 2.94 % respectively. And then, the primary factors which influence the critical speed are analyzed, the conclusions will be helpful for the vehicle turbocharger bearing-rotor system design. 展开更多
关键词 mixed-flow turbocharger ceramic ball bearing bearing-rotor system critical speed bearing equivalent stiffness
在线阅读 下载PDF
Variation law of gas holdup in an autoclave during the pressure leaching process by using a mixed-flow agitator 被引量:2
4
作者 Lei Tian Yan Liu +2 位作者 Jun-jie Tang Guo-zhi Lü Ting-an Zhang 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2017年第8期876-883,共8页
The multiphase reaction process of pressure leaching is mainly carried out in the liquid phase. Therefore, gas holdup is essential for the gas–liquid–solid phase reaction and the extraction rate of valuable metals. ... The multiphase reaction process of pressure leaching is mainly carried out in the liquid phase. Therefore, gas holdup is essential for the gas–liquid–solid phase reaction and the extraction rate of valuable metals. In this paper, a transparent quartz autoclave, a six blades disc turbine-type agitator, and a high-speed camera were used to investigate the gas holdup of the pressure leaching process. Furthermore, experiments determining the effects of agitation rate, temperature, and oxygen partial pressure on gas holdup were carried out. The results showed that when the agitation rate increased from 350 to 600 r/min, the gas holdup increased from 0.10% to 0.64%. When the temperature increased from 363 to 423 K, the gas holdup increased from 0.14% to 0.20%. When the oxygen partial pressure increased from 0.1 to 0.8 MPa, the gas holdup increased from 0.13% to 0.19%. A similar criteria relationship was established by Homogeneous Principle and Buckingham's theorem. Comprehensively, empirical equation of gas holdup was deduced on the basis of experimental data and the similarity theory, where the criterion equation was determined as ε=4.54×10^(-11)n^(3.65)T^(2.08)P_g^(0.18). It can be seen from the formula that agitation rate made the most important impact on gas holdup in the pressure leaching process using the mixed-flow agitator. 展开更多
关键词 VARIATION LAW AUTOCLAVE pressure leaching gas HOLDUP mixed-flow AGITATOR empirical equation
在线阅读 下载PDF
Robust optimization design on impeller of mixed-flow pump 被引量:1
5
作者 ZHAO Binjuan LIAO Wenyan +3 位作者 XIE Yuntong HAN Luyao FU Yanxia HUANG Zhongfu 《排灌机械工程学报》 CSCD 北大核心 2021年第7期671-677,共7页
To increase the robustness of the optimization solutions of the mixed-flow pump,the impeller was firstly indirectly parameterized based on the 2D blade design theory.Secondly,the robustness of the optimization solutio... To increase the robustness of the optimization solutions of the mixed-flow pump,the impeller was firstly indirectly parameterized based on the 2D blade design theory.Secondly,the robustness of the optimization solution was mathematically defined,and then calculated by Monte Carlo sampling method.Thirdly,the optimization on the mixed-flow pump′s impeller was decomposed into the optimal and robust sub-optimization problems,to maximize the pump head and efficiency and minimize the fluctuation degree of them under varying working conditions at the same time.Fourthly,using response surface model,a surrogate model was established between the optimization objectives and control variables of the shape of the impeller.Finally,based on a multi-objective genetic optimization algorithm,a two-loop iterative optimization process was designed to find the optimal solution with good robustness.Comparing the original and optimized pump,it is found that the internal flow field of the optimized pump has been improved under various operating conditions,the hydraulic performance has been improved consequently,and the range of high efficient zone has also been widened.Besides,with the changing of working conditions,the change trend of the hydraulic performance of the optimized pump becomes gentler,the flow field distribution is more uniform,and the influence degree of the varia-tion of working conditions decreases,and the operating stability of the pump is improved.It is concluded that the robust optimization method proposed in this paper is a reasonable way to optimize the mixed-flow pump,and provides references for optimization problems of other fluid machinery. 展开更多
关键词 mixed-flow pump multi-objective genetic optimization robust optimization response surface method 2D blade design theory
在线阅读 下载PDF
Design and study on variable nozzle mixed-flow turbocharger 被引量:1
6
作者 黄若 尚文涛 余志毅 《Journal of Beijing Institute of Technology》 EI CAS 2013年第4期440-446,共7页
A spatial motion mechanism was designed which could make all the nozzle vanes rotate a- round the center of ball with the same radius synchronously to realize control of the variable nozzle mixed-flow turbocharger (V... A spatial motion mechanism was designed which could make all the nozzle vanes rotate a- round the center of ball with the same radius synchronously to realize control of the variable nozzle mixed-flow turbocharger (VN-MT). The back and abdomen of the nozzle vane was designed as arc- shaped. A variable nozzle ring perfectly combined with the mixed-flow turbine was made available. The turbine geometric model of VN-MT was established through the computational fluid dynamics (CFD). Compared with nozzleless mixed-flow turbine, the flow range of variable nozzle mixed-flow turbine was broadened tremendously while the peak turbine efficiency point was lower slightly. Flow field analysis in turbine stage showed that the energy was larger and the blade load of rotor was lower than loss of the VN-MT under designed condition the nozzleless mixed-flow turbocharger. 展开更多
关键词 variable geometry turbocharger mixed-flow turbine nozzle ring
在线阅读 下载PDF
Influence of specific speed on hydraulic performances and pressure fluctuations in mixed-flow pumps
7
作者 FU Yanxia JIA Qi +1 位作者 SHEN Yang PACE Giovanni 《排灌机械工程学报》 CSCD 北大核心 2023年第10期981-987,共7页
A series of steady and unsteady numerical calculations of the internal flow in mixed-flow pumps with three different specific speeds were carried out based on the N-S equation coupled with the standard k-εturbulence ... A series of steady and unsteady numerical calculations of the internal flow in mixed-flow pumps with three different specific speeds were carried out based on the N-S equation coupled with the standard k-εturbulence model under different operating conditions to investigate the relationship between the impeller specific speed and the pump performance as well as pressure pulsations.Meanwhile,the pump performance and pressure pulsations inside the mixed-flow pump with three different specific speeds were also analyzed and compared with the corresponding test data.From the results,the averaged deviations between the predicted and tested head among different impellers are below 5%,and with respect to the equivalent impeller specific speeds of 280 and 260,the values are 4.30%and 3.69%,respectively.For all the impeller schemes,the best efficiency point of the mixed-flow pump is found at the flow rate of 1.2 Q_(d) and the higher head deviation occurs at lower flow rates.Especially,it can be found that the specific speed has a slight effect on the pressure fluctuation in the impellers.Eventually,it is determined that the pump performance curves calculated by numerical simu-lations have good agreement with the relevant experimental results,which verifies that the numerical methods used in the present study are accurate to a certain extent.Furthermore,the results also provide some references to the pressure pulsation analysis and the performance improvement of the mixed-flow pump design. 展开更多
关键词 mixed-flow pumps impeller specific speed hydraulic performance pressure pulsation numerical simulation EXPERIMENT
在线阅读 下载PDF
High-efficiency design of a mixed-flow pump 被引量:41
8
作者 KIM Jin-Hyuk AHN Hyung-Jin KIM Kwang-Yong 《Science China(Technological Sciences)》 SCIE EI CAS 2010年第1期24-27,共4页
High-efficiency design of a mixed-flow pump has been carried out based on numerical analysis of a three-dimensional viscous flow.For analysis,the Reynolds-averaged Navier-Stokes equations with a shear stress transport... High-efficiency design of a mixed-flow pump has been carried out based on numerical analysis of a three-dimensional viscous flow.For analysis,the Reynolds-averaged Navier-Stokes equations with a shear stress transport turbulence model were discretized by finite-volume approximations.Structured grid system was constructed in the computational domain,which has O-type grids near the blade surfaces and H/J-type grids in other regions.The numerical results were validated with experimental data for the heads and hydraulic efficiencies at different flow coefficients.The hydraulic efficiency at the design flow coefficient was evaluated with variation of the geometric variables,i.e.,the area of the discharge and length of the vane in the diffuser.The result has shown that the hydraulic efficiency of a mixed-flow pump at the design condition is improved by the modification of the geometry. 展开更多
关键词 mixed-flow PUMP numerical analysis IMPELLER VANE DIFFUSER HEAD HYDRAULIC efficiency
原文传递
Multi-objective optimization of a mixed-flow pump impeller using modified NSGA-II algorithm 被引量:35
9
作者 HUANG RenFang LUO XianWu +4 位作者 JI Bin WANG Peng YU An ZHAI ZhiHong ZHOU JiaJian 《Science China(Technological Sciences)》 SCIE EI CAS CSCD 2015年第12期2122-2130,共9页
In order to maintain a uniform distribution of pareto-front solutions, a modified NSGA-II algorithm coupled with a dynamic crowding distance(DCD) method is proposed for the multi-objective optimization of a mixed-flow... In order to maintain a uniform distribution of pareto-front solutions, a modified NSGA-II algorithm coupled with a dynamic crowding distance(DCD) method is proposed for the multi-objective optimization of a mixed-flow pump impeller. With the pump meridional section fixed, ten variables along the shroud and hub are selected to control the blade load by using a three-dimensional inverse design method. Hydraulic efficiency, along with impeller head, is applied as an optimization objective; and a radial basis neural network(RBNN) is adopted to approximate the objective function with 82 training samples. Local sensitivity analysis shows that decision variables have different impacts on the optimization objectives. Instead of randomly selecting one solution to implement, a technique for ordering preferences by similarity to ideal solution(TOPSIS) is introduced to select the best compromise solution(BCS) from pareto-front sets. The proposed method is applied to optimize the baseline model, i.e. a mixed- flow waterjet pump whose specific speed is 508 min?1?m3s?1?m. The performance of the waterjet pump was experimentally tested. Compared with the baseline model, the optimized impeller has a better hydraulic efficiency of 92% as well as a higher impeller head at the design operation point. Furthermore, the off-design performance is improved with a wider highefficiency operation range. After optimization, velocity gradients on the suction surface are smoother and flow separations are eliminated at the blade inlet part. Thus, the authors believe the proposed method is helpful for optimizing the mixed-flow pumps. 展开更多
关键词 mixed-flow pump waterjet pump multi-objective optimization numerical simulation modified NSGA-II
原文传递
Experimental study of the effect of blade tip clearance and blade angle error on the performance of mixed-flow pump 被引量:17
10
作者 BING Hao CAO ShuLiang +1 位作者 HE ChengLian LU Li 《Science China(Technological Sciences)》 SCIE EI CAS 2013年第2期293-298,共6页
The hydraulic performance test of the mixed-flow pump has been carried out through selecting different blade tip clearances and various blade angle errors.The ratio of the mixed-flow pump efficiency reduction and the ... The hydraulic performance test of the mixed-flow pump has been carried out through selecting different blade tip clearances and various blade angle errors.The ratio of the mixed-flow pump efficiency reduction and the blade tip clearance variation(η/δ) varies with the flow rate coefficient revealing a parabolic trend.An empirical equation has been developed for the mixed-flow pump model by parabolic fitting.For the same blade tip clearance variation δ,the mixed-flow pump efficiency reduction η increases rapidly as the flow rate rises.For any given flow rate,the efficiency,the head and the shaft power of the mixed-flow pump all decrease with the increase of the blade tip clearance.Among them,the efficiency reduction η varies approximately linearly with the blade tip clearance variation δ.When the angle of an individual blade of the mixed-flow pump has a deviation,the performance curves will move and change.These curves have consistent change directions with the performance curves under the condition of all the blades rotated at the same time,but have smaller offset and lower range of variation.When an individual blade angle error changes to ±2°,the optimal efficiency of the mixed-flow pump will have no significant difference.When the individual blade angle error increases to ±4°,the optimal efficiency will decrease by 1%. 展开更多
关键词 mixed-flow pump model test hydraulic performance blade tip clearance blade angle
原文传递
A general alternate loading technique and its applications in the inverse designs of centrifugal and mixed-flow pump impellers 被引量:15
11
作者 WANG ChaoYue WANG FuJun +5 位作者 AN DongSen YAO ZhiFeng XIAO RuoFu LU Li HE ChengLian ZOU ZhiChao 《Science China(Technological Sciences)》 SCIE EI CAS CSCD 2021年第4期898-918,共21页
For the inverse designs of centrifugal and mixed-flow pump impellers,clarifying the generation process of secondary flows and putting forward corresponding suppression measures is an important approach to improve the ... For the inverse designs of centrifugal and mixed-flow pump impellers,clarifying the generation process of secondary flows and putting forward corresponding suppression measures is an important approach to improve the impeller performance.In this paper,to provide a better qualitative insight into the generation mechanism of secondary flows in the impeller,a simple kinematic equation is derived based on the ideal assumptions,which indicates that the potential rothalpy gradient(PRG)is the most important dynamic source that actively induces secondary vortical flows.Induced by the natural adverse PRG on the S1 and S2 stream surfaces,two typical secondary flows,H-S and P-S secondary flows,are clearly presented.To specially suppress these typical secondary flows,a general alternate loading technique(GALT)is proposed,aiming to adjust the real blade loadingδp to control the PRG features.At the blade fore part,theδp on the hub streamline should be slowly increased to avoid breakneck growth of the potential rothalpy to reduce adverse streamwise PRG on the S2 streamsurface.At the blade middle part,theδp should be moderately decreased to reduce adverse streamwise PRG on the S1 streamsurface.At the blade aft part,the difference in theδp between the shroud and hub streamlines should be decreased faster to control the exit uniformity.By applying the GALT to the impeller designs of three typical pump types in hydraulic engineering,the organizational effect of the PRG on fundamental flow structures is proven.The GALT can effectively control the PRG distributions and suppress the secondary flows,thereby widening the pump’s high-efficiency zone,improving flow uniformity and suppressing pressure fluctuations.Compared with the current Z-G method and the ALT,the GALT can meet the requirements of"de-experience"better,thereby enabling the designers to obtain good products explicitly and quickly. 展开更多
关键词 alternate loading technique inverse design centrifugal pump mixed-flow pump IMPELLER potential rothalpy gradient
原文传递
Prediction method of impeller performance and analysis of loss mechanism for mixed-flow pump 被引量:9
12
作者 BING Hao TAN Lei +1 位作者 CAO ShuLiang LU Li 《Science China(Technological Sciences)》 SCIE EI CAS 2012年第7期1988-1998,共11页
A loss model for the mixed-flow pump impellers was developed by summarizing a variety of loss calculation formulas systematically.The internal flow field of the impeller was obtained by employing the iterative calcula... A loss model for the mixed-flow pump impellers was developed by summarizing a variety of loss calculation formulas systematically.The internal flow field of the impeller was obtained by employing the iterative calculation for S 1 and S 2 stream surfaces to solve the continuity and motion equations of fluid.Based on the calculation method of the flow field and the loss model,it is achieved to predict the impeller performance of the mixed-flow pump and the performance curves of a mixed-flow pump model with adjustable blades.Compared with the test data,the loss model of the mixed-flow pump based on the iterative calculation can predict the impeller performance quickly and accurately,which has a high value on the engineering applications.Based on the test verification,curves of various kinds of losses varied for the flow rate were analyzed under different blade angles.In addition,the mechanisms of various kinds of losses inside the mixed-flow pump impeller were discussed in-depth. 展开更多
关键词 mixed-flow pump loss modeling iterative calculation performance prediction loss mechanism
原文传递
Entropy Generation Analysis in a Mixed-Flow Compressor with Casing Treatment 被引量:6
13
作者 ZHANG Qianfeng DU Juan +2 位作者 LI Zhihui LI Jichao ZHANG Hongwu 《Journal of Thermal Science》 SCIE EI CAS CSCD 2019年第5期915-928,共14页
Casing treatments(CT) can effectively extend compressors flow ranges with the expense of efficiency penalty. Compressor efficiency is closely linked to loss. Only revealing the mechanisms of loss generation can design... Casing treatments(CT) can effectively extend compressors flow ranges with the expense of efficiency penalty. Compressor efficiency is closely linked to loss. Only revealing the mechanisms of loss generation can design a CT with high aerodynamic performance. In the paper, a highly-loaded mixed-flow compressor with tip clearance of 0.4 mm was numerically studied at a rotational speed of 30,000 r/min to reveal the effects of axial slot casing treatment(ASCT) on the loss mechanisms in the compressor. The results showed that both isentropic efficiency and stall margin were improved significantly by the ASCT. The local entropy generation method was used to analyze the loss mechanisms and to quantify the loss distributions in the blade passage. Based on the axial distributions of entropy generation rate, for both the cases with and without ASCT, the peak entropy generation rate increased in the rotor domain and decreased in the stator domain during throttling the compressor. The peak entropy generation in rotor was mainly caused by the tip leakage flow and flow separations near the rotor leading edge for the mixed-flow compressor no matter which casing was applied. The radial distributions of entropy generation rate showed that the reduction of loss in the rotor domain from 0.4 span to the rotor casing was the major reason for the efficiency improved by ASCT. The addition of ASCT exerted two opposite effects on the losses generated in the compressor. On the one hand, the intensity of tip leakage flow was weakened by the suction effect of slots, which alleviated the mixing effect between the tip leakage flow and main flow, and thus reduced the flow losses;On the other hand, the extra losses upstream the rotor leading edge were produced due to the shear effect and to the heat transfer. The aforementioned shear effect was caused by the different velocity magnitudes and directions, and the heat transfer was caused by temperature gradient between the injected flow and the incoming flow. For case with smooth casing(SC), 61.61% of the overall loss arose from tip leakage flow and casing boundary layer. When the ASCT was applied, that decreased to 55.34%. The loss generated by tip leakage flow and casing boundary layer decreased 20.54% relatively by ASCT. 展开更多
关键词 NUMERICAL simulation mixed-flow COMPRESSOR LOSS MECHANISM CASING TREATMENT
原文传递
Multi-parameter optimization design, numerical simulation and performance test of mixed-flow pump impeller 被引量:5
14
作者 BING Hao CAO ShuLiang 《Science China(Technological Sciences)》 SCIE EI CAS 2013年第9期2194-2206,共13页
On the basis of the three-dimensional design platform of the mixed-flow pump impellers, an optimization design system was developed in this paper by improving the genetic algorithm with application of both strategies ... On the basis of the three-dimensional design platform of the mixed-flow pump impellers, an optimization design system was developed in this paper by improving the genetic algorithm with application of both strategies of keeping the optimal individu- al and employing the niche. This system took the highest efficiency of the impeller as the optimization objective and employed P, a0, A0h and A0t, which could directly affect the shape and the position of the blade, as optimization parameters. In addition, loss model was used to obtain fast and accurate prediction of the impeller efficiency. The optimization results illustrated that this system had advantages such as high accuracy and fine convergence, thus to effectively improve the design of the mixed-flow pump impellers. Numerical simulation was applied to determine the internal flow fields of the impeller obtained by optimization design, and to analyze both the relative velocity and the pressure distributions. The test results demonstrated that the mixed flow pump had the highest efficiency of 87.2%, the wide and flat high efficiency operation zone, the relatively wide range of blade angle adjustment, fine cavitation performance and satisfied stability. 展开更多
关键词 mixed-flow pump IMPELLER optimization design performance test numerical simulation
原文传递
Effects of blade rotation angle deviations on mixed-flow pump hydraulic performance 被引量:3
15
作者 BING Hao CAO ShuLiang 《Science China(Technological Sciences)》 SCIE EI CAS 2014年第7期1372-1382,共11页
By model test and numerical simulation, this paper analyzed the effects of different blades with varying rotation angle deviations on the hydraulic performance of a mixed-flow pump. It was found that when some blades ... By model test and numerical simulation, this paper analyzed the effects of different blades with varying rotation angle deviations on the hydraulic performance of a mixed-flow pump. It was found that when some blades had rotation angle deviations, the hydraulic performance curves of the mixed-flow pump would move. With a positive deviation, the curves moved towards the large flow rate; with a negative deviation, the curves moved towards the small flow rate. When some blades had rotation angle deviations, the symmetry and uniformity of the pressure distribution inside the mixed-flow pump flow passage both decreased; the larger the deviation, the greater the decrease. When a single blade had a large rotation angle deviation, a rather clear low pressure area was formed, lowering the cavitation performance. When two adjacent blades changed simultaneously, under the small flow rate condition, adverse pressure gradient and flow separation occurred in the flow field, and a hump appeared in the head curve and the operation stability of the mixed-flow pump dropped significantly. Near the best efficiency point(BEP), the simultaneous change of two alternate blades produced a more significant change of pressure in the flow passage, with an even larger area. Compared to the effect of two adjacent blades, two alternate blades, when changed simultaneously, made the mixed-flow pump slightly less efficient, but with a flatter efficiency curve and relatively wider high efficiency area. By fitting the test results, a functional relation among the BEP of the mixed-flow pump QBEP, the number of deviated blades N, and blade rotation angle deviation α was established, thus realizing an effective prediction of the BEP of the mixed-flow pump when blade rotation angles have deviations. 展开更多
关键词 mixed-flow pump blade rotation angle hydraulic performance model test numerical simulation
原文传递
Stall Behaviour in a Mixed-flow Compressor with Axial Slot Casing Treatment 被引量:1
16
作者 QIU Jiahui ZHANG Qianfeng +4 位作者 ZHANG Min DU Juan ZHANG Wenqiang MAROLDT Niklas SEUME Joerg R. 《Journal of Thermal Science》 SCIE EI CAS CSCD 2022年第1期13-24,共12页
Casing treatment is an effective technique in extending stall margin of axial and centrifugal compressor.However,its impacts on the stall behaviour of mixed-flow compressor are still not completely understood until no... Casing treatment is an effective technique in extending stall margin of axial and centrifugal compressor.However,its impacts on the stall behaviour of mixed-flow compressor are still not completely understood until now.To conquer this issue,unsteady full-annulus simulations were conducted to investigate the stall mechanism of a mixed-flow compressor with and without axial slot casing treatment(ASCT).The circumferential propagating speed of spike inception resolved by the numerical approach is 87.1%of the shaft speed,which is identical to the test data.The numerical results confirmed that the mixed-flow compressor fell into rotating stall via spike-type with and without ASCT.The flow structure of the spike inception was investigated at 50%design rotational speed.Instantaneous static pressure traces extracted upstream of the leading edge had shown a classic spiky wave.Furthermore,it was found that with and without ASCT,the mixed-flow compressor stalled through spike with the characteristic of tip leakage spillage at leading edge and tip leakage backflow from trailing edge,which is different from a fraction of the centrifugal compressor.The resultant phenomenon provides conoborating evidence for that unlike in axial-flow compressor,the addition of ASCT does not change the stall characteristics of the mixed-flow compressor.The flow structure that induced spike inception with ASCT is similar to the case with smooth casing.In the throttling process,tip leakage flow vortex had been involved in the formation of tornado vortices,with one end at the suction side,and the other end at the casing-side.The low-pressure region relevant to the downward spike is caused by leading-edge separation vortex or tornado vortex.The high-pressure region relevant to the upward spike is induced by blockage from the passage vortex.These results not only can provide guidance for the design of casing treatment in mixed-flow compressor,but also can pave the way for the stall waring in the highly-loaded compressors of next-generation aeroengines. 展开更多
关键词 mixed-flow compressor casing treatment spike-type stall inception unsteady simulation tornado vortex
原文传递
Experimental Investigation on Liner Cooling Characteristics of a Mixed-Flow Trapped Vortex Combustor
17
作者 ZHANG Jingyu WANG Min +3 位作者 WANG Long WANG Jiaxi JIANG Ping HE Xiaomin 《Journal of Thermal Science》 SCIE EI CAS CSCD 2023年第6期2222-2234,共13页
The mixed-flow trapped vortex combustor(TVC)is a new type of combustor that applies trapped vortex flame stabilization technology to mixed-flow combustor.Compared with the traditional mixed-flow combustor,the mixed-fl... The mixed-flow trapped vortex combustor(TVC)is a new type of combustor that applies trapped vortex flame stabilization technology to mixed-flow combustor.Compared with the traditional mixed-flow combustor,the mixed-flow TVC has many advantages,such as complicated structure of the vortex flow field inside liner,large cooling area,significant local hot spots on the liner,and large wall temperature gradient.In this paper,for a mixed-flow TVC with inclined multi-hole cooling,the liner wall temperature of an annular test rig was examined in experiments.The effects of inlet temperature(T3),inlet Mach number(Ma)and fuel to air ratio(FAR)on the temperature of liner wall were obtained,which provided a valuable reference for understanding the distribution characteristics of liner wall temperature.The experiment results show that the highest temperature is found to be on the fore-wall of the cavity.When T3 and FAR are low,the highest wall temperature was obtained in injector plane.However,the wall temperature in the center plane between two adjacent injectors was higher than that in injector plane under the condition of high FAR and T3.With the increase of FAR and T3,the average wall temperature increases.Ma has a slight impact on the average wall temperature.In addition,this paper provides an effective reference for the design and improvement of the liner cooling structure of the combustor with many discontinuous small-area walls in the flow direction.It is difficult to form a continuous film,and cooling requirements can’t be achieved only by using inclined multi-hole cooling structure.Consideration needs to be given to other efficient cooling structures,or to the combination of multiple cooling structures. 展开更多
关键词 mixed-flow TVC liner cooling inclined multi-hole cooling wall temperature experiment
原文传递
An Improved Genetic Algorithm for Solving the Mixed⁃Flow Job⁃Shop Scheduling Problem with Combined Processing Constraints 被引量:4
18
作者 ZHU Haihua ZHANG Yi +2 位作者 SUN Hongwei LIAO Liangchuang TANG Dunbing 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI CSCD 2021年第3期415-426,共12页
The flexible job-shop scheduling problem(FJSP)with combined processing constraints is a common scheduling problem in mixed-flow production lines.However,traditional methods for classic FJSP cannot be directly applied.... The flexible job-shop scheduling problem(FJSP)with combined processing constraints is a common scheduling problem in mixed-flow production lines.However,traditional methods for classic FJSP cannot be directly applied.Targeting this problem,the process state model of a mixed-flow production line is analyzed.On this basis,a mathematical model of a mixed-flow job-shop scheduling problem with combined processing constraints is established based on the traditional FJSP.Then,an improved genetic algorithm with multi-segment encoding,crossover,and mutation is proposed for the mixed-flow production line problem.Finally,the proposed algorithm is applied to the production workshop of missile structural components at an aerospace institute to verify its feasibility and effectiveness. 展开更多
关键词 mixed-flow production flexible job-shop scheduling problem(FJSP) genetic algorithm ENCODING
在线阅读 下载PDF
Kyanite far from equilibrium dissolution rate at 0–22℃ and pH of 3.5–7.5 被引量:1
19
作者 Yilun Zhang Donald J.Rimstidt +1 位作者 Yi Huang Chen Zhu 《Acta Geochimica》 EI CAS CSCD 2019年第4期472-480,共9页
Kyanite is an important and slow-dissolving mineral. Earlier work has measured its dissolution rate at high temperature and acidic pH, but experimental measurements at low temperature and near neutral p H were lacking... Kyanite is an important and slow-dissolving mineral. Earlier work has measured its dissolution rate at high temperature and acidic pH, but experimental measurements at low temperature and near neutral p H were lacking. The rate equation by Palandri and Kharaka(A compilation of rate parameters of water–mineral interaction kinetics for application to geochemical modeling. US Geological Survey, Open File Report 2004-1068, 2004) indicates that the rate of kyanite dissolution at room temperature and near neutral pH is on the order of 10^-17 mol m^-2 s^-1, orders of magnitudes slower than most common silicate minerals such as albite and quartz. This study used an externallystirred mixed-flow reactor, which allows high solid:solution ratios, to measure the dissolution rate of kyanite at 0–22 ℃ and pH of 3.5–7.5. The measured dissolution rate of kyanite is 4.6–7.6 9 10-13 mol m^-2 s^-1 at 22℃, and the apparent activation energy is 73.5 kJ mol^-1. This dissolution rate is close to the rate of quartz dissolution and four orders of magnitude faster than the prediction by rate equation of Palandri and Kharaka(2004).Based on our new experimental data, we recommend the following rate equation for modeling the dissolution of kyanite at ambient temperatures.r=ke(-Ea)/R(1/T-1/(298.15))where k = 5.08 9 10-13 mol m^-2 s^-1, and Ea= 73.5 kJ mol^-1. Review of literature data(Carroll in The dissolution behavior of corundum, kaolinite, and andalusite: a surface complex reaction model for the dissolution of aluminosilicate minerals in diagenetic and weathering environs. Dissertation, Northwestern University, 1989) led to a recommended rate equation for andalusite as for T = 25℃ and pH = 2–10:r=k1aH+^n1+k2+k3aH^+^n3where k1= 4.04 9 10^-10 mol m^-2 s^-1, k2= 7.95×10^-10 mol m^-2 s^-1, k3= 1.01×10^-17 mol m^-2 s^-1, n1= 1.2 and n3=-0.6. 展开更多
关键词 KINETICS KYANITE REACTION rates mixed-flow REACTOR
在线阅读 下载PDF
An aggregate flow based scheduler in multi-task cooperated UAVs network 被引量:1
20
作者 Xiaohuan LI Ziqi XIE +4 位作者 Jin YE Xin TANG Chunhai LI Fengzhu TANG Rong YU 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2020年第11期2989-2998,共10页
Unmanned Aerial Vehicles(UAVs)cooperative multi-task system has become the research focus in recent years.However,the existing network frameworks of UAVs are not flexible and efficient enough to deal with the complex ... Unmanned Aerial Vehicles(UAVs)cooperative multi-task system has become the research focus in recent years.However,the existing network frameworks of UAVs are not flexible and efficient enough to deal with the complex multi-task scheduling,because they are not able to perceive the different features.In this paper,a novel cooperated UAVs network framework for multi-task scheduling is proposed.It is a three-layer network including a core layer,an aggregation layer and an execution layer,which enhances the efficiency of multi-task distribution,aggregation and transmission.Furthermore,an Aggre Gate Flow(AGFlow)based scheduler is dedicatedly designed to maximize the task completion rate,whose key point is to aggregate flows belonging to one task during the multi-task transmission of UAVs network and to allocate priority by calculating the urgency-level of each AGFlow.Simulation results demonstrate that,compared with that of state-of-the-art scheduler,the average task completion rate of AGFlow based scheduler is raised by 0.278. 展开更多
关键词 mixed-flow scheduling MULTI-TASK Task completion rate Unmanned Aerial Vehicles(UAVs) Urgency-level
原文传递
上一页 1 2 下一页 到第
使用帮助 返回顶部