Solid-state batteries(SSBs)are considered as the next-generation battery technology,poised to deliver both high energy and enhanced safety.Nonetheless,their transition from laboratory to market is impeded by several c...Solid-state batteries(SSBs)are considered as the next-generation battery technology,poised to deliver both high energy and enhanced safety.Nonetheless,their transition from laboratory to market is impeded by several critical challenges.Among these,the solid–solid interfaces within SSBs represent a bottleneck,characterized by issues such as poor physical contact,side reactions,temporal separation,and sluggish charge carrier transfer.Developing key materials to construct the efficient solid–solid interface is critical for building high-performance SSBs.Organic mixed ionic–electronic conductors(OMIECs)have emerged as a promising alternative to conventional conductors in addressing the abovementioned issues owing to their intrinsic properties,including the capability of conducting both ions and electrons,mechanical flexibility,and structural designability.This review will first elucidate the necessity of the integration of OMIECs in SSBs.Next,a comprehensive exploration of the composition,preparation methods,key advantages,and basic characterizations of OMIECs is presented.This review then delves into recent research progress on OMIECs in SSBs,with a special focus on their application in cathode coating layers,the creation of a 3D mixed conductive framework for Li hosting,and their integration as inner layers in Li anodes.Conclusively,potential future applications and innovative designs of OMIECs are discussed.展开更多
Despite great advancements in organic mixed ionic-electronic conductors(OMIECs),their applications remain predominantly restricted to three-electrode organic electro-chemical transistors(OECTs),which rely on an additi...Despite great advancements in organic mixed ionic-electronic conductors(OMIECs),their applications remain predominantly restricted to three-electrode organic electro-chemical transistors(OECTs),which rely on an additional electrolyte layer to balance ionic and electronic transport,resulting in indirect coupling of charge carriers.While direct coupling has the potential to greatly simplify device architectures,it remains underexplored in OMIECs due to the inherent imbalance between electronic and ionic conductivities.In this study,we introduce a straightforward approach to achieve balanced OMIECs and employ them as channel materials in two-electrode organic electrochemical memristors.These devices provide clear evidence of direct coupling between electronic and ionic carriers and exhibit exceptional performance in synaptic device applications.Our findings offer new insights into charge carrier transport mechanisms in OMIECs and establish organic electrochemical memristors as a promising new class of organic electronic devices for next-generation neuromorphic applications.展开更多
With inherent ionic priorities, mixed ion and electron conductor hybrid devices have been proposed for brain-inspired neuromorphic system applications, demonstrating interesting neuromorphic functions. Here, mixed pro...With inherent ionic priorities, mixed ion and electron conductor hybrid devices have been proposed for brain-inspired neuromorphic system applications, demonstrating interesting neuromorphic functions. Here, mixed proton and electron conductor (MPEC) hybrid oxide neuromorphic transistor is proposed by adopting aqueous solution-processed mesoporous silica coating (MSC)-based electrolyte as gate dielec- tric. With optical and electrical synergetic coupling behaviors, the device demonstrates typical synap- tic responses and transition between short-term plasticity and long-term plasticity. With unique field- configurable proton self-modulation behaviors, a pseudo-diode operation mode is demonstrated on the MPEC hybrid transistor. Moreover, the device demonstrates interesting non-associative learning, including habituation and sensitization behavior. The results show that the proposed MPEC hybrid oxide neuromor- phic transistor has great potential in the field of neuromorphic engineering and would have potential in the bionic visual perception platform .展开更多
Dense membrane with the composition of SrFe0.6Cu0.3Ti0.1O3-δ (SFCTO) was prepared by solid state reaction method. Oxygen permeation flux through this membrane was investigated at operating temperature ranging from ...Dense membrane with the composition of SrFe0.6Cu0.3Ti0.1O3-δ (SFCTO) was prepared by solid state reaction method. Oxygen permeation flux through this membrane was investigated at operating temperature ranging from 750℃ to 950℃ and different oxygen partial pressure. XRD measurements indicated that the compound was able to form single-phased perovskite structure in which part of Fe was replaced by Cu and Ti. The oxygen desorption and the reducibility of SFCTO powder were characterized by thermogravimetric analysis and temperature programmed reduction analysis, respectively. It was found that SFCTO had good structure stability under low oxygen pressure at high temperature. The addition of Ti increased the reduction temperature of Cu and Fe. Performance tests showed that the oxygen permeation flux through a 1.5 mm thick SFCTO membrane was 0.35-0.96 ml·min ^-1·cm^-2 under air/helium oxygen partial pressure gradient with activation energy of 53.2 kJ·mol^-1. The methane conversion of 85%, CO selectivity of 90% and comparatively higher oxygen permeation flux of 5 ml·min^-1·cm^- 2 were achieved at 850℃, when a SFCTO membrane reactor loaded with Ni-Ce/Al2O3 catalyst was applied for the partial oxidation of methane to syngas.展开更多
In order to investigate a key factor for the appearance of proton conductivity in chitin-chitosan mixed compounds, the chitin-chitosan mixed compounds (chitin)x(chitosan)1-x were prepared and these proton conductiviti...In order to investigate a key factor for the appearance of proton conductivity in chitin-chitosan mixed compounds, the chitin-chitosan mixed compounds (chitin)x(chitosan)1-x were prepared and these proton conductivities have been investigated. DC proton conductivity σ is obtained from Nyquist plot of impedance measurement data, and the relationship between σ and mixing ratio x has been made clear. It was found that the x dependence of σ is non-monotonous. That is, σ shows the anomalous behavior, and has peaks around x = 0.4 and 0.75. This result indicates that there exist optimal conditions for the realization of high-proton conductivity in the chitin-chitosan mixed compound in which the number of acetyl groups is different. From the FT-IR measurement, we have found that the behavior of proton conductivity in (chitin)x(chitosan)1-x is determined by the amount of water content changed by x. Using these results, proton conductivity, which is important for the application of conducting polymers in chitin-chitosan mixed compounds, will be able to be easily controlled by adjusting the mixing ratio x.展开更多
Solid-state batteries(SSBs)will potentially offer increased energy density and,more importantly,improved safety for next generation lithium-ion(Li-ion)batteries.One enabling technology is solid-state composite cathode...Solid-state batteries(SSBs)will potentially offer increased energy density and,more importantly,improved safety for next generation lithium-ion(Li-ion)batteries.One enabling technology is solid-state composite cathodes with high operating voltage and area capacity.Current composite cathode manufacturing technologies,however,suffer from large interfacial resistance and low active mass loading that with excessive amounts of polymer electrolytes and conductive additives.Here,we report a liquidphase sintering technology that offers mixed ionic-electronic interphases and free-standing electrode architecture design,which eventually contribute to high area capacity.A small amount(~4 wt.%)of lithium hydroxide(LiOH)and boric acid(H_(3)BO_(3))with low melting point are utilized as sintering additives that infiltrate into single-crystal Ni-rich LiNi_(0.8)Mn_(0.1)Co_(0.1)(NMC811)particles at a moderately elevated temperature(~350℃)in a liquid state,which not only enable intimate physical contact but also promote the densification process.In addition,the liquid-phase additives react and transform to ionic-conductive lithium boron oxide,together with the indium tin oxide(ITO)nanoparticle coating,mixed ionic-electronic interphases of composite cathode are successfully fabricated.Furthermore,the liquid-phase sintering performed at high-temperature(~800℃)also enables the fabrication of highly dense and thick composite cathodes with a novel free-standing architecture.The promising performance characteristics of such composite cathodes,for example,delivering an area capacity above 8 mAh·cm^(−2) within a wide voltage window up to 4.4 V,open new opportunities for SSBs with a high energy density of 500 Wh·kg^(−1) for safer portable electronic and electrical transport.展开更多
In this study,compositionally complex cobaltites with the general formula BaLnCo_(2)O_(6−δ)with three to eight different lanthan-ides at the Ln-site were synthesized using the solid-state reaction method and studied....In this study,compositionally complex cobaltites with the general formula BaLnCo_(2)O_(6−δ)with three to eight different lanthan-ides at the Ln-site were synthesized using the solid-state reaction method and studied.Analysis of entropy metrics and configurational en-tropy calculations indicated that these compounds are medium entropy oxides.All of these crystallize as tetragonal double perovskites from the space group P4/mmm.The unit cell parameters are controlled by the average ionic radius,not the configurational entropy.On the other hand,the oxygen non-stoichiometry is consistently higher than in the case of low entropy double perovskite cobaltites.The total electrical conductivity of all materials in studied conditions is well above 50 S/cm,peaking at 1487 S/cm for BaLa_(1/3)Nd_(1/3)Gd_(1/3)Co_(2)O_(6−δ)at 300℃.The electrical conductivity decreases with the number of substituents.展开更多
Regulating the nucleation and growth of Li metal is crucial for achieving stable high-energy-density Li metal batteries(LMBs)without dendritic Li growth,severe volume expansion,and“dead Li”accumulation.Herein,we pre...Regulating the nucleation and growth of Li metal is crucial for achieving stable high-energy-density Li metal batteries(LMBs)without dendritic Li growth,severe volume expansion,and“dead Li”accumulation.Herein,we present a modulation layer composed of porous SnP_(0.94)/CoP p-n heterojunction particles(SCP),synthesized applying the Kirkendall effect.The unique heterointerfaces in the SCP induce a fully ionized depletion region and built-in electric field.This provides strong Li affinity,additional adsorption sites,and facilitated electron transfer,thereby guiding dendrite-free Li nucleation/growth with a low Li deposition overpotential.Moreover,the strategic design of the SCP,accounting for its reaction with Li,yields electronically conductive Co,lithiophilic Li-Sn alloy,and ionic conductive Li_(3)P during progressive cycles.The mixed electronic and ionic conductor(MEIC)ensure the long-term stability of the SCP modulation layer.With this layer,the SCP@Li symmetric cell maintains a low overpotential for 750 cycles even at a high current density of 5 mA cm^(-2).Additionally,the LiFePO_(4)//SCP@Li full cell achieves an imperceptible capacity decay of 0.03%per cycle for 800 cycles at 0.5 C.This study provides insight into MEIC heterostructures for high-performance LMBs.展开更多
Although showing huge potential in prospering the marketplace of all-solid-state lithium metal batteries(ASSLMBs),garnet-type solid electrolytes(Li6.5La3Zr1.5Ta0.6O12,LLZTO)are critically plagued by interface instabil...Although showing huge potential in prospering the marketplace of all-solid-state lithium metal batteries(ASSLMBs),garnet-type solid electrolytes(Li6.5La3Zr1.5Ta0.6O12,LLZTO)are critically plagued by interface instability with Li anode and the vulnerability to Li dendrite,which are attributed to poor Li diffusion kinetic in bulk Li metal.Herein,a LixAg solid solution alloy with high Li diffusion kinetic is reported as a mixed ionelectron conductor(MIEC)alloy anode.The high Li diffusion kinetic stemming from a low eutectic point and a high mutual solubility of LixAg could reduce the Li concentration gradient in the anode,regulate Li electrochemical potential,and change the relative local overpotential for Li stripping/plating in the anode.Notably,Li stripping/plating prefers energetically at the LixAg/current collector interface rather than the LLZTO/LixAg interface.Therefore,the contact loss is avoided at the LLZTO/LixAg interface.As a result,excellent cycling stability(~1,200 h at 0.2 mA/cm2),and dendrites tolerance(critical current density of 1.2 mA/cm2)are demonstrated by using LixAg as anode.Further research has elucidated that those alloys with low eutectic temperature and high mutual solubility with lithium should be focused on,as they would provide and maintain a soft lattice and a high lithium diffusion rate during composition change.This provides a basis for the selection of alloy phases in negative electrode materials,as well as their application in garnet-based ASSLMBs.展开更多
甲烷干重整(DRM)反应是一种将甲烷和二氧化碳转化为合成气的重要技术,具有显著的环保和经济效益。然而,DRM反应面临二氧化碳成本高等问题,本工作提出了一种基于高温混合导体二氧化碳渗透膜(MOCC膜)反应器的新型技术路线,可利用工业气源...甲烷干重整(DRM)反应是一种将甲烷和二氧化碳转化为合成气的重要技术,具有显著的环保和经济效益。然而,DRM反应面临二氧化碳成本高等问题,本工作提出了一种基于高温混合导体二氧化碳渗透膜(MOCC膜)反应器的新型技术路线,可利用工业气源捕集的二氧化碳原位与DRM反应耦合生成合成气,实现了二氧化碳的捕集与资源化利用及甲烷的高效转化。膜反应器采用氧化钐掺杂的氧化铈多孔骨架复合锂钠二元共晶碳酸盐双相膜,负载LaNi_(1–x)Cu_(x)O_(3–δ)钙钛矿型催化剂。850℃、负载LaNi_(0.8)Cu_(0.2)O_(3–δ)催化剂时,针对模拟烟气和模拟碳基固体氧化物燃料电池(SOFC)阳极尾气2种气源,甲烷转化率分别达到97.31%和95.51%,二氧化碳转化率分别达到98.34%和78.49%,一氧化碳的生成速率分别为2.39 mL·cm^(–2)·min^(–1)和2.93 mL·cm^(–2)·min^(–1),氢气的生成速率分别为1.44 m L·cm^(–2)·min^(–1)和1.38 m L·cm^(–2)·min^(–1)。长期稳定性测试表明,该膜反应器在60 h内性能无明显衰减,展现出良好的应用前景。本工作为二氧化碳捕集与甲烷高效转化提供了新的技术路径,对实现“双碳”目标具有重要意义。展开更多
基金supported by the National Key R&D Program of China(grant no.2021YFB3800300)the National Natural Science Foundation of China(grant nos.22179143,22309201,and 22309202)the Jiangsu Funding Program for Excellent Postdoctoral Talent,and the Gusu Leading Talents Program(grant no.ZXL2023190).
文摘Solid-state batteries(SSBs)are considered as the next-generation battery technology,poised to deliver both high energy and enhanced safety.Nonetheless,their transition from laboratory to market is impeded by several critical challenges.Among these,the solid–solid interfaces within SSBs represent a bottleneck,characterized by issues such as poor physical contact,side reactions,temporal separation,and sluggish charge carrier transfer.Developing key materials to construct the efficient solid–solid interface is critical for building high-performance SSBs.Organic mixed ionic–electronic conductors(OMIECs)have emerged as a promising alternative to conventional conductors in addressing the abovementioned issues owing to their intrinsic properties,including the capability of conducting both ions and electrons,mechanical flexibility,and structural designability.This review will first elucidate the necessity of the integration of OMIECs in SSBs.Next,a comprehensive exploration of the composition,preparation methods,key advantages,and basic characterizations of OMIECs is presented.This review then delves into recent research progress on OMIECs in SSBs,with a special focus on their application in cathode coating layers,the creation of a 3D mixed conductive framework for Li hosting,and their integration as inner layers in Li anodes.Conclusively,potential future applications and innovative designs of OMIECs are discussed.
基金supported by the National Natural Science Foundation of China(4020969,62405044,and 52173156)Fund by Science Research Project of Hebei Education Department(HY2024050011)+1 种基金Natural Science Foundation of Sichuan Province(25NSFSC1287)Foundation of Yanshan University(1050030 and 8190299).
文摘Despite great advancements in organic mixed ionic-electronic conductors(OMIECs),their applications remain predominantly restricted to three-electrode organic electro-chemical transistors(OECTs),which rely on an additional electrolyte layer to balance ionic and electronic transport,resulting in indirect coupling of charge carriers.While direct coupling has the potential to greatly simplify device architectures,it remains underexplored in OMIECs due to the inherent imbalance between electronic and ionic conductivities.In this study,we introduce a straightforward approach to achieve balanced OMIECs and employ them as channel materials in two-electrode organic electrochemical memristors.These devices provide clear evidence of direct coupling between electronic and ionic carriers and exhibit exceptional performance in synaptic device applications.Our findings offer new insights into charge carrier transport mechanisms in OMIECs and establish organic electrochemical memristors as a promising new class of organic electronic devices for next-generation neuromorphic applications.
基金the National Natural Science Foun-dation of China(Nos.51972316,U22A2075)the Ningbo Key Scientific and Technological Project(No.2021Z116).
文摘With inherent ionic priorities, mixed ion and electron conductor hybrid devices have been proposed for brain-inspired neuromorphic system applications, demonstrating interesting neuromorphic functions. Here, mixed proton and electron conductor (MPEC) hybrid oxide neuromorphic transistor is proposed by adopting aqueous solution-processed mesoporous silica coating (MSC)-based electrolyte as gate dielec- tric. With optical and electrical synergetic coupling behaviors, the device demonstrates typical synap- tic responses and transition between short-term plasticity and long-term plasticity. With unique field- configurable proton self-modulation behaviors, a pseudo-diode operation mode is demonstrated on the MPEC hybrid transistor. Moreover, the device demonstrates interesting non-associative learning, including habituation and sensitization behavior. The results show that the proposed MPEC hybrid oxide neuromor- phic transistor has great potential in the field of neuromorphic engineering and would have potential in the bionic visual perception platform .
基金Supported by the Natural Science Foundation of Guangdong Province (030514) and the Science and Technology Program of Guangdong Province (2004B33401006).
文摘Dense membrane with the composition of SrFe0.6Cu0.3Ti0.1O3-δ (SFCTO) was prepared by solid state reaction method. Oxygen permeation flux through this membrane was investigated at operating temperature ranging from 750℃ to 950℃ and different oxygen partial pressure. XRD measurements indicated that the compound was able to form single-phased perovskite structure in which part of Fe was replaced by Cu and Ti. The oxygen desorption and the reducibility of SFCTO powder were characterized by thermogravimetric analysis and temperature programmed reduction analysis, respectively. It was found that SFCTO had good structure stability under low oxygen pressure at high temperature. The addition of Ti increased the reduction temperature of Cu and Fe. Performance tests showed that the oxygen permeation flux through a 1.5 mm thick SFCTO membrane was 0.35-0.96 ml·min ^-1·cm^-2 under air/helium oxygen partial pressure gradient with activation energy of 53.2 kJ·mol^-1. The methane conversion of 85%, CO selectivity of 90% and comparatively higher oxygen permeation flux of 5 ml·min^-1·cm^- 2 were achieved at 850℃, when a SFCTO membrane reactor loaded with Ni-Ce/Al2O3 catalyst was applied for the partial oxidation of methane to syngas.
文摘In order to investigate a key factor for the appearance of proton conductivity in chitin-chitosan mixed compounds, the chitin-chitosan mixed compounds (chitin)x(chitosan)1-x were prepared and these proton conductivities have been investigated. DC proton conductivity σ is obtained from Nyquist plot of impedance measurement data, and the relationship between σ and mixing ratio x has been made clear. It was found that the x dependence of σ is non-monotonous. That is, σ shows the anomalous behavior, and has peaks around x = 0.4 and 0.75. This result indicates that there exist optimal conditions for the realization of high-proton conductivity in the chitin-chitosan mixed compound in which the number of acetyl groups is different. From the FT-IR measurement, we have found that the behavior of proton conductivity in (chitin)x(chitosan)1-x is determined by the amount of water content changed by x. Using these results, proton conductivity, which is important for the application of conducting polymers in chitin-chitosan mixed compounds, will be able to be easily controlled by adjusting the mixing ratio x.
基金supported by Natural Science Foundation of Jiangsu Province(No.BK20200800)the National Natural Science Foundation of China(Nos.51902165,12004145,52072323,and 52122211)+2 种基金Natural Science Foundation of Jiangxi Province(Nos.20192ACBL2004 and 20212BAB214032)Nanjing Science&Technology Innovation Project for Personnel Studying AbroadPart of the calculations were supported by the Center for Computational Science and Engineering at Southern University of Science and Technology,and high-performance computing platform of Jinggangshan University.
文摘Solid-state batteries(SSBs)will potentially offer increased energy density and,more importantly,improved safety for next generation lithium-ion(Li-ion)batteries.One enabling technology is solid-state composite cathodes with high operating voltage and area capacity.Current composite cathode manufacturing technologies,however,suffer from large interfacial resistance and low active mass loading that with excessive amounts of polymer electrolytes and conductive additives.Here,we report a liquidphase sintering technology that offers mixed ionic-electronic interphases and free-standing electrode architecture design,which eventually contribute to high area capacity.A small amount(~4 wt.%)of lithium hydroxide(LiOH)and boric acid(H_(3)BO_(3))with low melting point are utilized as sintering additives that infiltrate into single-crystal Ni-rich LiNi_(0.8)Mn_(0.1)Co_(0.1)(NMC811)particles at a moderately elevated temperature(~350℃)in a liquid state,which not only enable intimate physical contact but also promote the densification process.In addition,the liquid-phase additives react and transform to ionic-conductive lithium boron oxide,together with the indium tin oxide(ITO)nanoparticle coating,mixed ionic-electronic interphases of composite cathode are successfully fabricated.Furthermore,the liquid-phase sintering performed at high-temperature(~800℃)also enables the fabrication of highly dense and thick composite cathodes with a novel free-standing architecture.The promising performance characteristics of such composite cathodes,for example,delivering an area capacity above 8 mAh·cm^(−2) within a wide voltage window up to 4.4 V,open new opportunities for SSBs with a high energy density of 500 Wh·kg^(−1) for safer portable electronic and electrical transport.
基金support of these studies from Gdańsk University of Technology by the DEC-3/2/IDUB/Ⅲ.1a/Ra/2023 and DEC-1/1/2024/IDUB/Ⅲ.4c/Tc grants under the Radium and Technetium-‘Excellence Initiative-Research University’programs.
文摘In this study,compositionally complex cobaltites with the general formula BaLnCo_(2)O_(6−δ)with three to eight different lanthan-ides at the Ln-site were synthesized using the solid-state reaction method and studied.Analysis of entropy metrics and configurational en-tropy calculations indicated that these compounds are medium entropy oxides.All of these crystallize as tetragonal double perovskites from the space group P4/mmm.The unit cell parameters are controlled by the average ionic radius,not the configurational entropy.On the other hand,the oxygen non-stoichiometry is consistently higher than in the case of low entropy double perovskite cobaltites.The total electrical conductivity of all materials in studied conditions is well above 50 S/cm,peaking at 1487 S/cm for BaLa_(1/3)Nd_(1/3)Gd_(1/3)Co_(2)O_(6−δ)at 300℃.The electrical conductivity decreases with the number of substituents.
基金supported by the Basic Science Research Program through National Research Foundation of Korea(NRF)grant funded by the Ministry of Education(RS-2020-NR049594)the Ministry of Science and ICT(RS-2022-NR070534).
文摘Regulating the nucleation and growth of Li metal is crucial for achieving stable high-energy-density Li metal batteries(LMBs)without dendritic Li growth,severe volume expansion,and“dead Li”accumulation.Herein,we present a modulation layer composed of porous SnP_(0.94)/CoP p-n heterojunction particles(SCP),synthesized applying the Kirkendall effect.The unique heterointerfaces in the SCP induce a fully ionized depletion region and built-in electric field.This provides strong Li affinity,additional adsorption sites,and facilitated electron transfer,thereby guiding dendrite-free Li nucleation/growth with a low Li deposition overpotential.Moreover,the strategic design of the SCP,accounting for its reaction with Li,yields electronically conductive Co,lithiophilic Li-Sn alloy,and ionic conductive Li_(3)P during progressive cycles.The mixed electronic and ionic conductor(MEIC)ensure the long-term stability of the SCP modulation layer.With this layer,the SCP@Li symmetric cell maintains a low overpotential for 750 cycles even at a high current density of 5 mA cm^(-2).Additionally,the LiFePO_(4)//SCP@Li full cell achieves an imperceptible capacity decay of 0.03%per cycle for 800 cycles at 0.5 C.This study provides insight into MEIC heterostructures for high-performance LMBs.
基金supported by the Natural Science Foundation of China(Grant 51977097,52207234)the Science and Technology Project of State Grid Corporation of China(Grant No.5419-202199552A-0-5-ZN).
文摘Although showing huge potential in prospering the marketplace of all-solid-state lithium metal batteries(ASSLMBs),garnet-type solid electrolytes(Li6.5La3Zr1.5Ta0.6O12,LLZTO)are critically plagued by interface instability with Li anode and the vulnerability to Li dendrite,which are attributed to poor Li diffusion kinetic in bulk Li metal.Herein,a LixAg solid solution alloy with high Li diffusion kinetic is reported as a mixed ionelectron conductor(MIEC)alloy anode.The high Li diffusion kinetic stemming from a low eutectic point and a high mutual solubility of LixAg could reduce the Li concentration gradient in the anode,regulate Li electrochemical potential,and change the relative local overpotential for Li stripping/plating in the anode.Notably,Li stripping/plating prefers energetically at the LixAg/current collector interface rather than the LLZTO/LixAg interface.Therefore,the contact loss is avoided at the LLZTO/LixAg interface.As a result,excellent cycling stability(~1,200 h at 0.2 mA/cm2),and dendrites tolerance(critical current density of 1.2 mA/cm2)are demonstrated by using LixAg as anode.Further research has elucidated that those alloys with low eutectic temperature and high mutual solubility with lithium should be focused on,as they would provide and maintain a soft lattice and a high lithium diffusion rate during composition change.This provides a basis for the selection of alloy phases in negative electrode materials,as well as their application in garnet-based ASSLMBs.
文摘甲烷干重整(DRM)反应是一种将甲烷和二氧化碳转化为合成气的重要技术,具有显著的环保和经济效益。然而,DRM反应面临二氧化碳成本高等问题,本工作提出了一种基于高温混合导体二氧化碳渗透膜(MOCC膜)反应器的新型技术路线,可利用工业气源捕集的二氧化碳原位与DRM反应耦合生成合成气,实现了二氧化碳的捕集与资源化利用及甲烷的高效转化。膜反应器采用氧化钐掺杂的氧化铈多孔骨架复合锂钠二元共晶碳酸盐双相膜,负载LaNi_(1–x)Cu_(x)O_(3–δ)钙钛矿型催化剂。850℃、负载LaNi_(0.8)Cu_(0.2)O_(3–δ)催化剂时,针对模拟烟气和模拟碳基固体氧化物燃料电池(SOFC)阳极尾气2种气源,甲烷转化率分别达到97.31%和95.51%,二氧化碳转化率分别达到98.34%和78.49%,一氧化碳的生成速率分别为2.39 mL·cm^(–2)·min^(–1)和2.93 mL·cm^(–2)·min^(–1),氢气的生成速率分别为1.44 m L·cm^(–2)·min^(–1)和1.38 m L·cm^(–2)·min^(–1)。长期稳定性测试表明,该膜反应器在60 h内性能无明显衰减,展现出良好的应用前景。本工作为二氧化碳捕集与甲烷高效转化提供了新的技术路径,对实现“双碳”目标具有重要意义。