期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
Mixed integer programming modeling for the satellite three-dimensional component assignment and layout optimization problem
1
作者 Yufeng XIA Xianqi CHEN +3 位作者 Zhijia LIU Weien ZHOU Wen YAO Zhongneng ZHANG 《Chinese Journal of Aeronautics》 2025年第6期427-447,共21页
Satellite Component Layout Optimization(SCLO) is crucial in satellite system design.This paper proposes a novel Satellite Three-Dimensional Component Assignment and Layout Optimization(3D-SCALO) problem tailored to en... Satellite Component Layout Optimization(SCLO) is crucial in satellite system design.This paper proposes a novel Satellite Three-Dimensional Component Assignment and Layout Optimization(3D-SCALO) problem tailored to engineering requirements, aiming to optimize satellite heat dissipation while considering constraints on static stability, 3D geometric relationships between components, and special component positions. The 3D-SCALO problem is a challenging bilevel combinatorial optimization task, involving the optimization of discrete component assignment variables in the outer layer and continuous component position variables in the inner layer,with both influencing each other. To address this issue, first, a Mixed Integer Programming(MIP) model is proposed, which reformulates the original bilevel problem into a single-level optimization problem, enabling the exploration of a more comprehensive optimization space while avoiding iterative nested optimization. Then, to model the 3D geometric relationships between components within the MIP framework, a linearized 3D Phi-function method is proposed, which handles non-overlapping and safety distance constraints between cuboid components in an explicit and effective way. Subsequently, the Finite-Rectangle Method(FRM) is proposed to manage 3D geometric constraints for complex-shaped components by approximating them with a finite set of cuboids, extending the applicability of the geometric modeling approach. Finally, the feasibility and effectiveness of the proposed MIP model are demonstrated through two numerical examples"and a real-world engineering case, which confirms its suitability for complex-shaped components and real engineering applications. 展开更多
关键词 mixed integer programming modeling Three-dimensional component assignment Layout optimization Phi-function Finite-rectangle method
原文传递
Vehicle and onboard UAV collaborative delivery route planning:considering energy function with wind and payload
2
作者 GUO Jingfeng SONG Rui HE Shiwei 《Journal of Systems Engineering and Electronics》 2025年第1期194-208,共15页
The rapid evolution of unmanned aerial vehicle(UAV)technology and autonomous capabilities has positioned UAV as promising last-mile delivery means.Vehicle and onboard UAV collaborative delivery is introduced as a nove... The rapid evolution of unmanned aerial vehicle(UAV)technology and autonomous capabilities has positioned UAV as promising last-mile delivery means.Vehicle and onboard UAV collaborative delivery is introduced as a novel delivery mode.Spatiotemporal collaboration,along with energy consumption with payload and wind conditions play important roles in delivery route planning.This paper introduces the traveling salesman problem with time window and onboard UAV(TSPTWOUAV)and emphasizes the consideration of real-world scenarios,focusing on time collaboration and energy consumption with wind and payload.To address this,a mixed integer linear programming(MILP)model is formulated to minimize the energy consumption costs of vehicle and UAV.Furthermore,an adaptive large neighborhood search(ALNS)algorithm is applied to identify high-quality solutions efficiently.The effectiveness of the proposed model and algorithm is validated through numerical tests on real geographic instances and sensitivity analysis of key parameters is conducted. 展开更多
关键词 vehicle and onboard unmanned aerial vehicle(UAV)collaborative delivery energy consumption function route planning mixed integer linear programming model adaptive large neighborhood search(ALNS)algorithm
在线阅读 下载PDF
Study on Multi-stream Heat Exchanger Network Synthesis with Parallel Genetic/Simulated Annealing Algorithm 被引量:13
3
作者 魏关锋 姚平经 +1 位作者 LUOXing ROETZELWilfried 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2004年第1期66-77,共12页
The multi-stream heat exchanger network synthesis (HENS) problem can be formulated as a mixed integer nonlinear programming model according to Yee et al. Its nonconvexity nature leads to existence of more than one opt... The multi-stream heat exchanger network synthesis (HENS) problem can be formulated as a mixed integer nonlinear programming model according to Yee et al. Its nonconvexity nature leads to existence of more than one optimum and computational difficulty for traditional algorithms to find the global optimum. Compared with deterministic algorithms, evolutionary computation provides a promising approach to tackle this problem. In this paper, a mathematical model of multi-stream heat exchangers network synthesis problem is setup. Different from the assumption of isothermal mixing of stream splits and thus linearity constraints of Yee et al., non-isothermal mixing is supported. As a consequence, nonlinear constraints are resulted and nonconvexity of the objective function is added. To solve the mathematical model, an algorithm named GA/SA (parallel genetic/simulated annealing algorithm) is detailed for application to the multi-stream heat exchanger network synthesis problem. The performance of the proposed approach is demonstrated with three examples and the obtained solutions indicate the presented approach is effective for multi-stream HENS. 展开更多
关键词 multi-stream heat exchanger network synthesis non-isothermal mixing mixed integer nonlinear programming model genetic algorithm simulated annealing algorithm hybrid algorithm
在线阅读 下载PDF
Optimal layout model of feeder automation equipment oriented to the type of fault detection and local action 被引量:2
4
作者 Ruizhi Chen Xihong Li Yanbo Chen 《Protection and Control of Modern Power Systems》 SCIE EI 2023年第1期15-29,共15页
In feeder automation transformation there are difficulties in equipment and location selection.To help with this,an optimal layout model of feeder automation equipment oriented to the type of fault detection and local... In feeder automation transformation there are difficulties in equipment and location selection.To help with this,an optimal layout model of feeder automation equipment oriented to the type of fault detection and local action is pro-posed.It analyzes the coordination relationship of the three most common types of automation equipment,i.e.,fault indicator,over-current trip switch and non-voltage trip switch in the fault handling process,and the explicit expres-sions of power outage time caused by a fault on different layouts of the above three types of equipment are given.Given constraints of power supply reliability and the goal of minimizing the sum of equipment-related capital invest-ment and power interruption cost,a mixed-integer quadratic programming model for optimal layout is established,in which the functional failure probability of equipment is linearized using the 3δprinciple in statistics.Finally,the basic characteristics of the proposed model are illustrated by different scenarios on the IEEE RBTS-BUS6 system.It can not only take into account fault location and fault isolation to enhance user power consumption perception,but also can guide precise investment to improve the operational quality and efficiency of a power company. 展开更多
关键词 Feeder automation Equipment layout optimization Power outage time Explicit expression mixed integer quadratic programming model Functional failure probability of equipment
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部