Satellite Component Layout Optimization(SCLO) is crucial in satellite system design.This paper proposes a novel Satellite Three-Dimensional Component Assignment and Layout Optimization(3D-SCALO) problem tailored to en...Satellite Component Layout Optimization(SCLO) is crucial in satellite system design.This paper proposes a novel Satellite Three-Dimensional Component Assignment and Layout Optimization(3D-SCALO) problem tailored to engineering requirements, aiming to optimize satellite heat dissipation while considering constraints on static stability, 3D geometric relationships between components, and special component positions. The 3D-SCALO problem is a challenging bilevel combinatorial optimization task, involving the optimization of discrete component assignment variables in the outer layer and continuous component position variables in the inner layer,with both influencing each other. To address this issue, first, a Mixed Integer Programming(MIP) model is proposed, which reformulates the original bilevel problem into a single-level optimization problem, enabling the exploration of a more comprehensive optimization space while avoiding iterative nested optimization. Then, to model the 3D geometric relationships between components within the MIP framework, a linearized 3D Phi-function method is proposed, which handles non-overlapping and safety distance constraints between cuboid components in an explicit and effective way. Subsequently, the Finite-Rectangle Method(FRM) is proposed to manage 3D geometric constraints for complex-shaped components by approximating them with a finite set of cuboids, extending the applicability of the geometric modeling approach. Finally, the feasibility and effectiveness of the proposed MIP model are demonstrated through two numerical examples"and a real-world engineering case, which confirms its suitability for complex-shaped components and real engineering applications.展开更多
A novel chaotic search method is proposed,and a hybrid algorithm combining particle swarm optimization(PSO) with this new method,called CLSPSO,is put forward to solve 14 integer and mixed integer programming problems....A novel chaotic search method is proposed,and a hybrid algorithm combining particle swarm optimization(PSO) with this new method,called CLSPSO,is put forward to solve 14 integer and mixed integer programming problems.The performances of CLSPSO are compared with those of other five hybrid algorithms combining PSO with chaotic search methods.Experimental results indicate that in terms of robustness and final convergence speed,CLSPSO is better than other five algorithms in solving many of these problems.Furthermore,CLSPSO exhibits good performance in solving two high-dimensional problems,and it finds better solutions than the known ones.A performance index(PI) is introduced to fairly compare the above six algorithms,and the obtained values of(PI) in three cases demonstrate that CLSPSO is superior to all the other five algorithms under the same conditions.展开更多
Byproduct gas is an important secondary energy in iron and steel industry, and its optimization is vital to cost reduction. With the development of iron and steel industry to be more eco-friendly, it is necessary to c...Byproduct gas is an important secondary energy in iron and steel industry, and its optimization is vital to cost reduction. With the development of iron and steel industry to be more eco-friendly, it is necessary to construct an integrated optimized system, taking economics, energy consumption and environment into consideration. Therefore, the environmental cost caused by pollutants discharge should be factored in total cost when optimizing byproduct gas distribution. A green mixed integer linear programming (MILP) model for the optimization of byproduct gases was established to reduce total cost, including both operation cost and environmental cost. The operation cost included penalty for gas deviation, costs of fuel and water consumption, holder booster trip penalty, and so forth; while the environmental cost consisted of penalties for both direct and indirect pollutants discharge. Case study showed that the proposed model brought an optimum solution and 2.2% of the total cost could be reduced compared with previous one.展开更多
Production scheduling has a major impact on the productivity of the manufacturing process. Recently, scheduling problems with deteriorating jobs have attracted increasing attentions from researchers. In many practical...Production scheduling has a major impact on the productivity of the manufacturing process. Recently, scheduling problems with deteriorating jobs have attracted increasing attentions from researchers. In many practical situations,it is found that some jobs fail to be processed prior to the pre-specified thresholds,and they often consume extra deteriorating time for successful accomplishment. Their processing times can be characterized by a step-wise function. Such kinds of jobs are called step-deteriorating jobs. In this paper,parallel machine scheduling problem with stepdeteriorating jobs( PMSD) is considered. Due to its intractability,four different mixed integer programming( MIP) models are formulated for solving the problem under consideration. The study aims to investigate the performance of these models and find promising optimization formulation to solve the largest possible problem instances. The proposed four models are solved by commercial software CPLEX. Moreover,the near-optimal solutions can be obtained by black-box local-search solver LocalS olver with the fourth one. The computational results show that the efficiencies of different MIP models depend on the distribution intervals of deteriorating thresholds, and the performance of LocalS olver is clearly better than that of CPLEX in terms of the quality of the solutions and the computational time.展开更多
The double row layout problem(DRLP)is to assign facilities on two rows in parallel so that the total cost of material handling among facilities is minimized.Since it is vital to save cost and enhance productivity,the ...The double row layout problem(DRLP)is to assign facilities on two rows in parallel so that the total cost of material handling among facilities is minimized.Since it is vital to save cost and enhance productivity,the DRLP plays an important role in many application fields.Nevertheless,it is very hard to handle the DRLP because of its complex model.In this paper,we consider a new simplified model for the DRLP(SM-DRLP)and provide a mixed integer programming(MIP)formulation for it.The continuous decision variables of the DRLP are divided into two parts:start points of double rows and adjustable clearances between adjacent facilities.The former one is considered in the new simplified model for the DRLP with the purpose of maintaining solution quality,while the latter one is not taken into account with the purpose of reducing computational time.To evaluate its performance,our SM-DRLP is compared with the model of a general DRLP and the model of another simplified DRLP.The experimental results show the efficiency of our proposed model.展开更多
A novel mixed integer linear programming (NMILP) model for detection of gross errors is presented in this paper. Yamamura et al.(1988) designed a model for detection of gross errors and data reconciliation based on Ak...A novel mixed integer linear programming (NMILP) model for detection of gross errors is presented in this paper. Yamamura et al.(1988) designed a model for detection of gross errors and data reconciliation based on Akaike information cri- terion (AIC). But much computational cost is needed due to its combinational nature. A mixed integer linear programming (MILP) approach was performed to reduce the computational cost and enhance the robustness. But it loses the super performance of maximum likelihood estimation. To reduce the computational cost and have the merit of maximum likelihood estimation, the simultaneous data reconciliation method in an MILP framework is decomposed and replaced by an NMILP subproblem and a quadratic programming (QP) or a least squares estimation (LSE) subproblem. Simulation result of an industrial case shows the high efficiency of the method.展开更多
In this study, we aimed to assess the solution quality for location-allocation problems from facilities generated by the software TransCAD®?, a Geographic Information System for Transportation (GIS-T). Such fa...In this study, we aimed to assess the solution quality for location-allocation problems from facilities generated by the software TransCAD®?, a Geographic Information System for Transportation (GIS-T). Such facilities were obtained after using two routines together: Facility Location and Transportation Problem, when compared with optimal solutions from exact mathematical models, based on Mixed Integer Linear Programming (MILP), developed externally for the GIS. The models were applied to three simulations: the first one proposes opening factories and customer allocation in the state of Sao Paulo, Brazil;the second involves a wholesaler and a study of location and allocation of distribution centres for retail customers;and the third one involves the location of day-care centers and allocation of demand (0 - 3 years old children). The results showed that when considering facility capacity, the MILP optimising model presents results up to 37% better than the GIS and proposes different locations to open new facilities.展开更多
This study proposes a novel approach to optimizing individual work schedules for book digitization using mixed-integer programming (MIP). By leveraging the power of MIP solvers, we aimed to minimize the overall digiti...This study proposes a novel approach to optimizing individual work schedules for book digitization using mixed-integer programming (MIP). By leveraging the power of MIP solvers, we aimed to minimize the overall digitization time while considering various constraints and process dependencies. The book digitization process involves three key steps: cutting, scanning, and binding. Each step has specific requirements and limitations such as the number of pages that can be processed simultaneously and potential bottlenecks. To address these complexities, we formulate the problem as a one-machine job shop scheduling problem with additional constraints to capture the unique characteristics of book digitization. We conducted a series of experiments to evaluate the performance of our proposed approach. By comparing the optimized schedules with the baseline approach, we demonstrated significant reductions in the overall processing time. In addition, we analyzed the impact of different weighting schemes on the optimization results, highlighting the importance of identifying and prioritizing critical processes. Our findings suggest that MIP-based optimization can be a valuable tool for improving the efficiency of individual work schedules, even in seemingly simple tasks, such as book digitization. By carefully considering specific constraints and objectives, we can save time and leverage resources by carefully considering specific constraints and objectives.展开更多
The rapid growth of passenger flow in urban rail transit has led to great service pressures for metro companies in organizing train services to provide higher transportation capacities in order to satisfy passengers...The rapid growth of passenger flow in urban rail transit has led to great service pressures for metro companies in organizing train services to provide higher transportation capacities in order to satisfy passengers' travel demand, especially on those metro lines with insufficient rolling stock. In order to cope with high passenger flow service pressure, a mixed integer nonlinear programming(MINLP) model is proposed to optimize the line plan, timetable and rolling stock circulation simultaneously, to reduce the number of rolling stocks and increase the number of full-length services. A two-step algorithm strategy is proposed. In the first stage, the train timetable is optimized under the assumption that all the train services are the full-length services. In the second stage, the rolling stock plan is optimized based on the timetable optimized in the first stage. To ensure a feasible rolling stock circulation, certain full-length services are shortened to the short-length services due to the limited number of rolling stocks. Numerical experiments are performed based on the real-life data of Shanghai Metro Line 8. Results show that the proposed method can efficiently optimize the timetable and rolling stock circulation of the whole operation day. The optimized results are beneficial for both the service and the operational costs.展开更多
International freedom of the air(traffic rights)is a key resource for airlines to carry out international air transport business.An efficient and reasonable traffic right resource allocation within a country between a...International freedom of the air(traffic rights)is a key resource for airlines to carry out international air transport business.An efficient and reasonable traffic right resource allocation within a country between airlines can affect the quality of a country’s participation in international air transport.In this paper,a multi-objective mixed-integer programming model for traffic rights resource allocation is developed to minimize passenger travel mileages and maximize the number of traffic rights resources allocated to hub airports and competitive carriers.A hybrid heuristic algorithm combining the genetic algorithm and the variable neighborhood search is devised to solve the model.The results show that the optimal allocation scheme aligns with the principle of fairness,indicating that the proposed model can play a certain guiding role in and provide an innovative perspective on traffic rights resource allocation in various countries.展开更多
The flexible job shop scheduling problem(FJSP)is commonly encountered in practical manufacturing environments.A product is typically built by assembling multiple jobs during actual manufacturing.AGVs are normally used...The flexible job shop scheduling problem(FJSP)is commonly encountered in practical manufacturing environments.A product is typically built by assembling multiple jobs during actual manufacturing.AGVs are normally used to transport the jobs from the processing shop to the assembly shop,where they are assembled.Therefore,studying the integrated scheduling problem with its processing,transportation,and assembly stages is extremely beneficial and significant.This research studies the three-stage flexible job shop scheduling problem with assembly and AGV transportation(FJSP-T-A),which includes processing jobs,transporting them via AGVs,and assembling them.A mixed integer linear programming(MILP)model is established to obtain optimal solutions.As the MILP model is challenging for solving large-scale problems,a novel co-evolutionary algorithm(NCEA)with two different decoding methods is proposed.In NCEA,a restart operation is developed to improve the diversity of the population,and a multiple crossover strategy is designed to improve the quality of individuals.The validity of the MILP model is proven by analyzing its complexity.The effectiveness of the restart operator,multiple crossovers,and the proposed algorithm is demonstrated by calculating and analyzing the RPI values of each algorithm's results within the time limit and performing a paired t-test on the average values of each algorithm at the 95%confidence level.This paper studies FJSP-T-A by minimizing the makespan for the first time,and presents a MILP model and an NCEA with two different decoding methods.展开更多
As commercial drone delivery becomes increasingly popular,the extension of the vehicle routing problem with drones(VRPD)is emerging as an optimization problem of inter-ests.This paper studies a variant of VRPD in mult...As commercial drone delivery becomes increasingly popular,the extension of the vehicle routing problem with drones(VRPD)is emerging as an optimization problem of inter-ests.This paper studies a variant of VRPD in multi-trip and multi-drop(VRP-mmD).The problem aims at making schedules for the trucks and drones such that the total travel time is minimized.This paper formulate the problem with a mixed integer program-ming model and propose a two-phase algorithm,i.e.,a parallel route construction heuristic(PRCH)for the first phase and an adaptive neighbor searching heuristic(ANSH)for the second phase.The PRCH generates an initial solution by con-currently assigning as many nodes as possible to the truck–drone pair to progressively reduce the waiting time at the rendezvous node in the first phase.Then the ANSH improves the initial solution by adaptively exploring the neighborhoods in the second phase.Numerical tests on some benchmark data are conducted to verify the performance of the algorithm.The results show that the proposed algorithm can found better solu-tions than some state-of-the-art methods for all instances.More-over,an extensive analysis highlights the stability of the pro-posed algorithm.展开更多
The rapid evolution of unmanned aerial vehicle(UAV)technology and autonomous capabilities has positioned UAV as promising last-mile delivery means.Vehicle and onboard UAV collaborative delivery is introduced as a nove...The rapid evolution of unmanned aerial vehicle(UAV)technology and autonomous capabilities has positioned UAV as promising last-mile delivery means.Vehicle and onboard UAV collaborative delivery is introduced as a novel delivery mode.Spatiotemporal collaboration,along with energy consumption with payload and wind conditions play important roles in delivery route planning.This paper introduces the traveling salesman problem with time window and onboard UAV(TSPTWOUAV)and emphasizes the consideration of real-world scenarios,focusing on time collaboration and energy consumption with wind and payload.To address this,a mixed integer linear programming(MILP)model is formulated to minimize the energy consumption costs of vehicle and UAV.Furthermore,an adaptive large neighborhood search(ALNS)algorithm is applied to identify high-quality solutions efficiently.The effectiveness of the proposed model and algorithm is validated through numerical tests on real geographic instances and sensitivity analysis of key parameters is conducted.展开更多
Continuous ibuprofen(a widespread used analgesic drug)manufacturing is full of superiorities and is a fertile field both in industry and academia since it can not only effectively treat rheumatic and other chronic and...Continuous ibuprofen(a widespread used analgesic drug)manufacturing is full of superiorities and is a fertile field both in industry and academia since it can not only effectively treat rheumatic and other chronic and painful diseases,but also shows great potential in dental diseases.As one of central elements of operability analysis,flexibility analysis is in charge of the quantitative assessment of the capability to guarantee the feasible operation in face of variations on uncertain parameters.In this paper,we focus on the flexibility index calculation for the continuous ibuprofen manufacturing process.We update existing state-of-the-art formulations,which traditionally lead to the max-max-max optimization problem,to approach the calculation of the flexibility index with a favorable manner.Advantages regarding the size of the mathematical model and the computational CPU time of the modified method are examined by four cases.In addition to identifying the flexibility index without any consideration of control variables,we also investigate the effects of different combinations of control variables on the flexibility property to reveal the benefits from taking recourse actions into account.Results from systematic investigations are expected to provide a solid basis for the further control system design and optimal operation of continuous ibuprofen manufacturing.展开更多
Livelocks, like deadlocks, can result in serious results in running process of flexible manufacturing systems(FMSs). Current deadlock control policies(DCPs) based on mixed integer programming(MIP) cannot detect siphon...Livelocks, like deadlocks, can result in serious results in running process of flexible manufacturing systems(FMSs). Current deadlock control policies(DCPs) based on mixed integer programming(MIP) cannot detect siphons that cause and cope with livelocks in Petri nets. This study proposes a revised mixed integer programming(RMIP) method to directly solve the new smart siphons(NSSs) associated with livelocks in a system of sequential systems with shared resources(S^4 R), a typical subclass of generalized Petri net models. Accordingly,the solved NSSs are max'-controlled by adding the corresponding control places(CPs). As a result, an original S^4 R system with livelocks can be converted into the live controlled Petri net system. The related theoretical analysis and an example are given to demonstrate the proposed RMIP and the corresponding control algorithm(CA).展开更多
Enhancing traffic efficiency and alleviating(even circumventing)traffic congestion with advanced traffic signal control(TSC)strategies are always the main issues to be addressed in urban transportation systems.Since m...Enhancing traffic efficiency and alleviating(even circumventing)traffic congestion with advanced traffic signal control(TSC)strategies are always the main issues to be addressed in urban transportation systems.Since model predictive control(MPC)has a lot of advantages in modeling complex dynamic systems,it has been widely studied in traffic signal control over the past 20 years.There is a need for an in-depth understanding of MPC-based TSC methods for traffic networks.Therefore,this paper presents the motivation of using MPC for TSC and how MPC-based TSC approaches are implemented to manage and control the dynamics of traffic flows both in urban road networks and freeway networks.Meanwhile,typical performance evaluation metrics,solution methods,examples of simulations,and applications related to MPC-based TSC approaches are reported.More importantly,this paper summarizes the recent developments and the research trends in coordination and control of traffic networks with MPC-based TSC approaches.Remaining challenges and open issues are discussed towards the end of this paper to discover potential future research directions.展开更多
Near-surface deposits that extend to considerable depths are often amenable to both open pit mining and/or underground mining.This paper investigates the strategy of mining options for an orebody using a Mixed Integer...Near-surface deposits that extend to considerable depths are often amenable to both open pit mining and/or underground mining.This paper investigates the strategy of mining options for an orebody using a Mixed Integer Linear Programming(MILP)optimization framework.The MILP formulation maximizes the Net Present Value(NPV)of the reserve when extracted with(i)open pit mining,(ii)underground mining,and(iii)concurrent open pit and underground mining.Comparatively,implementing open pit mining generates a higher NPV than underground mining.However considering the investment required for these mining options,underground mining generates a better return on investment than open pit mining.Also,in the concurrent open pit and underground mining scenario,the optimizer prefers extracting blocks using open pit mining.Although the underground mine could access ore sooner,the mining cost differential for open pit mining is more than compensated for by the discounting benefits associated with earlier underground mining.展开更多
The multi-stream heat exchanger network synthesis (HENS) problem can be formulated as a mixed integer nonlinear programming model according to Yee et al. Its nonconvexity nature leads to existence of more than one opt...The multi-stream heat exchanger network synthesis (HENS) problem can be formulated as a mixed integer nonlinear programming model according to Yee et al. Its nonconvexity nature leads to existence of more than one optimum and computational difficulty for traditional algorithms to find the global optimum. Compared with deterministic algorithms, evolutionary computation provides a promising approach to tackle this problem. In this paper, a mathematical model of multi-stream heat exchangers network synthesis problem is setup. Different from the assumption of isothermal mixing of stream splits and thus linearity constraints of Yee et al., non-isothermal mixing is supported. As a consequence, nonlinear constraints are resulted and nonconvexity of the objective function is added. To solve the mathematical model, an algorithm named GA/SA (parallel genetic/simulated annealing algorithm) is detailed for application to the multi-stream heat exchanger network synthesis problem. The performance of the proposed approach is demonstrated with three examples and the obtained solutions indicate the presented approach is effective for multi-stream HENS.展开更多
The demand of hydrogen in oil refinery is increasing as market forces and environmental legislation, so hydrogen network management is becoming increasingly important in refineries. Most studies focused on single-obje...The demand of hydrogen in oil refinery is increasing as market forces and environmental legislation, so hydrogen network management is becoming increasingly important in refineries. Most studies focused on single-objective optimization problem for the hydrogen network, but few account for the multi-objective optimization problem. This paper presents a novel approach for modeling and multi-objective optimization for hydrogen network in refineries. An improved multi-objective optimization model is proposed based on the concept of superstructure. The optimization includes minimization of operating cost and minimization of investment cost of equipment. The proposed methodology for the multi-objective optimization of hydrogen network takes into account flow rate constraints, pressure constraints, purity constraints, impurity constraints, payback period, etc. The method considers all the feasible connections and subjects this to mixed-integer nonlinear programming (MINLP). A deterministic optimization method is applied to solve this multi-objective optimization problem. Finally, a real case study is intro-duced to illustrate the applicability of the approach.展开更多
基金supported by the National Natural Science Foundation of China(No.92371206)the Postgraduate Scientific Research Innovation Project of Hunan Province,China(No.CX2023063).
文摘Satellite Component Layout Optimization(SCLO) is crucial in satellite system design.This paper proposes a novel Satellite Three-Dimensional Component Assignment and Layout Optimization(3D-SCALO) problem tailored to engineering requirements, aiming to optimize satellite heat dissipation while considering constraints on static stability, 3D geometric relationships between components, and special component positions. The 3D-SCALO problem is a challenging bilevel combinatorial optimization task, involving the optimization of discrete component assignment variables in the outer layer and continuous component position variables in the inner layer,with both influencing each other. To address this issue, first, a Mixed Integer Programming(MIP) model is proposed, which reformulates the original bilevel problem into a single-level optimization problem, enabling the exploration of a more comprehensive optimization space while avoiding iterative nested optimization. Then, to model the 3D geometric relationships between components within the MIP framework, a linearized 3D Phi-function method is proposed, which handles non-overlapping and safety distance constraints between cuboid components in an explicit and effective way. Subsequently, the Finite-Rectangle Method(FRM) is proposed to manage 3D geometric constraints for complex-shaped components by approximating them with a finite set of cuboids, extending the applicability of the geometric modeling approach. Finally, the feasibility and effectiveness of the proposed MIP model are demonstrated through two numerical examples"and a real-world engineering case, which confirms its suitability for complex-shaped components and real engineering applications.
基金Projects(50275150,61173052) supported by the National Natural Science Foundation of ChinaProject(14FJ3112) supported by the Planned Science and Technology of Hunan Province,ChinaProject(14B033) supported by Scientific Research Fund Education Department of Hunan Province,China
文摘A novel chaotic search method is proposed,and a hybrid algorithm combining particle swarm optimization(PSO) with this new method,called CLSPSO,is put forward to solve 14 integer and mixed integer programming problems.The performances of CLSPSO are compared with those of other five hybrid algorithms combining PSO with chaotic search methods.Experimental results indicate that in terms of robustness and final convergence speed,CLSPSO is better than other five algorithms in solving many of these problems.Furthermore,CLSPSO exhibits good performance in solving two high-dimensional problems,and it finds better solutions than the known ones.A performance index(PI) is introduced to fairly compare the above six algorithms,and the obtained values of(PI) in three cases demonstrate that CLSPSO is superior to all the other five algorithms under the same conditions.
基金Sponsored by Beijing Social Science Foundation of China(14JGC110)Social Science Research Common Program of Beijing Municipal Commission of Education of China(SM201510038011)CUEB Foundation of China(2014XJG005)
文摘Byproduct gas is an important secondary energy in iron and steel industry, and its optimization is vital to cost reduction. With the development of iron and steel industry to be more eco-friendly, it is necessary to construct an integrated optimized system, taking economics, energy consumption and environment into consideration. Therefore, the environmental cost caused by pollutants discharge should be factored in total cost when optimizing byproduct gas distribution. A green mixed integer linear programming (MILP) model for the optimization of byproduct gases was established to reduce total cost, including both operation cost and environmental cost. The operation cost included penalty for gas deviation, costs of fuel and water consumption, holder booster trip penalty, and so forth; while the environmental cost consisted of penalties for both direct and indirect pollutants discharge. Case study showed that the proposed model brought an optimum solution and 2.2% of the total cost could be reduced compared with previous one.
基金National Natural Science Foundation of China(No.51405403)the Fundamental Research Funds for the Central Universities,China(No.2682014BR019)the Scientific Research Program of Education Bureau of Sichuan Province,China(No.12ZB322)
文摘Production scheduling has a major impact on the productivity of the manufacturing process. Recently, scheduling problems with deteriorating jobs have attracted increasing attentions from researchers. In many practical situations,it is found that some jobs fail to be processed prior to the pre-specified thresholds,and they often consume extra deteriorating time for successful accomplishment. Their processing times can be characterized by a step-wise function. Such kinds of jobs are called step-deteriorating jobs. In this paper,parallel machine scheduling problem with stepdeteriorating jobs( PMSD) is considered. Due to its intractability,four different mixed integer programming( MIP) models are formulated for solving the problem under consideration. The study aims to investigate the performance of these models and find promising optimization formulation to solve the largest possible problem instances. The proposed four models are solved by commercial software CPLEX. Moreover,the near-optimal solutions can be obtained by black-box local-search solver LocalS olver with the fourth one. The computational results show that the efficiencies of different MIP models depend on the distribution intervals of deteriorating thresholds, and the performance of LocalS olver is clearly better than that of CPLEX in terms of the quality of the solutions and the computational time.
基金Supported by the National Natural Science Foundation of China(61871204,62174033)the Natural Science Foundation of Fujian Province(2017J01767,2020J01843)+1 种基金the Program for New Century Excellent Talents in Fujian Province Universitythe Science and Technology Project of Minjiang University(MYK19017)。
文摘The double row layout problem(DRLP)is to assign facilities on two rows in parallel so that the total cost of material handling among facilities is minimized.Since it is vital to save cost and enhance productivity,the DRLP plays an important role in many application fields.Nevertheless,it is very hard to handle the DRLP because of its complex model.In this paper,we consider a new simplified model for the DRLP(SM-DRLP)and provide a mixed integer programming(MIP)formulation for it.The continuous decision variables of the DRLP are divided into two parts:start points of double rows and adjustable clearances between adjacent facilities.The former one is considered in the new simplified model for the DRLP with the purpose of maintaining solution quality,while the latter one is not taken into account with the purpose of reducing computational time.To evaluate its performance,our SM-DRLP is compared with the model of a general DRLP and the model of another simplified DRLP.The experimental results show the efficiency of our proposed model.
基金Project supported by the National Creative Research Groups Science Foundation of China (No. 60421002)the National "Tenth Five-Year" Science and Technology Research Program of China (No.2004BA204B08)
文摘A novel mixed integer linear programming (NMILP) model for detection of gross errors is presented in this paper. Yamamura et al.(1988) designed a model for detection of gross errors and data reconciliation based on Akaike information cri- terion (AIC). But much computational cost is needed due to its combinational nature. A mixed integer linear programming (MILP) approach was performed to reduce the computational cost and enhance the robustness. But it loses the super performance of maximum likelihood estimation. To reduce the computational cost and have the merit of maximum likelihood estimation, the simultaneous data reconciliation method in an MILP framework is decomposed and replaced by an NMILP subproblem and a quadratic programming (QP) or a least squares estimation (LSE) subproblem. Simulation result of an industrial case shows the high efficiency of the method.
文摘In this study, we aimed to assess the solution quality for location-allocation problems from facilities generated by the software TransCAD®?, a Geographic Information System for Transportation (GIS-T). Such facilities were obtained after using two routines together: Facility Location and Transportation Problem, when compared with optimal solutions from exact mathematical models, based on Mixed Integer Linear Programming (MILP), developed externally for the GIS. The models were applied to three simulations: the first one proposes opening factories and customer allocation in the state of Sao Paulo, Brazil;the second involves a wholesaler and a study of location and allocation of distribution centres for retail customers;and the third one involves the location of day-care centers and allocation of demand (0 - 3 years old children). The results showed that when considering facility capacity, the MILP optimising model presents results up to 37% better than the GIS and proposes different locations to open new facilities.
文摘This study proposes a novel approach to optimizing individual work schedules for book digitization using mixed-integer programming (MIP). By leveraging the power of MIP solvers, we aimed to minimize the overall digitization time while considering various constraints and process dependencies. The book digitization process involves three key steps: cutting, scanning, and binding. Each step has specific requirements and limitations such as the number of pages that can be processed simultaneously and potential bottlenecks. To address these complexities, we formulate the problem as a one-machine job shop scheduling problem with additional constraints to capture the unique characteristics of book digitization. We conducted a series of experiments to evaluate the performance of our proposed approach. By comparing the optimized schedules with the baseline approach, we demonstrated significant reductions in the overall processing time. In addition, we analyzed the impact of different weighting schemes on the optimization results, highlighting the importance of identifying and prioritizing critical processes. Our findings suggest that MIP-based optimization can be a valuable tool for improving the efficiency of individual work schedules, even in seemingly simple tasks, such as book digitization. By carefully considering specific constraints and objectives, we can save time and leverage resources by carefully considering specific constraints and objectives.
基金Sponsored by the National Key R&D Program of China (Grant No.2021YFB1600100)。
文摘The rapid growth of passenger flow in urban rail transit has led to great service pressures for metro companies in organizing train services to provide higher transportation capacities in order to satisfy passengers' travel demand, especially on those metro lines with insufficient rolling stock. In order to cope with high passenger flow service pressure, a mixed integer nonlinear programming(MINLP) model is proposed to optimize the line plan, timetable and rolling stock circulation simultaneously, to reduce the number of rolling stocks and increase the number of full-length services. A two-step algorithm strategy is proposed. In the first stage, the train timetable is optimized under the assumption that all the train services are the full-length services. In the second stage, the rolling stock plan is optimized based on the timetable optimized in the first stage. To ensure a feasible rolling stock circulation, certain full-length services are shortened to the short-length services due to the limited number of rolling stocks. Numerical experiments are performed based on the real-life data of Shanghai Metro Line 8. Results show that the proposed method can efficiently optimize the timetable and rolling stock circulation of the whole operation day. The optimized results are beneficial for both the service and the operational costs.
基金supported by the National Natural Science Foundation of Chinathe Civil Aviation Administration of China (U2333206).
文摘International freedom of the air(traffic rights)is a key resource for airlines to carry out international air transport business.An efficient and reasonable traffic right resource allocation within a country between airlines can affect the quality of a country’s participation in international air transport.In this paper,a multi-objective mixed-integer programming model for traffic rights resource allocation is developed to minimize passenger travel mileages and maximize the number of traffic rights resources allocated to hub airports and competitive carriers.A hybrid heuristic algorithm combining the genetic algorithm and the variable neighborhood search is devised to solve the model.The results show that the optimal allocation scheme aligns with the principle of fairness,indicating that the proposed model can play a certain guiding role in and provide an innovative perspective on traffic rights resource allocation in various countries.
基金Supported by National Natural Science Foundation of China(Grant Nos.52205529 and 62303204)the Youth Innovation Team Program of Shandong Higher Education Institution(Grant No.2023KJ206)the Guangyue Youth Scholar Innovation Talent Program support received from Liaocheng University(Grant No.LCUGYTD2022-03)。
文摘The flexible job shop scheduling problem(FJSP)is commonly encountered in practical manufacturing environments.A product is typically built by assembling multiple jobs during actual manufacturing.AGVs are normally used to transport the jobs from the processing shop to the assembly shop,where they are assembled.Therefore,studying the integrated scheduling problem with its processing,transportation,and assembly stages is extremely beneficial and significant.This research studies the three-stage flexible job shop scheduling problem with assembly and AGV transportation(FJSP-T-A),which includes processing jobs,transporting them via AGVs,and assembling them.A mixed integer linear programming(MILP)model is established to obtain optimal solutions.As the MILP model is challenging for solving large-scale problems,a novel co-evolutionary algorithm(NCEA)with two different decoding methods is proposed.In NCEA,a restart operation is developed to improve the diversity of the population,and a multiple crossover strategy is designed to improve the quality of individuals.The validity of the MILP model is proven by analyzing its complexity.The effectiveness of the restart operator,multiple crossovers,and the proposed algorithm is demonstrated by calculating and analyzing the RPI values of each algorithm's results within the time limit and performing a paired t-test on the average values of each algorithm at the 95%confidence level.This paper studies FJSP-T-A by minimizing the makespan for the first time,and presents a MILP model and an NCEA with two different decoding methods.
文摘As commercial drone delivery becomes increasingly popular,the extension of the vehicle routing problem with drones(VRPD)is emerging as an optimization problem of inter-ests.This paper studies a variant of VRPD in multi-trip and multi-drop(VRP-mmD).The problem aims at making schedules for the trucks and drones such that the total travel time is minimized.This paper formulate the problem with a mixed integer program-ming model and propose a two-phase algorithm,i.e.,a parallel route construction heuristic(PRCH)for the first phase and an adaptive neighbor searching heuristic(ANSH)for the second phase.The PRCH generates an initial solution by con-currently assigning as many nodes as possible to the truck–drone pair to progressively reduce the waiting time at the rendezvous node in the first phase.Then the ANSH improves the initial solution by adaptively exploring the neighborhoods in the second phase.Numerical tests on some benchmark data are conducted to verify the performance of the algorithm.The results show that the proposed algorithm can found better solu-tions than some state-of-the-art methods for all instances.More-over,an extensive analysis highlights the stability of the pro-posed algorithm.
基金Fundamental Research Funds for the Central Universities(2024JBZX038)National Natural Science F oundation of China(62076023)。
文摘The rapid evolution of unmanned aerial vehicle(UAV)technology and autonomous capabilities has positioned UAV as promising last-mile delivery means.Vehicle and onboard UAV collaborative delivery is introduced as a novel delivery mode.Spatiotemporal collaboration,along with energy consumption with payload and wind conditions play important roles in delivery route planning.This paper introduces the traveling salesman problem with time window and onboard UAV(TSPTWOUAV)and emphasizes the consideration of real-world scenarios,focusing on time collaboration and energy consumption with wind and payload.To address this,a mixed integer linear programming(MILP)model is formulated to minimize the energy consumption costs of vehicle and UAV.Furthermore,an adaptive large neighborhood search(ALNS)algorithm is applied to identify high-quality solutions efficiently.The effectiveness of the proposed model and algorithm is validated through numerical tests on real geographic instances and sensitivity analysis of key parameters is conducted.
基金the financial support from the National Key Research and Development Program of China(2018AAA0101602)。
文摘Continuous ibuprofen(a widespread used analgesic drug)manufacturing is full of superiorities and is a fertile field both in industry and academia since it can not only effectively treat rheumatic and other chronic and painful diseases,but also shows great potential in dental diseases.As one of central elements of operability analysis,flexibility analysis is in charge of the quantitative assessment of the capability to guarantee the feasible operation in face of variations on uncertain parameters.In this paper,we focus on the flexibility index calculation for the continuous ibuprofen manufacturing process.We update existing state-of-the-art formulations,which traditionally lead to the max-max-max optimization problem,to approach the calculation of the flexibility index with a favorable manner.Advantages regarding the size of the mathematical model and the computational CPU time of the modified method are examined by four cases.In addition to identifying the flexibility index without any consideration of control variables,we also investigate the effects of different combinations of control variables on the flexibility property to reveal the benefits from taking recourse actions into account.Results from systematic investigations are expected to provide a solid basis for the further control system design and optimal operation of continuous ibuprofen manufacturing.
基金the National Natural Science Foundation of China(No.61364004)the Chinese Visiting Scholars to Study Overseas Program supported by China Scholarship Council Foundation(No.[2014]5049,201408625045)+1 种基金the Doctoral Research Funds of Lanzhou University of Technology(No.04-237)the Alumni Foundation of Civil Engineering 77,Lanzhou University of Technology(No.TM-QK-1301)
文摘Livelocks, like deadlocks, can result in serious results in running process of flexible manufacturing systems(FMSs). Current deadlock control policies(DCPs) based on mixed integer programming(MIP) cannot detect siphons that cause and cope with livelocks in Petri nets. This study proposes a revised mixed integer programming(RMIP) method to directly solve the new smart siphons(NSSs) associated with livelocks in a system of sequential systems with shared resources(S^4 R), a typical subclass of generalized Petri net models. Accordingly,the solved NSSs are max'-controlled by adding the corresponding control places(CPs). As a result, an original S^4 R system with livelocks can be converted into the live controlled Petri net system. The related theoretical analysis and an example are given to demonstrate the proposed RMIP and the corresponding control algorithm(CA).
基金supported in part by the National Natural Science Foundation of China(61603154,61773343,61621002,61703217)the Natural Science Foundation of Zhejiang Province(LY15F030021,LY19F030014)Open Research Project of the State Key Laboratory of Industrial Control Technology,Zhejiang University,China(ICT1800407)
文摘Enhancing traffic efficiency and alleviating(even circumventing)traffic congestion with advanced traffic signal control(TSC)strategies are always the main issues to be addressed in urban transportation systems.Since model predictive control(MPC)has a lot of advantages in modeling complex dynamic systems,it has been widely studied in traffic signal control over the past 20 years.There is a need for an in-depth understanding of MPC-based TSC methods for traffic networks.Therefore,this paper presents the motivation of using MPC for TSC and how MPC-based TSC approaches are implemented to manage and control the dynamics of traffic flows both in urban road networks and freeway networks.Meanwhile,typical performance evaluation metrics,solution methods,examples of simulations,and applications related to MPC-based TSC approaches are reported.More importantly,this paper summarizes the recent developments and the research trends in coordination and control of traffic networks with MPC-based TSC approaches.Remaining challenges and open issues are discussed towards the end of this paper to discover potential future research directions.
基金funding support provided by the Laurentian University Research Fund for the compilation of this report
文摘Near-surface deposits that extend to considerable depths are often amenable to both open pit mining and/or underground mining.This paper investigates the strategy of mining options for an orebody using a Mixed Integer Linear Programming(MILP)optimization framework.The MILP formulation maximizes the Net Present Value(NPV)of the reserve when extracted with(i)open pit mining,(ii)underground mining,and(iii)concurrent open pit and underground mining.Comparatively,implementing open pit mining generates a higher NPV than underground mining.However considering the investment required for these mining options,underground mining generates a better return on investment than open pit mining.Also,in the concurrent open pit and underground mining scenario,the optimizer prefers extracting blocks using open pit mining.Although the underground mine could access ore sooner,the mining cost differential for open pit mining is more than compensated for by the discounting benefits associated with earlier underground mining.
基金Supported by the Deutsche Forschungsgemeinschaft (DFG No. RO294/9).
文摘The multi-stream heat exchanger network synthesis (HENS) problem can be formulated as a mixed integer nonlinear programming model according to Yee et al. Its nonconvexity nature leads to existence of more than one optimum and computational difficulty for traditional algorithms to find the global optimum. Compared with deterministic algorithms, evolutionary computation provides a promising approach to tackle this problem. In this paper, a mathematical model of multi-stream heat exchangers network synthesis problem is setup. Different from the assumption of isothermal mixing of stream splits and thus linearity constraints of Yee et al., non-isothermal mixing is supported. As a consequence, nonlinear constraints are resulted and nonconvexity of the objective function is added. To solve the mathematical model, an algorithm named GA/SA (parallel genetic/simulated annealing algorithm) is detailed for application to the multi-stream heat exchanger network synthesis problem. The performance of the proposed approach is demonstrated with three examples and the obtained solutions indicate the presented approach is effective for multi-stream HENS.
基金Supported by the National High Technology Research and Development Program of China (2008AA042902, 2009AA04Z162), the Program of Introducing Talents of Discipline to University (B07031) and the National Natural Science Foundation of China (21106129).
文摘The demand of hydrogen in oil refinery is increasing as market forces and environmental legislation, so hydrogen network management is becoming increasingly important in refineries. Most studies focused on single-objective optimization problem for the hydrogen network, but few account for the multi-objective optimization problem. This paper presents a novel approach for modeling and multi-objective optimization for hydrogen network in refineries. An improved multi-objective optimization model is proposed based on the concept of superstructure. The optimization includes minimization of operating cost and minimization of investment cost of equipment. The proposed methodology for the multi-objective optimization of hydrogen network takes into account flow rate constraints, pressure constraints, purity constraints, impurity constraints, payback period, etc. The method considers all the feasible connections and subjects this to mixed-integer nonlinear programming (MINLP). A deterministic optimization method is applied to solve this multi-objective optimization problem. Finally, a real case study is intro-duced to illustrate the applicability of the approach.