期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
粗糙度和轴向运动对艉轴承混合润滑性能的影响 被引量:1
1
作者 杨琨 张涛 韩冰 《哈尔滨工程大学学报》 EI CAS CSCD 北大核心 2024年第6期1058-1065,共8页
针对大型船舶航行过程中出现船体变形时艉轴承的磨损状态异常这一问题,本文探究磨损表面粗糙度变化和轴向运动对于艉轴承混合润滑性能的影响,建立了耦合轴向运动和表面粗糙度的混合润滑模型,通过数值模拟得到轴承润滑特征的分布,分析轴... 针对大型船舶航行过程中出现船体变形时艉轴承的磨损状态异常这一问题,本文探究磨损表面粗糙度变化和轴向运动对于艉轴承混合润滑性能的影响,建立了耦合轴向运动和表面粗糙度的混合润滑模型,通过数值模拟得到轴承润滑特征的分布,分析轴向运动和粗糙度对轴承混合润滑特性的影响,并对该润滑模型进行验证。计算结果表明:在轴向运动和轴颈倾斜耦合作用下,油膜厚度沿轴向方向非线性减小,油膜压力和接触压力在局部出现峰值,轴瓦在局部出现较大变形;轴向速度增加会加强动压润滑效应,轴向运动对润滑特性的影响程度随着倾角的增大而增加;粗糙度越大承载能力越强,同时接触情况越严重,会加速轴承的局部磨损。 展开更多
关键词 船舶艉轴承 混合润滑 轴向运动 粗糙度 局部接触 轴颈倾斜 润滑性能 数值模型
在线阅读 下载PDF
基于Gauss-Hermite求积分卡尔曼滤波的SINS非线性初始对准方法 被引量:3
2
作者 冉昌艳 程向红 王海鹏 《东南大学学报(自然科学版)》 EI CAS CSCD 北大核心 2014年第2期266-271,共6页
为了改善大方位角初始对准精度和缩短收敛时间,在SINS动基座初始对准中引入了简化的Gauss-Hermite求积分卡尔曼滤波(QKF)方法.首先分析了Gauss-Hermite求积分中的单变量Gauss点及其系数配置方法,然后采用直接张量积法将单变量配置扩展... 为了改善大方位角初始对准精度和缩短收敛时间,在SINS动基座初始对准中引入了简化的Gauss-Hermite求积分卡尔曼滤波(QKF)方法.首先分析了Gauss-Hermite求积分中的单变量Gauss点及其系数配置方法,然后采用直接张量积法将单变量配置扩展后得到多变量Gauss点及其系数配置方法,给出了简化的QKF滤波算法.最后通过数学仿真分析比较了单变量积分点数为3的QKF(3点QKF)与比例对称采样UKF的对准性能,以及单变量积分点数取不同值(3,5和7)对QKF滤波性能的影响.结果表明:在动基座SINS大方位角初始对准中,3点QKF的对准精度远高于UKF的精度,方位角估计收敛速度也快于UKF,并且随着单变量Gauss积分点数的增加,QKF对准精度会进一步提高. 展开更多
关键词 求积分卡尔曼滤波 捷联惯导系统 初始对准 大方位失准角 SINS (strapdown INERTIAL navingation system)
在线阅读 下载PDF
A Simulation Study of Hierarchical Bayesian Fusion Spatial Small Area Model for Binary Outcome under Spatial Misalignment
3
作者 Kindie Fentahun Muchie Anthony Kibira Wanjoya Samuel Musili Mwalili 《Open Journal of Statistics》 2021年第6期993-1009,共17页
<p> <span><span style="font-family:""><span style="font-family:Verdana;">Simulation (stochastic) methods are based on obtaining random samples </span><spa... <p> <span><span style="font-family:""><span style="font-family:Verdana;">Simulation (stochastic) methods are based on obtaining random samples </span><span style="color:#4F4F4F;font-family:Simsun;white-space:normal;background-color:#FFFFFF;"><span style="font-family:Verdana;">&theta;</span><sup><span style="font-family:Verdana;">5</span></sup></span><span style="font-family:Verdana;"></span><span style="font-family:Verdana;"> </span><span><span style="font-family:Verdana;"> </span><span><span style="font-family:Verdana;">from the desired distribution </span><em><span style="font-family:Verdana;">p</span></em><span style="font-family:Verdana;">(</span><span style="color:#4F4F4F;font-family:Verdana;white-space:normal;background-color:#FFFFFF;">&theta;</span><span style="font-family:Verdana;"></span><span style="font-family:Verdana;">)</span><span style="font-family:Verdana;"> </span><span style="font-family:Verdana;">and estimating the expectation of any </span></span><span><span style="font-family:Verdana;">function </span><em><span style="font-family:Verdana;">h</span></em><span style="font-family:Verdana;">(</span><span style="color:#4F4F4F;font-family:Verdana;white-space:normal;background-color:#FFFFFF;">&theta;</span><span style="font-family:Verdana;"></span><span style="font-family:Verdana;">)</span><span style="font-family:Verdana;">. Simulation methods can be used for high-dimensional dis</span></span><span style="font-family:Verdana;">tributions, and there are general algorithms which work for a wide variety of models. Markov chain Monte Carlo (MCMC) methods have been important </span><span style="font-family:Verdana;">in making Bayesian inference practical for generic hierarchical models in</span><span style="font-family:Verdana;"> small area estimation. Small area estimation is a method for producing reliable estimates for small areas. Model based Bayesian small area estimation methods are becoming popular for their ability to combine information from several sources as well as taking account of spatial prediction of spatial data. In this study, detailed simulation algorithm is given and the performance of a non-trivial extension of hierarchical Bayesian model for binary data under spatial misalignment is assessed. Both areal level and unit level latent processes were considered in modeling. The process models generated from the predictors were used to construct the basis so as to alleviate the problem of collinearity </span><span style="font-family:Verdana;">between the true predictor variables and the spatial random process. The</span><span style="font-family:Verdana;"> performance of the proposed model was assessed using MCMC simulation studies. The performance was evaluated with respect to root mean square error </span><span style="font-family:Verdana;">(RMSE), Mean absolute error (MAE) and coverage probability of corres</span><span style="font-family:Verdana;">ponding 95% CI of the estimate. The estimates from the proposed model perform better than the direct estimate.</span></span></span></span> </p> <p> <span></span> </p> 展开更多
关键词 Simulation Small Area Estimation Hierarchical Bayesian Spatial misalign-ment Fusion Process
在线阅读 下载PDF
The impact of gate misalignment on the analog performance of a dual-material double gate junctionless transistor
4
作者 S.Intekhab Amin R.K.Sarin 《Journal of Semiconductors》 EI CAS CSCD 2015年第9期47-53,共7页
The analog performance of gate misaligned dual material double gate junctionless transistor is demonstrated for the first time. The cases considered are where misalignment occurs towards source side and towards drain ... The analog performance of gate misaligned dual material double gate junctionless transistor is demonstrated for the first time. The cases considered are where misalignment occurs towards source side and towards drain side. The analog performance parameters analyzed are: transconductance, output conductance, intrinsic gain and cut-off frequency. These figures of merits (FOMs) are compared with a dual material double gate inversion mode transistor under same gate misalignment condition. The impacts of different length of control gate (L 1) for a given gate length (L) are also studied and the optimum lengths La under misalignment condition to have better analog FOMs and high tolerance to misalignment are presented. 展开更多
关键词 dual material double gate (DMDG) junctionless transistor inversion mode transistor gate misalign-ment analog FOMs
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部