A novel millimeter-wave waveguide-to-microstrip transition based on magnetic-coupling is presented in this paper.The mode conversion of electromagnetic field is realized with the ring strip line of arbitrary shape in ...A novel millimeter-wave waveguide-to-microstrip transition based on magnetic-coupling is presented in this paper.The mode conversion of electromagnetic field is realized with the ring strip line of arbitrary shape in the E-plane of rectangular waveguide and the eccentric quasi-coaxial line,which is partially filled with media and consists of outer and inner rectangular conductors.The structure has the advantages of low loss,wide bandwidth,compact structure,and avoiding debug.From 27 GHz to 40 GHz,the experiment results show that the insertion loss is less than 1.2 dB and the return loss is better than 13.5 dB for the back-to-back transition with semicircle ring strip lines.展开更多
基金supported by the National Natural Science Foundation of China under Grant No. 61001027the Fundamental Research Funds for the Central Universities under Grant No. ZYGX2010J046+2 种基金the Research on Millimeter Wave Waveguide-to-Microstrip Transition Technology under Grant No. H04010401W0409100supporting this research by the project of the Study on Electromagnetic Characteristics of Metamaterials under the Grant No. Y02002010401062the Foundation of Study on Characteristic of Chiral Metamaterials sponsored by the School of Physical Electronics, University of Electronic Science and Technology of China
文摘A novel millimeter-wave waveguide-to-microstrip transition based on magnetic-coupling is presented in this paper.The mode conversion of electromagnetic field is realized with the ring strip line of arbitrary shape in the E-plane of rectangular waveguide and the eccentric quasi-coaxial line,which is partially filled with media and consists of outer and inner rectangular conductors.The structure has the advantages of low loss,wide bandwidth,compact structure,and avoiding debug.From 27 GHz to 40 GHz,the experiment results show that the insertion loss is less than 1.2 dB and the return loss is better than 13.5 dB for the back-to-back transition with semicircle ring strip lines.