期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Influence of Mining Speed on Stope Energy in Deep Mines
1
作者 Zhi-gang Deng Shang Wang +1 位作者 Yun-long MO Wei-jian Liu 《Applied Geophysics》 2025年第3期848-856,897,共10页
Enhancing the mining speed of a working face has become the primary approach to achieve high production and efficiency in coal mines,thereby further improving the production capacity.However,the problem of rock bursts... Enhancing the mining speed of a working face has become the primary approach to achieve high production and efficiency in coal mines,thereby further improving the production capacity.However,the problem of rock bursts resulting from this approach has become increasingly serious.Therefore,to implement coal mine safety and efficient extraction,the impact of deformation pressure caused by different mining speeds should be considered,and a reasonable mining speed of the working face should be determined.The influence of mining speed on overlying rock breaking in the stope is analyzed by establishing a key layer block rotation and subsidence model.Results show that with the increasing mining speed,the compression amount of gangue in the goaf decreases,and the rotation and subsidence amount of rock block B above goaf decreases,forcing the rotation and subsidence amount of rock block A above roadway to increase.Consequently,the contact mode between rock block A and rock block B changes from line contact to point contact,and the horizontal thrust and shear force between blocks increase.The increase in rotation and subsidence of rock block A intensifies the compression degree of coal and rock mass below the key layer,thereby increasing the stress concentration degree of coal and rock mass as well as the total energy accumulation.In addition,due to the insufficient compression of gangue in the goaf,the bending and subsidence space of the far-field key layer are limited,the length of the suspended roof increases,and the influence range of mining stress and the energy accumulation range expand.Numerical test results and underground microseismic monitoring results verify the correlation between mining speed and stope energy,and high-energy events generally appear 1-2 d after the change in mining speed.On this basis,the statistical principle confirms that the maximum mining speed of the working face at 6 m/d is reasonable. 展开更多
关键词 ROCKBURST mining speed overburden structure ENERGY statistics
在线阅读 下载PDF
Time effect of elastic energy release of surrounding rock and evaluation method of reasonable advancing speed 被引量:1
2
作者 Ruifu Yuan Qi Ma +3 位作者 Qunlei Zhang Chun Feng Chunfu Wei Yan Gao 《International Journal of Coal Science & Technology》 2025年第1期113-124,共12页
To reveal the rock burst mechanism,the stress and failure characteristics of coal-rock strata under different advancing speeds of mining working face were explored by theoretical analysis,simulation,and engineering mo... To reveal the rock burst mechanism,the stress and failure characteristics of coal-rock strata under different advancing speeds of mining working face were explored by theoretical analysis,simulation,and engineering monitoring.The relationship between energy accumulation and release was analyzed,and a reasonable mining speed according to specific projects was recommended.The theoretical analysis shows that as the mining speed increases from 4 to 15 m/d,the rheological coefficient of coal mass ranges from 0.9 to 0.4,and the elastic energy of coal mass accumulation varies from 100 to 900 kJ.Based on the simulation,there is a critical advancing speed,the iteration numbers of simulation are less than 15,000 per mining 10 m coal seam,the overburden structure is obvious,the abutment pressure in coal mass is large,and the accumulated energy is large,which is easy to cause strong rock burst.When the iteration number is greater than 15,000,the static force of coal mass increases slightly,but there is no obvious rock burst.Based on engineering monitoring,the mining speed of a mine is less than 8 m/d,and the periodic weighting distance is about 17 m;as the mining speed is greater than 10 m/d,and the periodic weighting distance is greater than 20 m;as the mining speed is 3-8 m/d,and the range of high stress in surrounding rock is 48 m;as the advancing speed is 8-12 m/d,and the high-stress range in surrounding rock is 80 m.Moreover,as the mining speed is less than 8 cut cycles,the micro seismic energy is less than 10,000 J;as the mining speed is 12 cut cycles,the microseismic energy is about 20,000 J.In summary,the advancing speed is positively correlated with the micro seismic event;as the mining speed increases,the accumulated elastic energy of surrounding rock is greater,which is easy to cause rock burst.The comprehensive analysis indicates the daily advance speed of the mine is not more than 12 cut cycles. 展开更多
关键词 mining speed Rock burst Engineering analysis Simulation Coal-rock stress
在线阅读 下载PDF
Study on signal characteristics of burst tendency coal under different loading rates 被引量:1
3
作者 Chao Zhou Xueqiu He +4 位作者 Dazhao Song Zhenlei Li Huakang Yang Yang Liu Lei Guo 《International Journal of Coal Science & Technology》 CSCD 2024年第5期142-150,共9页
In order to study the mechanics,acoustic emission(AE)and electromagnetic emission(EME)response law of bursting liability coal at different loading rates,uniaxial compression tests were carried out on coal mass from Ko... In order to study the mechanics,acoustic emission(AE)and electromagnetic emission(EME)response law of bursting liability coal at different loading rates,uniaxial compression tests were carried out on coal mass from Konggu Coal Mine.The corresponding relations among mechanical properties,AE and EME signals in the process of coal failure under loading were analyzed,and the energy evolution law of coal failure with bursting liability under loading rate was discussed.The results show that within a certain range of loading rate,the higher the loading rate,the higher the compressive strength and peak load of bursting liability coal,and the shorter the time for coal to reach the peak load.Under different loading rates,the mechanics,AE and EME signals of coal samples can be well corresponded.When the loading rate is low,the number of blocks destroyed of coal sample is large and the block size is relatively small,and the blocks are mainly scattered around the test platform.When the loading rate is high,the number of damaged blocks is relatively small and the block size is relatively large,and the blocks are far away from the test bench.When loading at a low rate,the internal cracks in coal can be fully developed and connected,and the energy release rate is relatively uniform in the process of loading and failure of coal sample.In the case of high loading rate,the energy release rate of coal sample in the loading process is much smaller than that in the moment of failure.Combining the above test results with the actual situation of the working face,it can be concluded that the total energy stored in the coal of fast mining increases and the threshold of impact decreases compared with that of slow mining.Therefore,under the disturbance of external dynamic load,rapid mining is more likely to induce rock burst. 展开更多
关键词 Loading rate Burst tendency The mechanics AE and EME response Block damage Energy release rate mining speed Rock burst
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部