The surface deformation after fully mechanized back filling mining was analyzed.The surface deformation for different backfill materials was predicted by an equivalent mining height model and numerical simulations.The...The surface deformation after fully mechanized back filling mining was analyzed.The surface deformation for different backfill materials was predicted by an equivalent mining height model and numerical simulations.The results suggest that:(1) As the elastic modulus,E,of the backfill material increases the surface subsidence decreases.The rate of subsidence decrease drops after E is larger than 5 GPa;(2) Fully mechanized back fill mining technology can effectively control surface deformation.The resulting surface deformation is within the specification grade I,which means surface maintenance is not needed.A site survey showed that the equivalent mining height model is capable of predicting and analyzing surface deformation and that the model is conservative enough for engineering safety.Finally,the significance of establishing a complete error correction system based on error analysis and correction is discussed.展开更多
Underground mining activities and rainfall have potential important influence on the initiation and reactivation of the slope deformations,especially on the steep rock slope. In this paper,using the discrete element m...Underground mining activities and rainfall have potential important influence on the initiation and reactivation of the slope deformations,especially on the steep rock slope. In this paper,using the discrete element method(UDEC),numerical simulation was carried out to investigate deformation features and the failure mechanism of the steep rock slope under mining activities and rainfall. A steep rock slope numerical model was created based on a case study at the Wulong area in Chongqing city,China. Mechanical parameters of the rock mass have been determined by situ measurements and laboratory measurements. A preliminary site monitoring system has been realized,aiming at getting structure movements and stresses of unstablerock masses at the most significant discontinuities. According to the numerical model calibrated based on the monitoring data,four types of operation conditions are designed to reveal the effect of mining excavation and extreme rainfall on the deformation of the steep rock slope.展开更多
The development and application of the ''digital mine'' concept in China depends heavily upon the use of remote sensing data as well as domestic expertise and awareness. Illegal mining of mineral resou...The development and application of the ''digital mine'' concept in China depends heavily upon the use of remote sensing data as well as domestic expertise and awareness. Illegal mining of mineral resources has been a serious long term problem frustrating the Xishimen Iron Ore Mine management. This mine is located in Wu'an county in Hebei province, China. Illegal activities have led to enormous economic losses by interfering with the normal operation of the Xishimen mine and have ruined the surrounding environ- ment and the stability of the Mahe riverbed the crosses the mined area. This paper is based on field recon- naissance taken over many years around the mine area. The ground survey data are integrated with Differential Synthetic Aperture Radar Interferometry (D-InSAR) results from ALOS/PALSAR data to pin- point mining locations. By investigating the relationship between the resulting interferometric deforma- tion pattern and the mining schedule, which is known a priori, areas affected by illegal mining activities are identified. To some extent these areas indicate the location of the illegal site. The results clearly dem- onstrate D-InSAR's ability to cost-effectively monitor illegal mining activities.展开更多
Voids, which have not been liquidated and associated with shallow mining excavations, pose a serious threat of potential formation of sinkholes. This threat is connected with the loss of stability of voids that had be...Voids, which have not been liquidated and associated with shallow mining excavations, pose a serious threat of potential formation of sinkholes. This threat is connected with the loss of stability of voids that had been formed as a result of mining operations in the deeper strata. Taking into account the impact of lower coal seams mining on shallow excavations and based on the example of a region that had been intensely exploited, this paper proposes a methodology for analysing the stability of shallow mine voids in the rock mass. Deformations in the excavation region were calculated by using FLAC2D computer pro- gram and assigning the Coulomb-Mohr model to the rock mass. Based on the numerical analysis, this paper evaluated the stability of the void in the event of a roof support fall. The results indicate the like- lihood of void formation. Based on the Budryk-Knotbe theory, the deformations of rock mass and sand- stone strata in the roof of the void, which had been caused by mining exploitation in consecutive years, were calculated. The results of numerical calculations and analyses were compared with the limit defor- mations values of sandstone in tension. It is concluded that the exploitations cause the void to break down. The proposed method can forecast the discontinuous deformations threats in the areas that have undergone shallow undermining exploitation and the areas of underground urban.展开更多
In this study,Differential Interferometric Synthetic Aperture Radar Interferometry(DInSAR)of artificial Corner Reflectors(CRs)were validated in the area of fast and nonlinear deformation gradient caused by active coal...In this study,Differential Interferometric Synthetic Aperture Radar Interferometry(DInSAR)of artificial Corner Reflectors(CRs)were validated in the area of fast and nonlinear deformation gradient caused by active coal longwall exploitation.Three Sentinel-1 datasets were processed using conventional DInSAR,Persistent Scatterer Interferometry(PSI),and Small BAseline Subset methods implemented in ENVI SARscape™.For evaluation,leveling and Global Navigation Satellite System(GNSS)measurements were used.Considering the challenge of snow cover,the removal of all winter images was not a successful strategy due to the long temporal baseline and strong movement,which cause phase unwrapping problems and underestimate the real deformation.The results indicate that only conventional DInSAR and SBAS with low network redundancy allow us to capture maximal deformation gradient and the root mean square error calculated between the CRs and the ground truth is on the level of 2–3 cm for the vertical and easting deformation component,respectively.For the small deformation gradient represented by the permanent GNSS station(4 cm/year),all SBAS techniques appeared to be more accurate than DInSAR,which corresponds to higher redundancy and better removal of the atmospheric signal.In contrast,DInSAR results allowed to capture information about two subsidence basins,which was not possible with SBAS and PSI approaches.展开更多
A method of forecasting total seismic energy induced by longwall exploitation, based on changes in ground subsidence, is presented in the form of a linear regression model with one with one independent variable. In th...A method of forecasting total seismic energy induced by longwall exploitation, based on changes in ground subsidence, is presented in the form of a linear regression model with one with one independent variable. In the method, ground subsidence is described with a cross-section area of a subsidence trough Pw along a line of observations in the direction of an advancing longwall front, approximately along the axis of the longwall area. Total seismic energy is determined on the basis of seismic energy data of tremors induced by exploitation. The presentation consists of a detailed method and evaluation of its predictive ability for the area of longwall exploitation within the region of one of the coal mines in the Upper Silesian Coal Basin. This method can be used for forecasting the total seismic energy released by tremors within the area directly connected with the exploitation, in which the seismic activity induced by this exploitation occurs. The estimation of the parameters of the determined model should each time be carried out with investigations of the correctness of the model. The method cannot be applied when the number of recorded phenomena is small and when there is insufficient data to make it possible to calculate the index Pw.展开更多
基金provided by the National Natural Science Foundation of China (Nos. 51074165 and 50834004)
文摘The surface deformation after fully mechanized back filling mining was analyzed.The surface deformation for different backfill materials was predicted by an equivalent mining height model and numerical simulations.The results suggest that:(1) As the elastic modulus,E,of the backfill material increases the surface subsidence decreases.The rate of subsidence decrease drops after E is larger than 5 GPa;(2) Fully mechanized back fill mining technology can effectively control surface deformation.The resulting surface deformation is within the specification grade I,which means surface maintenance is not needed.A site survey showed that the equivalent mining height model is capable of predicting and analyzing surface deformation and that the model is conservative enough for engineering safety.Finally,the significance of establishing a complete error correction system based on error analysis and correction is discussed.
基金financially supported by a grant from China Natural Science foundation (51379112,51422904)the National Program on Key Basic Research Project of China (973 Program)(2013CB036002)the National Natural Science Foundation of China (51309144)
文摘Underground mining activities and rainfall have potential important influence on the initiation and reactivation of the slope deformations,especially on the steep rock slope. In this paper,using the discrete element method(UDEC),numerical simulation was carried out to investigate deformation features and the failure mechanism of the steep rock slope under mining activities and rainfall. A steep rock slope numerical model was created based on a case study at the Wulong area in Chongqing city,China. Mechanical parameters of the rock mass have been determined by situ measurements and laboratory measurements. A preliminary site monitoring system has been realized,aiming at getting structure movements and stresses of unstablerock masses at the most significant discontinuities. According to the numerical model calibrated based on the monitoring data,four types of operation conditions are designed to reveal the effect of mining excavation and extreme rainfall on the deformation of the steep rock slope.
基金supported by the National Hi-Tech Research and Development Program of China (No. 2009AA11Z105)the sponsors of Hanxing Iron Ore Mine Administration Bureau for providing the research funds,insitu test assistance and monitor work
文摘The development and application of the ''digital mine'' concept in China depends heavily upon the use of remote sensing data as well as domestic expertise and awareness. Illegal mining of mineral resources has been a serious long term problem frustrating the Xishimen Iron Ore Mine management. This mine is located in Wu'an county in Hebei province, China. Illegal activities have led to enormous economic losses by interfering with the normal operation of the Xishimen mine and have ruined the surrounding environ- ment and the stability of the Mahe riverbed the crosses the mined area. This paper is based on field recon- naissance taken over many years around the mine area. The ground survey data are integrated with Differential Synthetic Aperture Radar Interferometry (D-InSAR) results from ALOS/PALSAR data to pin- point mining locations. By investigating the relationship between the resulting interferometric deforma- tion pattern and the mining schedule, which is known a priori, areas affected by illegal mining activities are identified. To some extent these areas indicate the location of the illegal site. The results clearly dem- onstrate D-InSAR's ability to cost-effectively monitor illegal mining activities.
文摘Voids, which have not been liquidated and associated with shallow mining excavations, pose a serious threat of potential formation of sinkholes. This threat is connected with the loss of stability of voids that had been formed as a result of mining operations in the deeper strata. Taking into account the impact of lower coal seams mining on shallow excavations and based on the example of a region that had been intensely exploited, this paper proposes a methodology for analysing the stability of shallow mine voids in the rock mass. Deformations in the excavation region were calculated by using FLAC2D computer pro- gram and assigning the Coulomb-Mohr model to the rock mass. Based on the numerical analysis, this paper evaluated the stability of the void in the event of a roof support fall. The results indicate the like- lihood of void formation. Based on the Budryk-Knotbe theory, the deformations of rock mass and sand- stone strata in the roof of the void, which had been caused by mining exploitation in consecutive years, were calculated. The results of numerical calculations and analyses were compared with the limit defor- mations values of sandstone in tension. It is concluded that the exploitations cause the void to break down. The proposed method can forecast the discontinuous deformations threats in the areas that have undergone shallow undermining exploitation and the areas of underground urban.
基金The research infrastructure that has been used for computation purposes was created within the project EPOS-PL(POIR.04.02.00-14-A003/16)EPOS-PL+(POIR.04.02.00-00-C005/19-00)European Plate Observing System,funded by the Operational Programme Smart Growth 2014-2020,Priority IV:Increasing the research potential,Action 4.2:Development of modern research infrastructure of the science sector and co-financed by the European Regional Development Fund.
文摘In this study,Differential Interferometric Synthetic Aperture Radar Interferometry(DInSAR)of artificial Corner Reflectors(CRs)were validated in the area of fast and nonlinear deformation gradient caused by active coal longwall exploitation.Three Sentinel-1 datasets were processed using conventional DInSAR,Persistent Scatterer Interferometry(PSI),and Small BAseline Subset methods implemented in ENVI SARscape™.For evaluation,leveling and Global Navigation Satellite System(GNSS)measurements were used.Considering the challenge of snow cover,the removal of all winter images was not a successful strategy due to the long temporal baseline and strong movement,which cause phase unwrapping problems and underestimate the real deformation.The results indicate that only conventional DInSAR and SBAS with low network redundancy allow us to capture maximal deformation gradient and the root mean square error calculated between the CRs and the ground truth is on the level of 2–3 cm for the vertical and easting deformation component,respectively.For the small deformation gradient represented by the permanent GNSS station(4 cm/year),all SBAS techniques appeared to be more accurate than DInSAR,which corresponds to higher redundancy and better removal of the atmospheric signal.In contrast,DInSAR results allowed to capture information about two subsidence basins,which was not possible with SBAS and PSI approaches.
文摘A method of forecasting total seismic energy induced by longwall exploitation, based on changes in ground subsidence, is presented in the form of a linear regression model with one with one independent variable. In the method, ground subsidence is described with a cross-section area of a subsidence trough Pw along a line of observations in the direction of an advancing longwall front, approximately along the axis of the longwall area. Total seismic energy is determined on the basis of seismic energy data of tremors induced by exploitation. The presentation consists of a detailed method and evaluation of its predictive ability for the area of longwall exploitation within the region of one of the coal mines in the Upper Silesian Coal Basin. This method can be used for forecasting the total seismic energy released by tremors within the area directly connected with the exploitation, in which the seismic activity induced by this exploitation occurs. The estimation of the parameters of the determined model should each time be carried out with investigations of the correctness of the model. The method cannot be applied when the number of recorded phenomena is small and when there is insufficient data to make it possible to calculate the index Pw.