In recent years,the southwestern region of China has experienced a surge in significant mountain collapses,predominantly linked to underground mining operations.This investigation targets the Jiguanling area in Wulong...In recent years,the southwestern region of China has experienced a surge in significant mountain collapses,predominantly linked to underground mining operations.This investigation targets the Jiguanling area in Wulong,Chongqing,employing the UDEC numerical simulation technique to meticulously examine the deformation and failure characteristics,rock mass movement patterns,fracture evolution processes,and stress transmission mechanisms of anti-dip rock slopes composed of stratified rocks.These slopes are inherently susceptible to bending and tilting due to their own weight.Our findings elucidate that the predominant failure mode of anti-dip rock karst slopes is the inclined sliding(shear)type,which mirrors the fracture evolution mechanism as they extend in a quadrilateral pattern from the top and bottom plates of the mining area to the critical blocks at the rear and front edges of the slope.The disaster mechanism can be encapsulated as the"initial roof movement phase,direct roof collapse and crack propagation phase,critical block locking and sliding resistance phase,and deterioration phase".The four distinct stages of development and transformation encompass critical block slip(shear)and slope instability phases.An increase in coal seam thickness enlarges the deformation space in the lower part,while the dip angle of the coal seam influences the length and displacement range of rock fracture development.The mining sequence alters the stress failure mode of the underlying critical blocks,and the vertical height of the mining step distance modifies the potential sliding surface and failure mode of the underlying critical blocks.Ultimately,the distance between the goaf and the surface,along with the height of the mining impact,impacts the stability of the reverse slope.The results demonstrate that mining activities are the primary factor inducing the collapse of anti-dip rock slopes,with natural factors playing a secondary role.展开更多
Aiming at the problem that the distance between the main roadway and the working face in Hudi Coal Industry Panel was more than 100 m,which was still affected by mining,high stress concentration of the roadway,and dif...Aiming at the problem that the distance between the main roadway and the working face in Hudi Coal Industry Panel was more than 100 m,which was still affected by mining,high stress concentration of the roadway,and difficulty of supporting overall convergence of the section,the mechanical characteristics of the core bearing strata of the overlying rock caving in the working face were studied.The correlation mechanism between the overlying rock caving and the deformation and failure of the roadway was analyzed,and the quantitative evaluation index was established to comprehensively analyze different influencing factors.Based on the key strata theory,the mechanical difference transfer model of working face mining and panel roadway deformation and failure was established.It was considered that the difference in fracture morphology was the key to the far-field stress disturbance.The regional stress control technology was proposed to block or reduce the stress transfer,so that the peak stress of the panel main roadway was reduced,and the deformation of the surrounding rock was significantly reduced,which provides a reference value for the roadway support with serious influence of mining roadway.展开更多
The technology of pressure relief gas drainage is one of the most effective and economic for preventing gas emissions in underground mines.Based on current understanding of strata breakage and fracture development in ...The technology of pressure relief gas drainage is one of the most effective and economic for preventing gas emissions in underground mines.Based on current understanding of strata breakage and fracture development in overlying strata,the current study divides the overlying strata into the following three longitudinal zones in terms of the state of gas flow:a turbulent channel zone,a transitional circulation channel zone and a seepage channel zone.According to the key strata discrimination theory of controlling the overlying strata,the calculation method establishes that the step-type expansion of the mining gas channel corresponds to the advancing distance of working face,and this research also confrms the expanding rule that the mining gas channel in overlying strata follows the advancing distance of mining working face.Based on the geological conditions of Xinjing Coal Mine of Yangquan,this paper researches the expanding rule of mining gas channel as well as the control action of the channel acting on the pressure relief flow under the condition of the remote protective layer,and got the distance using inversion that the step-type expanding of mining gas channel is corresponding to the advancing distance of working face,which verifes the accuracy and feasibility of theoretical calculation method proposed in this study.The research provides the theoretical basis for choosing the technology of pressure relief gas drainage and designing the parameters of construction.展开更多
Objective: Excavate the medication rule of traditional Chinese medicine in the treatment of prostate cancer, and predicting the biomolecular level mechanism of high-frequency drug compatibility. Methods: Relevant docu...Objective: Excavate the medication rule of traditional Chinese medicine in the treatment of prostate cancer, and predicting the biomolecular level mechanism of high-frequency drug compatibility. Methods: Relevant documents in CNKI, Wanfang Medical Network and VIP Chinese Biomedical Periodical Database Pubmed, EMbase were collected and collated systematically. Frequency statistics, association rule analysis and new party mining were carried out using TCMISSV2.5. BATMAN-TCM was used to analyze the interaction relationship and related pathways between high-frequency drug targets. Results: Huangqi (Astragalus membranaceus) was the single drug most used of the 102prescriptions included in the standard. There are 6 pairs of combinations with high confidence in association rule analysis. System entropy cluster analysis resulted in 20 core drug combinations and 9 new prescriptions. Through KEGG pathway analysis of Huangqi, Fuling (Poria cocos), Gancao (Glycyrrhiza uralensis) and Dihuang (Rehmannia glutinosa), it was found that the number of potential targets of the neural active ligand receptor rented pathway and purine metabolism pathway was the largest. Conclusions: Prostate cancer is mainly treated with deficiency-tonifying drugs, which are combined with drugs for promoting blood circulation, removing blood stasis, clearing heat, promoting diuresis, detoxifying and resolving hard mass. The mechanism of action of high-frequency traditional Chinese medicine may be realized by interfering with the neuroactive ligand receptor interaction pathway and purine metabolism pathway.展开更多
基金supported by the National Natural Science Foundation of China(No.52474092,52074042)National Key Research and Development Program of China(No.2018YFC1504802)。
文摘In recent years,the southwestern region of China has experienced a surge in significant mountain collapses,predominantly linked to underground mining operations.This investigation targets the Jiguanling area in Wulong,Chongqing,employing the UDEC numerical simulation technique to meticulously examine the deformation and failure characteristics,rock mass movement patterns,fracture evolution processes,and stress transmission mechanisms of anti-dip rock slopes composed of stratified rocks.These slopes are inherently susceptible to bending and tilting due to their own weight.Our findings elucidate that the predominant failure mode of anti-dip rock karst slopes is the inclined sliding(shear)type,which mirrors the fracture evolution mechanism as they extend in a quadrilateral pattern from the top and bottom plates of the mining area to the critical blocks at the rear and front edges of the slope.The disaster mechanism can be encapsulated as the"initial roof movement phase,direct roof collapse and crack propagation phase,critical block locking and sliding resistance phase,and deterioration phase".The four distinct stages of development and transformation encompass critical block slip(shear)and slope instability phases.An increase in coal seam thickness enlarges the deformation space in the lower part,while the dip angle of the coal seam influences the length and displacement range of rock fracture development.The mining sequence alters the stress failure mode of the underlying critical blocks,and the vertical height of the mining step distance modifies the potential sliding surface and failure mode of the underlying critical blocks.Ultimately,the distance between the goaf and the surface,along with the height of the mining impact,impacts the stability of the reverse slope.The results demonstrate that mining activities are the primary factor inducing the collapse of anti-dip rock slopes,with natural factors playing a secondary role.
基金Project(2024B03017)supported by the Key Research and Development Program Projects of Xinjiang Uygur Autonomous Region,ChinaProjects(52225404,52394192)supported by the National Natural Science Foundation of China。
文摘Aiming at the problem that the distance between the main roadway and the working face in Hudi Coal Industry Panel was more than 100 m,which was still affected by mining,high stress concentration of the roadway,and difficulty of supporting overall convergence of the section,the mechanical characteristics of the core bearing strata of the overlying rock caving in the working face were studied.The correlation mechanism between the overlying rock caving and the deformation and failure of the roadway was analyzed,and the quantitative evaluation index was established to comprehensively analyze different influencing factors.Based on the key strata theory,the mechanical difference transfer model of working face mining and panel roadway deformation and failure was established.It was considered that the difference in fracture morphology was the key to the far-field stress disturbance.The regional stress control technology was proposed to block or reduce the stress transfer,so that the peak stress of the panel main roadway was reduced,and the deformation of the surrounding rock was significantly reduced,which provides a reference value for the roadway support with serious influence of mining roadway.
基金the National Basic Research Programs of China (No. 2011CB201204)the National Natural Science Foundation of China (Nos. 51074160)+1 种基金the Fundamental Research Funds for the Central Universities (No. 2010QNA03)Project Funded by the Priority Academic Program Development of Jiangsu Higher Education institutions for their support for this project
文摘The technology of pressure relief gas drainage is one of the most effective and economic for preventing gas emissions in underground mines.Based on current understanding of strata breakage and fracture development in overlying strata,the current study divides the overlying strata into the following three longitudinal zones in terms of the state of gas flow:a turbulent channel zone,a transitional circulation channel zone and a seepage channel zone.According to the key strata discrimination theory of controlling the overlying strata,the calculation method establishes that the step-type expansion of the mining gas channel corresponds to the advancing distance of working face,and this research also confrms the expanding rule that the mining gas channel in overlying strata follows the advancing distance of mining working face.Based on the geological conditions of Xinjing Coal Mine of Yangquan,this paper researches the expanding rule of mining gas channel as well as the control action of the channel acting on the pressure relief flow under the condition of the remote protective layer,and got the distance using inversion that the step-type expanding of mining gas channel is corresponding to the advancing distance of working face,which verifes the accuracy and feasibility of theoretical calculation method proposed in this study.The research provides the theoretical basis for choosing the technology of pressure relief gas drainage and designing the parameters of construction.
基金the National Natural Science Foundation of Hebei (No.H2018201179)Hebei University of Science and Technology (No. QN2016077)Health and Family Planning Commission of Hebei (No. 20160388).
文摘Objective: Excavate the medication rule of traditional Chinese medicine in the treatment of prostate cancer, and predicting the biomolecular level mechanism of high-frequency drug compatibility. Methods: Relevant documents in CNKI, Wanfang Medical Network and VIP Chinese Biomedical Periodical Database Pubmed, EMbase were collected and collated systematically. Frequency statistics, association rule analysis and new party mining were carried out using TCMISSV2.5. BATMAN-TCM was used to analyze the interaction relationship and related pathways between high-frequency drug targets. Results: Huangqi (Astragalus membranaceus) was the single drug most used of the 102prescriptions included in the standard. There are 6 pairs of combinations with high confidence in association rule analysis. System entropy cluster analysis resulted in 20 core drug combinations and 9 new prescriptions. Through KEGG pathway analysis of Huangqi, Fuling (Poria cocos), Gancao (Glycyrrhiza uralensis) and Dihuang (Rehmannia glutinosa), it was found that the number of potential targets of the neural active ligand receptor rented pathway and purine metabolism pathway was the largest. Conclusions: Prostate cancer is mainly treated with deficiency-tonifying drugs, which are combined with drugs for promoting blood circulation, removing blood stasis, clearing heat, promoting diuresis, detoxifying and resolving hard mass. The mechanism of action of high-frequency traditional Chinese medicine may be realized by interfering with the neuroactive ligand receptor interaction pathway and purine metabolism pathway.