Climate change is altering river regimes in mountainous regions,affecting water availability and the functioning of aquatic ecosystems.In the Andes Mountains,characterizing the natural flow regime is essential for est...Climate change is altering river regimes in mountainous regions,affecting water availability and the functioning of aquatic ecosystems.In the Andes Mountains,characterizing the natural flow regime is essential for establishing operational conditions that balance multiple water uses(irrigation,supply,hydropower)with the conservation of high-elevation ecosystems in the context of increasing hydroclimatic variability.This study analyzes extreme hydrological conditions in nivoglacial rivers of the upper Mendoza River Basin(Argentina),using indicators of magnitude,frequency,duration,and timing of high(HP)and low(LP)pulses.Daily flow records from the Cuevas,Vacas,Tupungato,and Mendoza Rivers were used to define eight ecologically relevant extreme hydrological parameters over the period 1956–2023.The results reveal a reduction in the magnitude of extreme flows since 2010(−30%to–55%)and significant delays in their timing,with maximum and minimum flow shifting by 15–20 days later in recent decades.The duration of LP events increased by 120%–240%in the Cuevas,Tupungato,and Mendoza Rivers,while in the Tupungato River,HP events tended to occur less frequently but with longer durations.These changes are associated with a 0.1℃decade^(−1)rise in mean temperature and a∼25%decrease in precipitation since 2009.Such trends have major implications for water resource management and the resilience of high-Andean ecosystems under climate warming.展开更多
In the practice of healthcare,patient-reported outcomes(PROs)and PRO measures(PROMs)are used as an attempt to observe the changes in complex clinical situations.They guide us in making decisions based on the evidence ...In the practice of healthcare,patient-reported outcomes(PROs)and PRO measures(PROMs)are used as an attempt to observe the changes in complex clinical situations.They guide us in making decisions based on the evidence regarding patient care by recording the change in outcomes for a particular treatment to a given condition and finally to understand whether a patient will benefit from a particular treatment and to quantify the treatment effect.For any PROM to be usable in health care,we need it to be reliable,encapsulating the points of interest with the potential to detect any real change.Using structured outcome measures routinely in clinical practice helps the physician to understand the functional limitation of a patient that would otherwise not be clear in an office interview,and this allows the physician and patient to have a meaningful conver-sation as well as a customized plan for each patient.Having mentioned the rationale and the benefits of PROMs,understanding the quantification process is crucial before embarking on management decisions.A better interpretation of change needs to identify the treatment effect based on clinical relevance for a given condition.There are a multiple set of measurement indices to serve this effect and most of them are used interchangeably without clear demarcation on their differences.This article details the various quantification metrics used to evaluate the treatment effect using PROMs,their limitations and the scope of usage and implementation in clinical practice.展开更多
Minimum quantity lubrication(MQL),as a new sustainable and eco-friendly alternative cooling/lubrication technology that addresses the limitations of dry and wet machining,utilizes a small amount of lubricant or coolan...Minimum quantity lubrication(MQL),as a new sustainable and eco-friendly alternative cooling/lubrication technology that addresses the limitations of dry and wet machining,utilizes a small amount of lubricant or coolant to reduce friction,tool wear,and heat during cutting processes.MQL technique has witnessed significant developments in recent years,such as combining MQL with other sustainable techniques to achieve optimum results,using biodegradable lubricants,and innovations in nozzle designs and delivery methods.This review presents an in-depth analysis of machining characteristics(e.g.,cutting forces,temperature,tool wear,chip morphology and surface integrity,etc.)and sustainability characteristics(e.g.,energy consumption,carbon emissions,processing time,machining cost,etc.)of conventional MQL and hybrid MQL techniques like cryogenic MQL,Ranque-Hilsch vortex tube MQL,nanofluids MQL,hybrid nanofluid MQL and ultrasonic vibration assisted MQL in machining of aeronautical materials.Subsequently,the latest research and developments are analyzed and summarized in the field of MQL,and provide a detailed comparison between each technique,considering advantages,challenges,and limitations in practical implementation.In addition,this review serves as a valuable source for researchers and engineers to optimize machining processes while minimizing environmental impact and operational costs.Ultimately,the potential future aspects of MQL for research and industrial execution are discussed.展开更多
In shale reservoirs,fluids are often confined within nanopores,leading to apparent effects on the properties and phase behavior of the fluid.However,previous studies have primarily focused on the effect of capillary p...In shale reservoirs,fluids are often confined within nanopores,leading to apparent effects on the properties and phase behavior of the fluid.However,previous studies have primarily focused on the effect of capillary pressure or adsorption on well performance,and only a very limited number of studies have researched the complex and coupled impact of confinement on capillarity,adsorption,and interactions between fluid molecules and pore walls.Therefore,in this study,an effective method is developed for evaluating the coupled effects of nanopore confinement on CO_(2) injection performance.First,a comprehensive thermodynamic model that incorporates adsorption,capillary pressure,and molecule-wall interaction in nanopores by modifying the Peng-Robinson equation of state(PR-EOS)is proposed.Subsequently,the calculated critical properties of different components are validated against experimental measured data,illustrating that the developed model can accurately predict the properties of the components of CO_(2)-hydrocarbon systems.Numerical simulations of field-scale case studies were then performed and calibrated using a modified phase equilibrium model.Typical fluid properties were inputted to investigate the effect of nanopore confinement on the CO_(2) injection performance.The results of this study show that the ultimate recovery factor increases by approximately 4.61%at a pore size of 10 nm,indicating that nanopore confinement is advantageous to well performance.Light hydrocarbons undergo more intense mass transfer than heavy hydrocarbons.Furthermore,as the pore radius decreased from 100 nm to 10 nm,the CO_(2) storage coefficient increased by 2.8%.The findings of this study deepen the collective understanding of the effect of nanopore confinement on CO_(2) displacement and storage,which has significant field-scale applications.展开更多
Arctic sea-ice extent reaches its minimum each year in September. On 11 September 2023 the minimum was 4.969 million square kilometers(mill.km^(2)). This was not a record low, which occurred in 2012, when the minimum ...Arctic sea-ice extent reaches its minimum each year in September. On 11 September 2023 the minimum was 4.969 million square kilometers(mill.km^(2)). This was not a record low, which occurred in 2012, when the minimum was 4.175 mill.km^(2), 0.794 mill.km^(2) less than the minimum in 2023. However, the ice extent had decreased by 0.432 mill.km^(2) compared with 2022. Nevertheless, the summer melting in 2023 was remarkably less than expected when considering the strong heat waves in the atmosphere and ocean, with record temperatures set around the world. In general, there is a high correlation between the long-term decrease in sea-ice extent and the increasing CO_(2) in the atmosphere, where the increase of CO_(2) in recent decades explains about 80% of the decrease in sea ice in September, while the remainder is caused by natural variability.展开更多
Solar cycles are fundamental to astrophysics,space exploration,technological infrastructure,and Earth's climate.A better understanding of these cycles and their history can aid in risk mitigation on Earth,while al...Solar cycles are fundamental to astrophysics,space exploration,technological infrastructure,and Earth's climate.A better understanding of these cycles and their history can aid in risk mitigation on Earth,while also deepening our knowledge of stellar physics and solar system dynamics.Determining the solar cycles between 1600 and 1700-especially the post-1645 Maunder Minimum,characterized by significantly reduced solar activity-poses challenges to existing solar activity proxies.This study utilizes a new red equatorial auroral catalog from ancient Korean texts to establish solar cycle patterns from 1623 to 1700.Remarkably,a further reevaluation of the solar cycles between 1610 and 1755 identified a total of 13 cycles,diverging from the widely accepted record of 12 cycles during that time.This research enhances our understanding of historical solar activity,and underscores the importance of integrating diverse historical sources into modern analyses.展开更多
Currently,the International Maritime Organization(IMO)has approved and implemented the assessment requirement for Minimum Propulsion Power(MPP)of ships in adverse sea conditions.The assessment method and relevant infl...Currently,the International Maritime Organization(IMO)has approved and implemented the assessment requirement for Minimum Propulsion Power(MPP)of ships in adverse sea conditions.The assessment method and relevant influence factors will have a vital impact on ship's design and operation.On the other hand,MPP is essentially a criterion for manoeuvring safety at actual seas.However,the practical assessment methods adopted in IMO guidelines do not directly and accurately account for ship's coursekeeping ability in severe seas.A time-domain comprehensive method with supplementary course-keeping ability criteria has been proposed in the authors'preliminary research.Based on an updated mathematical model and criteria,this paper presents more detailed elaborations,results and discussions on the time-domain method,including the comparative analyses with a power line method and two steady-state equilibrium methods based on IMO guidelines and draft.Discussions on the influences of key factors,involving criterion conditions and calculation parameters,are also presented.The results indicate that different methods exhibit varying advantages and complexity in MPP assessment,thus constituting a multi-level assessment framework for MPP.In particular,the time-domain comprehensive assessment has a higher accuracy with more realistic description of manoeuvre behaviors,capable of offering a solution for the ships that cannot meet other assessments,or for the assessment requiring additional course-keeping ability.Furthermore,an expanded range of wave direction sets a stricter but potentially necessary requirement,while using the self-propulsion factors at low speeds can eliminate the unnecessary conservation of assessment result caused by those at design speed.展开更多
For a graph G,a vertex is said to be pendant if its neighborhood contains exactly one vertex.In this paper,we determine the extremal graphs among all n-vertex graphs with the minimum spectral radius andβpendant verti...For a graph G,a vertex is said to be pendant if its neighborhood contains exactly one vertex.In this paper,we determine the extremal graphs among all n-vertex graphs with the minimum spectral radius andβpendant vertices,whereβe{1,2,3,4,n-3,n-2,n-1}.展开更多
As the manufacturing industry shifts toward environmentally sustainable practices,grinding—a high-precision pro-cessing method—is commonly used to ensure final workpiece dimensions and surface quality.The greening o...As the manufacturing industry shifts toward environmentally sustainable practices,grinding—a high-precision pro-cessing method—is commonly used to ensure final workpiece dimensions and surface quality.The greening of grind-ing processes has emerged as an important challenge for both academia and industry.Numerous studies proposing different methods for sustainable grinding have increased rapidly;however,the technical mechanisms and develop-ment trends remain unclear.This paper applies bibliometric methods to analyze relevant articles published on WOS from 2008 to 2023.Results show that China has the highest number of publications(45.38%),with research institu-tions primarily located in China,India,and Brazil.Among publishing journals,70%are classified as Q2 or above.Addi-tionally,popular authors and influential articles in this field are identified.Keyword frequency and hotspot literature analysis reveal that research focuses primarily on minimal quantity lubrication(MQL)grinding,especially using biolubricants and nanoparticles to improve grinding performance.This article reviews the mechanisms and effects of biolubricants and nanoparticles in MQL.It further examines how multi-energy field applications enhance MQL by influencing droplet atomization,wettability,and machining performance.A low-temperature field improves the heat exchange capacity of MQL droplets,while an electrostatic field enhances droplet contact angles and disper-sion.Ultrasonic energy enhances the atomization of biolubricants,and magnetic fields facilitate nanoparticle penetra-tion into the grinding zone,reducing grinding forces.Additionally,innovations in grinding wheel structures and solid lubrication grinding can reduce grinding temperatures and forces.This paper presents a comprehensive review of eco-friendly grinding development hotspots,providing technical support and theoretical guidance for academia and industry.展开更多
The use of Minimum Quantity Lubrication(MQL)with bio-lubricants has been extensively studied in aerospace sustainable manufacturing.Enhanced MQL technologies have been proposed to reduce tool wear and improve workpiec...The use of Minimum Quantity Lubrication(MQL)with bio-lubricants has been extensively studied in aerospace sustainable manufacturing.Enhanced MQL technologies have been proposed to reduce tool wear and improve workpiece surface integrity by increasing lubricant activity.However,the relationship between enhancement behavior,physicochemical properties of biolubricants,and processability remains unclear,presenting challenges for MQL technologies,particularly with difficult-to-machine materials.To address this gap,this paper provides an in-depth mechanism analysis and a comprehensive quantitative evaluation of the machinability of enhanced MQL technologies,considering chemistry,molecular dynamics,fluid dynamics,tribology,and heat transfer.Firstly,the cooling and lubrication enhancement mechanisms of nano-lubricants were systematically summarized.focusing on molecular structure.physical properties,and preparation processes.Secondly,the atomization enhancement mechanism of Electrostatic Minimum Quantity Lubrication(EMQL)was analyzed.revealing a 49%reduction in PM2.5 concentration during the atomization process compared to conventional MQL.Thirdly,the transport and infiltration enhancement mechanisms of bio-lubricants in cutting and grinding zones were summarized,incorporating electromagnetic fields and ultrasound-assisted processes.Finally,for cutting and grinding applications involving difficult-to-machine materials in aerospace,the optimized machinability of enhanced MQL technologies was concluded,showing a 50.1%increase in lubricant heat transfer coefficient and a 31.6%decrease in grinding temperature compared to standard MQL.This paper aims to help scientists understand the effective mechanisms,formulate process specifications,and identify future development trends in this technology.展开更多
Conventional adaptive filtering algorithms often exhibit performance degradation when processing multipath interference in raw echoes of spaceborne synthetic aperture radar(SAR)systems due to anomalous outliers,manife...Conventional adaptive filtering algorithms often exhibit performance degradation when processing multipath interference in raw echoes of spaceborne synthetic aperture radar(SAR)systems due to anomalous outliers,manifesting as insufficient convergence and low estimation accuracy.To address this issue,this study proposes a novel robust adaptive filtering algorithm,namely the M-estimation-based minimum error entropy with affine projection(APMMEE)algorithm.This algorithm inherits the joint multi-data-block update mechanism of the affine projection algorithm,enabling rapid adaptation to the dynamic characteristics of raw echoes and achieving fast convergence.Meanwhile,it incorporates the M-estimation-based minimum error entropy(MMEE)criterion,which weights error samples in raw echoes through M-estimation functions,effectively suppressing outlier interference during the algorithm update.Both the system identification simulations and practical multipath interference suppression experiments using raw echoes demonstrate that the proposed APMMEE algorithm exhibits superior filtering performance.展开更多
Dengue is a mosquito-borne disease that is rampant worldwide,with up to 70%of cases reported to be asymptomatic during epidemics.In this paper,a reaction-diffusion dengue model with asymptomatic carrier transmission i...Dengue is a mosquito-borne disease that is rampant worldwide,with up to 70%of cases reported to be asymptomatic during epidemics.In this paper,a reaction-diffusion dengue model with asymptomatic carrier transmission is investigated.We aim to study the existence,nonexistence and minimum wave speed of traveling wave solutions to the model.The results show that the existence and nonexistence of traveling wave solutions are fully determined by the threshold values,which are,the basic reproduction number R0 and critical wave speed c^(*)>0.Specifically,when R0>1 and the wave speed c≥c^(*),the existence of the traveling wave solution is obtained by using Schauder's fixed point theorem and Lyapunov functional.It is proven that the model has no nontrivial traveling wave solutions for R0≤1 or R0>1 and 0<c<c^(*)by employing comparison principle and limit theory.As a consequence,we conclude that the critical wave speed c^(*)is the minimum wave speed of the model.Finally,numerical simulations are carried out to illustrate the effects of several important parameters on the minimum wave speed.展开更多
The interactions between fire,ecosystems,and climate are complex.Tropical ecosystems have dominated global active fires nowadays,yet its causes,mechanisms,and consequences remain relatively poorly understood.To in-ves...The interactions between fire,ecosystems,and climate are complex.Tropical ecosystems have dominated global active fires nowadays,yet its causes,mechanisms,and consequences remain relatively poorly understood.To in-vestigate temporal response of remotely-sensed active fires to intra-annual climate change,several 1-km datasets,including the Moderate-resolution Imaging Spectroradiometer Collection 6(MODIS C6)active fires and the Cli-matologies at High Resolution for the Earth’s Land Surface Areas(CHELSA)climate variables,were gathered to examine the climatic characteristics of active fire incidences,fire-climate correlations,and the average monthly response of active fire occurrences to climate change using the Geographic Information System(GIS)Fishnet tool,Theil-Sen Median slope estimation,Mann-Kendall significance test,and Pearson’s correlation.We concluded that climate variables’trends of nearly two-decade active fires displayed varied degrees of increment in precipitation(Pre),temperature(Tas),and surface downwelling shortwave radiation(Rsds)and inconsistent decrement in near-surface relative humidity(Hurs)and near-surface wind speed(sfcWind).MODIS multi-year(2003-2018)active fires were moderately to strongly correlated negatively with Pre and Hurs at 10 km grid-resolution but positively with sfcWind and Rsds,showing marked geographical variations in correlation direction and strength.The most significant finding is the newly observed inverse relationship between active fires and precipitation on both sides of the equator.High occurrence areas of active fires regularly appear back and forth along with latitudinal changes(at one-degree intervals)in monthly minimum precipitation between the tropical Northern and Southern Hemispheres.The present study contributes to exploring the underlying mechanism of fire-climate interactions against the backdrop of climate warming.展开更多
This paper proposes an extension of the Modified-Plant ADRC(MP-ADRC)strategy to broaden its application to minimum phase dynamical systems.The main features of the MP-ADRC method are the inclusion of a constant gain i...This paper proposes an extension of the Modified-Plant ADRC(MP-ADRC)strategy to broaden its application to minimum phase dynamical systems.The main features of the MP-ADRC method are the inclusion of a constant gain in series with the plant output error and a linear filter in parallel with the overall error system.These structural changes do not influence the input/output dynamics of the original plant,but are intentionally introduced to modify the dynamics to be estimated by the extended state observer(ESO)and,thus,promote an increase in the robustness of the method.Some advantages can also be attributed to the proposed methodology,such as(i)the design procedures of both the controller and the ESO only require knowledge of the sign(±)of the plant input channel coefficient(or control gain);(ii)the plant control input is generated directly by a single ESO state variable.Despite the advantages and the characteristics of MP-ADRC mentioned earlier,closed-loop stability cannot be guaranteed when it is applied to dynamical systems that have finite zeros.To overcome this difficulty,this work introduces an extension in the MP-ADRC method.It basically consists of rewriting the minimum phase plant dynamics according to its relative order,and then follows with the design of the ESO by conveniently increasing the number of ESO state variables.The simulation results are also presented to illustrate the application of the proposed method.展开更多
Despite significant Brazilian social programs to expand energy access,approximately one million people in rural Amazonia still lack electricity.Moreover,the existing rural electricity grid in the region is inadequate ...Despite significant Brazilian social programs to expand energy access,approximately one million people in rural Amazonia still lack electricity.Moreover,the existing rural electricity grid in the region is inadequate for supporting efficient small-scale production systems due to both the poor quality and high cost of supplied energy.In parallel,traditional wooden bridges in the Amazon have been progressively replaced by more durable concrete structures in recent years.In this context,this study explores the application of very low-head hydropower installations in the Amazon,focusing on integrating axial-flow turbines beneath small concrete bridges.The methodology involves analyzing flow duration curves and key hydraulic parameters upstream and downstream to design a micro-hydropower system comprising two or more units,thereby maximizing annual energy generation.Additionally,the study assesses the applicability of the minimum pressure coefficient criterion to improve the efficiency of very low-head turbines.This design criterion is first validated against an existing experimental study featuring a propeller turbine with a simple curved plate blade.The proposed methodology is then applied to a case study involving a small dam-bridge with a head variation from 1.4 to 2.4 m and a flow rate ranging from 0.23 to 0.92 m^(3)/s.The optimal configuration achieves an energy output of 26.2 MWh/year with an efficiency of up to 86%.展开更多
This paper presents a dynamic modeling method to test and examine the minimum mass of pressurized pore-gas for triggering landslides in stable gentle soil slopes.A stable gentle soil slope model is constructed with a ...This paper presents a dynamic modeling method to test and examine the minimum mass of pressurized pore-gas for triggering landslides in stable gentle soil slopes.A stable gentle soil slope model is constructed with a dry cement powder core,a saturated clay middle layer,and a dry sand upper layer.The test injects H_(2)O_(2)solution into the cement core to produce new pore-gas.The model test includes three identical H_(2)O_(2)injections.The small mass of generated oxygen gas(0.07%of slope soil mass and landslide body)from the first injection can build sufficient pore-gas pressure to cause soil upheaval and slide.Meanwhile,despite the first injection causing leak paths in the clay layer,the generated small mass of gas from the second and third injections can further trigger the landslide.A dynamic theoretical analysis of the slope failure is carried out and the required minimum pore-gas pressure for the landslide is calculated.The mass and pressure of generated gas in the model test are also estimated based on the calibration test for oxygen generation from H_(2)O_(2)solution in cement powder.The results indicate that the minimum mass of the generated gas for triggering the landslide is 2 ppm to 0.07%of the landslide body.Furthermore,the small mass of gas can provide sufficient pressure to cause soil upheaval and soil sliding in dynamic analysis.展开更多
Climate change and human activities have led to desertification and decreased land productivity,significantly affecting human livelihoods in desert regions.Identifying suitable areas for cultivating economic and nativ...Climate change and human activities have led to desertification and decreased land productivity,significantly affecting human livelihoods in desert regions.Identifying suitable areas for cultivating economic and native plants based on ecological capacity,biological restoration,and risk management can be valuable tools for combating desertification.In this study,we identified suitable areas for the growth of economic and medicinal Moringa peregrina trees in desert regions of Sistan and Baluchestan Province,southern Iran,using library research and field methods.We also assessed the economic involvement of local communities in areas under different topographic conditions(namely flat area,undulating area,rolling area,moderately sloping area,and steep area)in the study area.Financial indicators such as the net present value(NPV),benefit-cost ratio(BCR),internal rate of return(IRR),and return on investment(ROI)were calculated for areas under various topographic conditions in the study area.The rolling area with results of NPV(6142.75 USD),IRR(103.38),BCR(5.38),and ROI(in the 3rd year)was the best region for investing and cultivating M.peregrina.The minimum economic level varied from 0.80 hm2 in the flat area to 21.60 hm2 in the steep area.Also,approximately 5,314,629.51 hm2 of desert lands in the study area were deemed suitable for M.peregrina cultivation,benefiting around 1,743,246 households in the study area.Cultivating M.peregrina in southern Iran can positively affect local communities and help preserve land from erosion.Our study will provide theoretical support for planting native species in other degraded desert regions to enhance ecosystem services and the well-being of indigenous populations.展开更多
Accurately predicting the overlying pressure is crucial for determining an appropriate cover depth of underwater box tunnels to avoid the uplifting failure.Based on the project of box jacking crossing the Beijing-Hang...Accurately predicting the overlying pressure is crucial for determining an appropriate cover depth of underwater box tunnels to avoid the uplifting failure.Based on the project of box jacking crossing the Beijing-Hangzhou Grand Canal in Suzhou,the characteristics of overlying pressure variation during tunneling are investigated.The monitoring results reveal that the fluctuation of overlying pressure is weakened during the rapid tunneling process.A modified analytical model for vertical earth pressure is conceived,in which the active and passive limit states for multi-layered soils are both considered.The probable range of overlying pressure obtained by the proposed model is suitable to cover the actual values.The anti-floating behavior of underwater box tunnels for two different working conditions is discussed by calculating the minimum cover depth.Using the calibrated analytical models,a parametric study is conducted to explore the influence of injection pressure,hardened slurry unit weight,soil internal friction angle,soil cohesion,and tunnel geometry.It is found that the injection pressure during the construction process is crucial for determining the necessary cover depth,and the change of box tunnel height makes it easier to trigger the variation of minimum cover depth.展开更多
Monocrystalline Cu exhibits excellent electrical and signal-transmission properties due to its absence of grain boundaries,making it a critical material for the production of micro-machinery and micro-components;howev...Monocrystalline Cu exhibits excellent electrical and signal-transmission properties due to its absence of grain boundaries,making it a critical material for the production of micro-machinery and micro-components;however,achieving ultrahigh precision and ultralow damage machining of functional devices using traditional techniques such as grinding and polishing is extremely challenging.Consequently,nanocutting has emerged as an efficient means to fabricate monocrystalline materials with complex surface characteristics and high surface integrity.Nevertheless,the macroscopic cutting theory of metal materials cannot be applied to nanocutting.Accordingly,in this paper,both simulations and experiments were conducted to examine the chip deformation mechanisms of monocrystalline Cu.First,large-scale molecular dynamics(MD)simulations were conducted to gain a comprehensive understanding of the deformation behavior during nanocutting.This included examining the influencing factors and the variation patterns of the chip deformation coefficient,cutting force,and minimum cutting thickness.Subsequently,nanocutting experiments were performed using a specially designed nanocutting platform with high-resolution online observation by scanning electron microscopy.The experimental results served to verify the accuracy and reliability of theMDmodeling,as they exhibited excellent consistency with the simulated results.Although this work considered monocrystalline Cu,it is believed that the elucidated chip deformation mechanisms could also be applied to other face-centered-cubic metals.These results are of great value for advancing the understanding of the mechanisms of ultraprecision cutting.展开更多
基金National Scientific and Technical Research Council of Argentina(CONICET),Grant/Award Number:PIBAA2022-202328720210100485CO。
文摘Climate change is altering river regimes in mountainous regions,affecting water availability and the functioning of aquatic ecosystems.In the Andes Mountains,characterizing the natural flow regime is essential for establishing operational conditions that balance multiple water uses(irrigation,supply,hydropower)with the conservation of high-elevation ecosystems in the context of increasing hydroclimatic variability.This study analyzes extreme hydrological conditions in nivoglacial rivers of the upper Mendoza River Basin(Argentina),using indicators of magnitude,frequency,duration,and timing of high(HP)and low(LP)pulses.Daily flow records from the Cuevas,Vacas,Tupungato,and Mendoza Rivers were used to define eight ecologically relevant extreme hydrological parameters over the period 1956–2023.The results reveal a reduction in the magnitude of extreme flows since 2010(−30%to–55%)and significant delays in their timing,with maximum and minimum flow shifting by 15–20 days later in recent decades.The duration of LP events increased by 120%–240%in the Cuevas,Tupungato,and Mendoza Rivers,while in the Tupungato River,HP events tended to occur less frequently but with longer durations.These changes are associated with a 0.1℃decade^(−1)rise in mean temperature and a∼25%decrease in precipitation since 2009.Such trends have major implications for water resource management and the resilience of high-Andean ecosystems under climate warming.
文摘In the practice of healthcare,patient-reported outcomes(PROs)and PRO measures(PROMs)are used as an attempt to observe the changes in complex clinical situations.They guide us in making decisions based on the evidence regarding patient care by recording the change in outcomes for a particular treatment to a given condition and finally to understand whether a patient will benefit from a particular treatment and to quantify the treatment effect.For any PROM to be usable in health care,we need it to be reliable,encapsulating the points of interest with the potential to detect any real change.Using structured outcome measures routinely in clinical practice helps the physician to understand the functional limitation of a patient that would otherwise not be clear in an office interview,and this allows the physician and patient to have a meaningful conver-sation as well as a customized plan for each patient.Having mentioned the rationale and the benefits of PROMs,understanding the quantification process is crucial before embarking on management decisions.A better interpretation of change needs to identify the treatment effect based on clinical relevance for a given condition.There are a multiple set of measurement indices to serve this effect and most of them are used interchangeably without clear demarcation on their differences.This article details the various quantification metrics used to evaluate the treatment effect using PROMs,their limitations and the scope of usage and implementation in clinical practice.
基金financially supported by the National Natural Science Foundation of China(Nos.92160301,92060203,52175415,and 52205475)the Science Center for Gas Turbine Project(Nos.P2022-AB-IV-002-001 and P2023-B-IV-003-001)+2 种基金the Natural Science Foundation of Jiangsu Province(No.BK20210295)the Superior Postdoctoral Project of Jiangsu Province(No.2022ZB215)the National Key Laboratory of Science and Technology on Helicopter Transmission in NUAA(No.HTL-A-22G12).
文摘Minimum quantity lubrication(MQL),as a new sustainable and eco-friendly alternative cooling/lubrication technology that addresses the limitations of dry and wet machining,utilizes a small amount of lubricant or coolant to reduce friction,tool wear,and heat during cutting processes.MQL technique has witnessed significant developments in recent years,such as combining MQL with other sustainable techniques to achieve optimum results,using biodegradable lubricants,and innovations in nozzle designs and delivery methods.This review presents an in-depth analysis of machining characteristics(e.g.,cutting forces,temperature,tool wear,chip morphology and surface integrity,etc.)and sustainability characteristics(e.g.,energy consumption,carbon emissions,processing time,machining cost,etc.)of conventional MQL and hybrid MQL techniques like cryogenic MQL,Ranque-Hilsch vortex tube MQL,nanofluids MQL,hybrid nanofluid MQL and ultrasonic vibration assisted MQL in machining of aeronautical materials.Subsequently,the latest research and developments are analyzed and summarized in the field of MQL,and provide a detailed comparison between each technique,considering advantages,challenges,and limitations in practical implementation.In addition,this review serves as a valuable source for researchers and engineers to optimize machining processes while minimizing environmental impact and operational costs.Ultimately,the potential future aspects of MQL for research and industrial execution are discussed.
基金supported by National Natural Science Foundation of China(Nos.52474052 and 52074248)Young Elite Scientists Sponsorship Program by Beijing Association for Science and Technology,China(No.BYESS2023414)Scientific Research Innovation Capability Support Project for Young Faculty,China(No.ZYGXQNJSKYCXNLZCXM-E14).
文摘In shale reservoirs,fluids are often confined within nanopores,leading to apparent effects on the properties and phase behavior of the fluid.However,previous studies have primarily focused on the effect of capillary pressure or adsorption on well performance,and only a very limited number of studies have researched the complex and coupled impact of confinement on capillarity,adsorption,and interactions between fluid molecules and pore walls.Therefore,in this study,an effective method is developed for evaluating the coupled effects of nanopore confinement on CO_(2) injection performance.First,a comprehensive thermodynamic model that incorporates adsorption,capillary pressure,and molecule-wall interaction in nanopores by modifying the Peng-Robinson equation of state(PR-EOS)is proposed.Subsequently,the calculated critical properties of different components are validated against experimental measured data,illustrating that the developed model can accurately predict the properties of the components of CO_(2)-hydrocarbon systems.Numerical simulations of field-scale case studies were then performed and calibrated using a modified phase equilibrium model.Typical fluid properties were inputted to investigate the effect of nanopore confinement on the CO_(2) injection performance.The results of this study show that the ultimate recovery factor increases by approximately 4.61%at a pore size of 10 nm,indicating that nanopore confinement is advantageous to well performance.Light hydrocarbons undergo more intense mass transfer than heavy hydrocarbons.Furthermore,as the pore radius decreased from 100 nm to 10 nm,the CO_(2) storage coefficient increased by 2.8%.The findings of this study deepen the collective understanding of the effect of nanopore confinement on CO_(2) displacement and storage,which has significant field-scale applications.
文摘Arctic sea-ice extent reaches its minimum each year in September. On 11 September 2023 the minimum was 4.969 million square kilometers(mill.km^(2)). This was not a record low, which occurred in 2012, when the minimum was 4.175 mill.km^(2), 0.794 mill.km^(2) less than the minimum in 2023. However, the ice extent had decreased by 0.432 mill.km^(2) compared with 2022. Nevertheless, the summer melting in 2023 was remarkably less than expected when considering the strong heat waves in the atmosphere and ocean, with record temperatures set around the world. In general, there is a high correlation between the long-term decrease in sea-ice extent and the increasing CO_(2) in the atmosphere, where the increase of CO_(2) in recent decades explains about 80% of the decrease in sea ice in September, while the remainder is caused by natural variability.
基金supported by the National Natural Science Foundation of China (42388101)the CAS Youth Interdisciplinary Team (JCTD-2021-05)funded by the Youth Innovation Promotion Association, Chinese Academy of Sciences.
文摘Solar cycles are fundamental to astrophysics,space exploration,technological infrastructure,and Earth's climate.A better understanding of these cycles and their history can aid in risk mitigation on Earth,while also deepening our knowledge of stellar physics and solar system dynamics.Determining the solar cycles between 1600 and 1700-especially the post-1645 Maunder Minimum,characterized by significantly reduced solar activity-poses challenges to existing solar activity proxies.This study utilizes a new red equatorial auroral catalog from ancient Korean texts to establish solar cycle patterns from 1623 to 1700.Remarkably,a further reevaluation of the solar cycles between 1610 and 1755 identified a total of 13 cycles,diverging from the widely accepted record of 12 cycles during that time.This research enhances our understanding of historical solar activity,and underscores the importance of integrating diverse historical sources into modern analyses.
文摘Currently,the International Maritime Organization(IMO)has approved and implemented the assessment requirement for Minimum Propulsion Power(MPP)of ships in adverse sea conditions.The assessment method and relevant influence factors will have a vital impact on ship's design and operation.On the other hand,MPP is essentially a criterion for manoeuvring safety at actual seas.However,the practical assessment methods adopted in IMO guidelines do not directly and accurately account for ship's coursekeeping ability in severe seas.A time-domain comprehensive method with supplementary course-keeping ability criteria has been proposed in the authors'preliminary research.Based on an updated mathematical model and criteria,this paper presents more detailed elaborations,results and discussions on the time-domain method,including the comparative analyses with a power line method and two steady-state equilibrium methods based on IMO guidelines and draft.Discussions on the influences of key factors,involving criterion conditions and calculation parameters,are also presented.The results indicate that different methods exhibit varying advantages and complexity in MPP assessment,thus constituting a multi-level assessment framework for MPP.In particular,the time-domain comprehensive assessment has a higher accuracy with more realistic description of manoeuvre behaviors,capable of offering a solution for the ships that cannot meet other assessments,or for the assessment requiring additional course-keeping ability.Furthermore,an expanded range of wave direction sets a stricter but potentially necessary requirement,while using the self-propulsion factors at low speeds can eliminate the unnecessary conservation of assessment result caused by those at design speed.
文摘For a graph G,a vertex is said to be pendant if its neighborhood contains exactly one vertex.In this paper,we determine the extremal graphs among all n-vertex graphs with the minimum spectral radius andβpendant vertices,whereβe{1,2,3,4,n-3,n-2,n-1}.
基金Supported by National Natural Science Foundation of China(Grant Nos.52375447,52305477 and 52105457)Shandong Provincial Natural Science Foundation(Grant Nos.ZR2023QE057,ZR2024QE100 and ZR2024ME255)+2 种基金Qingdao Municipal Science and Technology Planning Park Cultivation Plan(Grant No.23-1-5-yqpy-17-qy)Shandong Provincial Science and Technology SMEs Innovation Capacity Improvement Project(Grant No.2022TSGC1115)the Special Fund of Taishan Scholars。
文摘As the manufacturing industry shifts toward environmentally sustainable practices,grinding—a high-precision pro-cessing method—is commonly used to ensure final workpiece dimensions and surface quality.The greening of grind-ing processes has emerged as an important challenge for both academia and industry.Numerous studies proposing different methods for sustainable grinding have increased rapidly;however,the technical mechanisms and develop-ment trends remain unclear.This paper applies bibliometric methods to analyze relevant articles published on WOS from 2008 to 2023.Results show that China has the highest number of publications(45.38%),with research institu-tions primarily located in China,India,and Brazil.Among publishing journals,70%are classified as Q2 or above.Addi-tionally,popular authors and influential articles in this field are identified.Keyword frequency and hotspot literature analysis reveal that research focuses primarily on minimal quantity lubrication(MQL)grinding,especially using biolubricants and nanoparticles to improve grinding performance.This article reviews the mechanisms and effects of biolubricants and nanoparticles in MQL.It further examines how multi-energy field applications enhance MQL by influencing droplet atomization,wettability,and machining performance.A low-temperature field improves the heat exchange capacity of MQL droplets,while an electrostatic field enhances droplet contact angles and disper-sion.Ultrasonic energy enhances the atomization of biolubricants,and magnetic fields facilitate nanoparticle penetra-tion into the grinding zone,reducing grinding forces.Additionally,innovations in grinding wheel structures and solid lubrication grinding can reduce grinding temperatures and forces.This paper presents a comprehensive review of eco-friendly grinding development hotspots,providing technical support and theoretical guidance for academia and industry.
基金supported by the following organizations:the Special Fund of Taishan Scholars Project(No.tsqn202211179)the National Natural Science Foundation of China(No.52105457)+2 种基金Young Talent of Lifting engineering for Science and Technology in Shandong,China(No.SDAST2021qt12)the National Natural Science Foundation of China(No.52375447)China Postdoctoral Science Foundation Funded Project(No.2023M732826).
文摘The use of Minimum Quantity Lubrication(MQL)with bio-lubricants has been extensively studied in aerospace sustainable manufacturing.Enhanced MQL technologies have been proposed to reduce tool wear and improve workpiece surface integrity by increasing lubricant activity.However,the relationship between enhancement behavior,physicochemical properties of biolubricants,and processability remains unclear,presenting challenges for MQL technologies,particularly with difficult-to-machine materials.To address this gap,this paper provides an in-depth mechanism analysis and a comprehensive quantitative evaluation of the machinability of enhanced MQL technologies,considering chemistry,molecular dynamics,fluid dynamics,tribology,and heat transfer.Firstly,the cooling and lubrication enhancement mechanisms of nano-lubricants were systematically summarized.focusing on molecular structure.physical properties,and preparation processes.Secondly,the atomization enhancement mechanism of Electrostatic Minimum Quantity Lubrication(EMQL)was analyzed.revealing a 49%reduction in PM2.5 concentration during the atomization process compared to conventional MQL.Thirdly,the transport and infiltration enhancement mechanisms of bio-lubricants in cutting and grinding zones were summarized,incorporating electromagnetic fields and ultrasound-assisted processes.Finally,for cutting and grinding applications involving difficult-to-machine materials in aerospace,the optimized machinability of enhanced MQL technologies was concluded,showing a 50.1%increase in lubricant heat transfer coefficient and a 31.6%decrease in grinding temperature compared to standard MQL.This paper aims to help scientists understand the effective mechanisms,formulate process specifications,and identify future development trends in this technology.
基金supported by Shandong Provincial Natural Science Foundation(No.ZR2022MF314).
文摘Conventional adaptive filtering algorithms often exhibit performance degradation when processing multipath interference in raw echoes of spaceborne synthetic aperture radar(SAR)systems due to anomalous outliers,manifesting as insufficient convergence and low estimation accuracy.To address this issue,this study proposes a novel robust adaptive filtering algorithm,namely the M-estimation-based minimum error entropy with affine projection(APMMEE)algorithm.This algorithm inherits the joint multi-data-block update mechanism of the affine projection algorithm,enabling rapid adaptation to the dynamic characteristics of raw echoes and achieving fast convergence.Meanwhile,it incorporates the M-estimation-based minimum error entropy(MMEE)criterion,which weights error samples in raw echoes through M-estimation functions,effectively suppressing outlier interference during the algorithm update.Both the system identification simulations and practical multipath interference suppression experiments using raw echoes demonstrate that the proposed APMMEE algorithm exhibits superior filtering performance.
基金supported by the National Natural Science Foundation of China(12271317,11871316)。
文摘Dengue is a mosquito-borne disease that is rampant worldwide,with up to 70%of cases reported to be asymptomatic during epidemics.In this paper,a reaction-diffusion dengue model with asymptomatic carrier transmission is investigated.We aim to study the existence,nonexistence and minimum wave speed of traveling wave solutions to the model.The results show that the existence and nonexistence of traveling wave solutions are fully determined by the threshold values,which are,the basic reproduction number R0 and critical wave speed c^(*)>0.Specifically,when R0>1 and the wave speed c≥c^(*),the existence of the traveling wave solution is obtained by using Schauder's fixed point theorem and Lyapunov functional.It is proven that the model has no nontrivial traveling wave solutions for R0≤1 or R0>1 and 0<c<c^(*)by employing comparison principle and limit theory.As a consequence,we conclude that the critical wave speed c^(*)is the minimum wave speed of the model.Finally,numerical simulations are carried out to illustrate the effects of several important parameters on the minimum wave speed.
基金funded by National Natural Science Foundation of China(Grants No.42371282 and 42130508)the Second Ti-betan Plateau Scientific Expedition and Research Program(Grant No.2019QZKK1006)Youth Innovation Promotion Association of the Chinese Academy of Sciences(Grant No.2020055)。
文摘The interactions between fire,ecosystems,and climate are complex.Tropical ecosystems have dominated global active fires nowadays,yet its causes,mechanisms,and consequences remain relatively poorly understood.To in-vestigate temporal response of remotely-sensed active fires to intra-annual climate change,several 1-km datasets,including the Moderate-resolution Imaging Spectroradiometer Collection 6(MODIS C6)active fires and the Cli-matologies at High Resolution for the Earth’s Land Surface Areas(CHELSA)climate variables,were gathered to examine the climatic characteristics of active fire incidences,fire-climate correlations,and the average monthly response of active fire occurrences to climate change using the Geographic Information System(GIS)Fishnet tool,Theil-Sen Median slope estimation,Mann-Kendall significance test,and Pearson’s correlation.We concluded that climate variables’trends of nearly two-decade active fires displayed varied degrees of increment in precipitation(Pre),temperature(Tas),and surface downwelling shortwave radiation(Rsds)and inconsistent decrement in near-surface relative humidity(Hurs)and near-surface wind speed(sfcWind).MODIS multi-year(2003-2018)active fires were moderately to strongly correlated negatively with Pre and Hurs at 10 km grid-resolution but positively with sfcWind and Rsds,showing marked geographical variations in correlation direction and strength.The most significant finding is the newly observed inverse relationship between active fires and precipitation on both sides of the equator.High occurrence areas of active fires regularly appear back and forth along with latitudinal changes(at one-degree intervals)in monthly minimum precipitation between the tropical Northern and Southern Hemispheres.The present study contributes to exploring the underlying mechanism of fire-climate interactions against the backdrop of climate warming.
基金supported in part by the Brazilian research agencies CNPq and CAPESby the Fundação Carlos Chagas Filho de AmparoàPesquisa do Estado do Rio de Janeiro,FAPERJ-Brasil(Project E-26/210.425/2024).
文摘This paper proposes an extension of the Modified-Plant ADRC(MP-ADRC)strategy to broaden its application to minimum phase dynamical systems.The main features of the MP-ADRC method are the inclusion of a constant gain in series with the plant output error and a linear filter in parallel with the overall error system.These structural changes do not influence the input/output dynamics of the original plant,but are intentionally introduced to modify the dynamics to be estimated by the extended state observer(ESO)and,thus,promote an increase in the robustness of the method.Some advantages can also be attributed to the proposed methodology,such as(i)the design procedures of both the controller and the ESO only require knowledge of the sign(±)of the plant input channel coefficient(or control gain);(ii)the plant control input is generated directly by a single ESO state variable.Despite the advantages and the characteristics of MP-ADRC mentioned earlier,closed-loop stability cannot be guaranteed when it is applied to dynamical systems that have finite zeros.To overcome this difficulty,this work introduces an extension in the MP-ADRC method.It basically consists of rewriting the minimum phase plant dynamics according to its relative order,and then follows with the design of the ESO by conveniently increasing the number of ESO state variables.The simulation results are also presented to illustrate the application of the proposed method.
基金funded by the Conselho Nacional de Desenvolvimento Científico e Tecnológico(CNPq),project number 408034/2022−0.
文摘Despite significant Brazilian social programs to expand energy access,approximately one million people in rural Amazonia still lack electricity.Moreover,the existing rural electricity grid in the region is inadequate for supporting efficient small-scale production systems due to both the poor quality and high cost of supplied energy.In parallel,traditional wooden bridges in the Amazon have been progressively replaced by more durable concrete structures in recent years.In this context,this study explores the application of very low-head hydropower installations in the Amazon,focusing on integrating axial-flow turbines beneath small concrete bridges.The methodology involves analyzing flow duration curves and key hydraulic parameters upstream and downstream to design a micro-hydropower system comprising two or more units,thereby maximizing annual energy generation.Additionally,the study assesses the applicability of the minimum pressure coefficient criterion to improve the efficiency of very low-head turbines.This design criterion is first validated against an existing experimental study featuring a propeller turbine with a simple curved plate blade.The proposed methodology is then applied to a case study involving a small dam-bridge with a head variation from 1.4 to 2.4 m and a flow rate ranging from 0.23 to 0.92 m^(3)/s.The optimal configuration achieves an energy output of 26.2 MWh/year with an efficiency of up to 86%.
基金supported by grants from the Research Grant Council of the Hong Kong Special Administrative Region,China(Project No.HKU 17207518).
文摘This paper presents a dynamic modeling method to test and examine the minimum mass of pressurized pore-gas for triggering landslides in stable gentle soil slopes.A stable gentle soil slope model is constructed with a dry cement powder core,a saturated clay middle layer,and a dry sand upper layer.The test injects H_(2)O_(2)solution into the cement core to produce new pore-gas.The model test includes three identical H_(2)O_(2)injections.The small mass of generated oxygen gas(0.07%of slope soil mass and landslide body)from the first injection can build sufficient pore-gas pressure to cause soil upheaval and slide.Meanwhile,despite the first injection causing leak paths in the clay layer,the generated small mass of gas from the second and third injections can further trigger the landslide.A dynamic theoretical analysis of the slope failure is carried out and the required minimum pore-gas pressure for the landslide is calculated.The mass and pressure of generated gas in the model test are also estimated based on the calibration test for oxygen generation from H_(2)O_(2)solution in cement powder.The results indicate that the minimum mass of the generated gas for triggering the landslide is 2 ppm to 0.07%of the landslide body.Furthermore,the small mass of gas can provide sufficient pressure to cause soil upheaval and soil sliding in dynamic analysis.
基金funded by the Chinese Academy of Sciences President's International Fellowship Initiative(2024VCC0009).
文摘Climate change and human activities have led to desertification and decreased land productivity,significantly affecting human livelihoods in desert regions.Identifying suitable areas for cultivating economic and native plants based on ecological capacity,biological restoration,and risk management can be valuable tools for combating desertification.In this study,we identified suitable areas for the growth of economic and medicinal Moringa peregrina trees in desert regions of Sistan and Baluchestan Province,southern Iran,using library research and field methods.We also assessed the economic involvement of local communities in areas under different topographic conditions(namely flat area,undulating area,rolling area,moderately sloping area,and steep area)in the study area.Financial indicators such as the net present value(NPV),benefit-cost ratio(BCR),internal rate of return(IRR),and return on investment(ROI)were calculated for areas under various topographic conditions in the study area.The rolling area with results of NPV(6142.75 USD),IRR(103.38),BCR(5.38),and ROI(in the 3rd year)was the best region for investing and cultivating M.peregrina.The minimum economic level varied from 0.80 hm2 in the flat area to 21.60 hm2 in the steep area.Also,approximately 5,314,629.51 hm2 of desert lands in the study area were deemed suitable for M.peregrina cultivation,benefiting around 1,743,246 households in the study area.Cultivating M.peregrina in southern Iran can positively affect local communities and help preserve land from erosion.Our study will provide theoretical support for planting native species in other degraded desert regions to enhance ecosystem services and the well-being of indigenous populations.
基金supported by the Natural Science Foundation of Jiangsu Province of China (Grant Nos.BK20230500 and BK20210721)the Young Talent Fund of Association for Science and Technology in Shaanxi,China (Grant No.20240722).
文摘Accurately predicting the overlying pressure is crucial for determining an appropriate cover depth of underwater box tunnels to avoid the uplifting failure.Based on the project of box jacking crossing the Beijing-Hangzhou Grand Canal in Suzhou,the characteristics of overlying pressure variation during tunneling are investigated.The monitoring results reveal that the fluctuation of overlying pressure is weakened during the rapid tunneling process.A modified analytical model for vertical earth pressure is conceived,in which the active and passive limit states for multi-layered soils are both considered.The probable range of overlying pressure obtained by the proposed model is suitable to cover the actual values.The anti-floating behavior of underwater box tunnels for two different working conditions is discussed by calculating the minimum cover depth.Using the calibrated analytical models,a parametric study is conducted to explore the influence of injection pressure,hardened slurry unit weight,soil internal friction angle,soil cohesion,and tunnel geometry.It is found that the injection pressure during the construction process is crucial for determining the necessary cover depth,and the change of box tunnel height makes it easier to trigger the variation of minimum cover depth.
基金support of the National Natural Science Foundation of China(Grant No.51805371)the Innovation and Entrepreneurship Training Program of Tianjin University of Commerce(Grant No.202310069067).
文摘Monocrystalline Cu exhibits excellent electrical and signal-transmission properties due to its absence of grain boundaries,making it a critical material for the production of micro-machinery and micro-components;however,achieving ultrahigh precision and ultralow damage machining of functional devices using traditional techniques such as grinding and polishing is extremely challenging.Consequently,nanocutting has emerged as an efficient means to fabricate monocrystalline materials with complex surface characteristics and high surface integrity.Nevertheless,the macroscopic cutting theory of metal materials cannot be applied to nanocutting.Accordingly,in this paper,both simulations and experiments were conducted to examine the chip deformation mechanisms of monocrystalline Cu.First,large-scale molecular dynamics(MD)simulations were conducted to gain a comprehensive understanding of the deformation behavior during nanocutting.This included examining the influencing factors and the variation patterns of the chip deformation coefficient,cutting force,and minimum cutting thickness.Subsequently,nanocutting experiments were performed using a specially designed nanocutting platform with high-resolution online observation by scanning electron microscopy.The experimental results served to verify the accuracy and reliability of theMDmodeling,as they exhibited excellent consistency with the simulated results.Although this work considered monocrystalline Cu,it is believed that the elucidated chip deformation mechanisms could also be applied to other face-centered-cubic metals.These results are of great value for advancing the understanding of the mechanisms of ultraprecision cutting.