[Objective] The research aimed to analyze temporal and spatial variation characteristics of temperature in Shangqiu City during 1961-2010.[Method] Based on temperature data in eight meteorological stations of Shangqiu...[Objective] The research aimed to analyze temporal and spatial variation characteristics of temperature in Shangqiu City during 1961-2010.[Method] Based on temperature data in eight meteorological stations of Shangqiu during 1961-2010,by using trend analysis method,the temporal and spatial evolution characteristics of annual average temperature,annual average maximum and minimum temperatures,annual extreme maximum and minimum temperatures,daily range of annual average temperature in Shangqiu City were analyzed.M-K method was used to determine mutation year of temperature.[Result] The annual average temperature,annual average minimum temperature and annual extreme minimum temperature respectively rose at 0.122,0.255 and 0.488 ℃/10 a.The variation trend of annual average maximum temperature wasn’t obvious.The daily range of annual average temperature and annual extreme maximum temperature respectively declined at-0.217 and-0.292 ℃/10 a.Seen from spatial distribution,the increase amplitudes of annual average temperature,annual average minimum temperature and annual extreme minimum temperature were all large in the east and small in the west.The decrease amplitude of daily range of annual average temperature was large in the east and small in the west.The decrease amplitude of annual extreme maximum temperature was large in the west and small in the east.The annual average maximum temperature had trends of increase and decrease.The annual average temperature,annual average minimum temperature and daily range of annual average temperature all mutated in 1997.The annual average maximum temperature didn’t have obvious mutation point.The annual extreme maximum temperature mutated in 1973.The annual extreme minimum temperature respectively mutated in 1989 and 1999.[Conclusion] The research played important guidance significances in adjustment of agricultural production structure,regional climate planning,reasonably using climate resource and replying climate change in Shangqiu City.展开更多
In this paper we report an analysis of sampling error uncertainties in mean maximum and minimum temperatures (Tmax and Tmin) carried out on monthly,seasonal and annual scales,including an examination of homogenized ...In this paper we report an analysis of sampling error uncertainties in mean maximum and minimum temperatures (Tmax and Tmin) carried out on monthly,seasonal and annual scales,including an examination of homogenized and original data collected at 731 meteorological stations across China for the period 1951-2004.Uncertainties of the gridded data and national average,linear trends and their uncertainties,as well as the homogenization effect on uncertainties are assessed.It is shown that the sampling error variances of homogenized Tmax and Tmin,which are larger in winter than in summer,have a marked northwest-southeast gradient distribution,while the sampling error variances of the original data are found to be larger and irregular.Tmax and Tmin increase in all months of the year in the study period 1951-2004,with the largest warming and uncertainties being 0.400℃ (10 yr)-1 + 0.269℃ (10 yr)-1 and 0.578℃ (10 yr)-1 + 0.211℃ (10 yr)-1 in February,and the least being 0.022℃ (10 yr)-1 + 0.085℃ (10 yr)-1 and 0.104℃ (10 yr)-1 +0.070℃ (10 yr)-1 in August.Homogenization can remove large uncertainties in the original records resulting from various non-natural changes in China.展开更多
Based on China's observational data in 1951-1990,after minimizing the possible biases caused by station relocation and urban heat island,the spatial and temporal distributions of trends for maximum and minimum tem...Based on China's observational data in 1951-1990,after minimizing the possible biases caused by station relocation and urban heat island,the spatial and temporal distributions of trends for maximum and minimum temperatures are studied.The results show that increasing trends of maximum temperatures are in the areas west to 95°E,and north to the Huanghe(Yellow)River, while decreasing trends exist in eastern China south to the Yellow River.Minimum temperatures are generally increasing throughout China,with dominant warming trends at the higher latitudes. This resulted in very obvious decreasing trends in diurnal temperature ranges. The periodic cycles are consistent between the maximum and minimum temperatures,but asymmetric trends are very obvious.The significant increase of minimum(nighttime)temperatures reflects the evidence of enhancement of greenhouse effect.Further analysis shows that the changes of maximum and minimum temperatures are mainly related to sunshine duration and atmospheric water vapor content.展开更多
Minimum temperatures have remarkable impacts on tree growth at high-elevation sites on the Tibetan Plateau,but the shortage of long-term and high-resolution paleoclimate records inhibits understanding of recent minimu...Minimum temperatures have remarkable impacts on tree growth at high-elevation sites on the Tibetan Plateau,but the shortage of long-term and high-resolution paleoclimate records inhibits understanding of recent minimum temperature anomalies.In this study,a warm season(April–September)reconstruction is presented for the past 467 years(1550–2016)based on Sabina tibetica ring-width chronology on the Lianbaoyeze Mountain of the central eastern Tibetan Plateau.Eight warm periods and eight cold periods were identified.Long-term minimum temperature variations revealed a high degree of coherence with nearby reconstructions.Spatial correlations between our reconstruction and global sea surface temperatures suggest that warm season minimum temperature anomalies in the central eastern Tibetan Plateau were strongly influenced by large-scale ocean atmospheric circulations,such as the El Ni?o-Southern Oscillation and the Atlantic Multidecadal Oscillation.展开更多
Inhomogeneities in the daily mean/maximum/ minimum temperature (Tm/Tmax/Tmin) series from 1960- 2008 at 549 National Standard Stations (NSSs) in China were analyzed by using the Multiple Analysis of Series for Hom...Inhomogeneities in the daily mean/maximum/ minimum temperature (Tm/Tmax/Tmin) series from 1960- 2008 at 549 National Standard Stations (NSSs) in China were analyzed by using the Multiple Analysis of Series for Homogenization (MASH) software package. Typical biases in the dataset were illustrated via the cases of Beijing (B J), Wutaishan (WT), Urumqi (UR) and Henan (HN) stations. The homogenized dataset shows a mean warming trend of 0.261/0.193/0.344℃/decade for the annual series of Tm/Tmax/Tmin, slightly smaller than that of the original dataset by 0.006/0.009/0.007℃/decade. However, considerable differences between the adjusted and original datasets were found at the local scale. The adjusted Tmin series shows a significant warming trend almost everywhere for all seasons, while there are a number of stations with an insignificant trend in the original dataset. The adjusted Tm data exhibit significant warming trends annually as well as for the autumn and winter seasons in northern China, and cooling trends only for the summer in the middle reaches of the Yangtze River and parts of central China and for the spring in southwestern China, while the original data show cooling trends at several stations for the annual and seasonal scales in the Qinghai, Shanxi, Hebei, and Xinjiang provinces. The adjusted Tmax data exhibit cooling trends for summers at a number of stations in the mid-lower reaches of the Yangtze and Yellow Rivers and for springs and winters at a few stations in southwestern China, while the original data show cooling trends at three/four stations for the annual/autumn periods in the Qinghai and Yunnan provinces. In general, the number of stations with a cooling trend was much smaller in the adjusted Tm and Tmax dataset than in the original dataset. The cooling trend for summers is mainly due to cooling in August. The results of homogenization using MASH appear to be robust; in particular, different groups of stations with consideration of elevation led to minor effects in the results.展开更多
Biologists have considered both winter coldness and temperature seasonality as major determinants of the northern limits of plants and animals in the Northern Hemisphere,which in turn drive the well-known latitudinal ...Biologists have considered both winter coldness and temperature seasonality as major determinants of the northern limits of plants and animals in the Northern Hemisphere,which in turn drive the well-known latitudinal diversity gradient.However,few studies have tested which of the two climate variables is the primary determinant.In this study,we assess whether winter coldness or temperature seasonality is more strongly associated with the northern latitudinal limits of tree species and with tree species richness in North America.Tree species were recorded in each of 1198 quadrats of 110 km×110 km in North America.We used correlation and regression analyses to assess the relationship of the latitude of the northern boundary of each species,and of species richness per quadrat,with winter coldness and temperature seasonality.Species richness was analyzed within 38 longitudinal,i.e.,north-south,bands(each being>1100 km long and 110 km wide).The latitudes of the northern range limits of tree species were three times better correlated with minimum temperatures at those latitudes than with temperature seasonality.On average,minimum temperature and temperature seasonality together explained 81.5%of the variation in the northern range limits of the tree species examined,and minimum temperature uniquely explained six-fold(33.7%versus 5.8%)more of this variation than did temperature seasonality.Correlations of tree species richness with minimum temperatures were stronger than correlations with temperature seasonality for most of the longitudinal bands analyzed.Compared to temperature seasonality,winter coldness is more strongly associated with species distributions at high latitudes,and is likely a more important driver of the latitudinal diversity gradient.展开更多
[Objective] The research aimed to study the short-time forecast method of winterminimum temperature in the northern area of Fujian.[Method] By analyzing the variation trends and distribution characteristics of extreme...[Objective] The research aimed to study the short-time forecast method of winterminimum temperature in the northern area of Fujian.[Method] By analyzing the variation trends and distribution characteristics of extremely and averageminimum temperatures in northern Fujian in winter during 1969-2008,the relative meteorological factors which affected the low temperature weather in winter were found.The influences of relative meteorological factors on winterminimum temperature and the forecast method were summarized by combining with the climate characteristics in northern Fujian.[Result] Winterminimum temperature in Guangze and Pucheng in the north of northern Fujian was the lowest.The second one was in Shaowu,Wuyishan,Jianyang,Songxi and Zhenghe.Theminimum temperature in Jian’ou and Shunchang was higher and was the highest in Yanping.Theminimum temperature mainly depended on the temperature reduction degree from the afternoon to the night.The temperature reduction degree varied with the sky condition and cold air intensity.The temperature reduction included the advection,radiation,advection-radiation and non-advection-radiation types.The temperature had the different reduction characteristics under the different sky conditions.The forecast ofminimum temperature should be carried out based on the weather typing.Meanwhile,the successful forecast key ofminimum temperature was grasping the shift pathway and speed of cold air.[Conclusion] The research provided the theory basis for improving the forecast accuracy of winterminimum temperature.展开更多
Post-processing correction is an effective way to improve the model forecasting result. Especially, the machine learning methods have played increasingly important roles in recent years. Taking the meteorological obse...Post-processing correction is an effective way to improve the model forecasting result. Especially, the machine learning methods have played increasingly important roles in recent years. Taking the meteorological observational data in a period of two years as the reference, the maximum and minimum temperature predictions of Shenyang station from the European Center for Medium-Range Weather Forecasts (ECMWF) and national intelligent grid forecasts are objectively corrected by using wavelet analysis, sliding training and other technologies. The evaluation results show that the sliding training time window of the maximum temperature is smaller than that of the minimum temperature, and their difference is the largest in August, with a difference of 2.6 days. The objective correction product of maximum temperature shows a good performance in spring, while that of minimum temperature performs well throughout the whole year, with an accuracy improvement of 97% to 186%. The correction effect in the central plains is better than in the regions with complex terrain. As for the national intelligent grid forecasts, the objective correction products have shown positive skills in predicting the maximum temperatures in spring (the skill-score reaches 0.59) and in predicting the minimum temperature at most times of the year (the skill-score reaches 0.68).展开更多
The miscibility of flue gas and different types of light oils is investigated through slender-tube miscible displacement experiment at high temperature and high pressure.Under the conditions of high temperature and hi...The miscibility of flue gas and different types of light oils is investigated through slender-tube miscible displacement experiment at high temperature and high pressure.Under the conditions of high temperature and high pressure,the miscible displacement of flue gas and light oil is possible.At the same temperature,there is a linear relationship between oil displacement efficiency and pressure.At the same pressure,the oil displacement efficiency increases gently and then rapidly to more than 90% to achieve miscible displacement with the increase of temperature.The rapid increase of oil displacement efficiency is closely related to the process that the light components of oil transit in phase state due to distillation with the rise of temperature.Moreover,at the same pressure,the lighter the oil,the lower the minimum miscibility temperature between flue gas and oil,which allows easier miscibility and ultimately better performance of thermal miscible flooding by air injection.The miscibility between flue gas and light oil at high temperature and high pressure is more typically characterized by phase transition at high temperature in supercritical state,and it is different from the contact extraction miscibility of CO_(2) under conventional high pressure conditions.展开更多
The high temperature and high pressure visualization pressure-volume-temperature(PVT)experiments of different gas media-crude oil were carried using the interface disappearance method.There are two miscible temperatur...The high temperature and high pressure visualization pressure-volume-temperature(PVT)experiments of different gas media-crude oil were carried using the interface disappearance method.There are two miscible temperature domains in the miscibility of CO_(2)-crude oil during heating process under constant pressure.Under the experiment pressure of 15 MPa,when the temperature is less than 140℃,the miscible zone shows liquid phase characteristics,and increasing the temperature inhibits the miscible process;when the temperature is greater than 230℃,the miscible zone tends to show gas phase characteristics,and increasing the temperature is conducive to the miscibility formation.Under a certain pressure,with the increase of temperature,the miscibility of flue gas,nitrogen and crude oil is realized.When the temperature is low,the effect of CO_(2) on promoting miscibility is obvious,and the order of miscible temperature of gas medium and crude oil is N_(2)>flue gas>CO_(2);however,when the temperature is high,the effect of CO_(2) on promoting miscibility gradually decreases,and the miscible temperature of N_(2) and crude oil is close to that of flue gas.The miscibility is dominated by the distillation and volatilization of light components of crude oil.There are many light hydrocarbon components in the gas phase at phase equilibrium,and the miscible zone is characterized by gas phase.展开更多
In the Hubble sphere,we assume that the wavelength of pure energy spreads out in all directions.The maximum wavelength in the Hubble sphere is then the circumference of the Hubble sphere.We assume the minimum waveleng...In the Hubble sphere,we assume that the wavelength of pure energy spreads out in all directions.The maximum wavelength in the Hubble sphere is then the circumference of the Hubble sphere.We assume the minimum wavelength occurs in a Planck mass black hole,which is given by,4πR_(s,p)= 8πl_(p).Here,we build further on the geometric mean CMB approach by Haug and Tatum and based on new analysis given in this paper1 we conclude that the CMB temperature is simply given as:cmb min max T_(cmb)=T_(min)T_(max),which is the geometric mean of the minimum and maximum physically possible temperatures in the Hubble sphere.This again means the CMB temperature simply is the geometric mean of the Hawking temperature of the Hubble sphere(in black hole cosmology)and the Hawking temperature of the Planck mass black hole,se we have also T_(cmb)=T_(Haw,H) T_(Haw,p).展开更多
The aim of this study was to investigate the responses of frost dates to global warming and its influences on grain yields. In this study, based on the frost date series defined by daily minimum ground temperature, th...The aim of this study was to investigate the responses of frost dates to global warming and its influences on grain yields. In this study, based on the frost date series defined by daily minimum ground temperature, the spatial and temporal characteristics of first frost date (FFD), last frost date (LFD) and frost-free period (FFP) were analyzed. The impact of extending FFP on major crop yields was also studied. The results were as follows: FFD showed a significantly delaying trend of 2.2 d/10 y, and LFD presented an advancing trend of 2.4 d/10 y. FFP extended at a rate of 4.5 d/10 y due to the later FFD and earlier LFD. The most obvious trend of FFD was in westem Henan, while the most significant trend of LFD and FFP oc- curred in south central parts of the study area. However, in eestem region, the trends of FFD, LFD and FFP were not so obvious. Major crop yield showed a sig- nificant correlation with frost-free period for Henan during 1961-2013. The yields of grain, rice, wheat, and maize increased by 79.5, 90.0, 79.5 and 70.5 kg/hm2 with FFP extending by one day.展开更多
Based on the data of monthly average air temperature,extreme maximum,minimum air temperature and precipitation of Shenyang from 1960 to 2009,the climate changes and its characteristics in Shenyang in recent 50 years w...Based on the data of monthly average air temperature,extreme maximum,minimum air temperature and precipitation of Shenyang from 1960 to 2009,the climate changes and its characteristics in Shenyang in recent 50 years were comprehensively analyzed and studied.The results showed that the increasing trend of air temperature in recent 50 years was obvious.With the rising of the air temperature,the precipitation in Shenyang City showed a decreasing trend.展开更多
The variation of the vegetation growing season in the Three-Rivers Headwater Region of the Tibetan Plateau has recently become a controversial topic. One issue is that the estimated local trend in the start of the veg...The variation of the vegetation growing season in the Three-Rivers Headwater Region of the Tibetan Plateau has recently become a controversial topic. One issue is that the estimated local trend in the start of the vegetation growing season(SOS)based on remote sensing data is easily affected by outliers because this data series is short. In this study, we determine that the spring minimum temperature is the most influential factor for SOS. The significant negative linear relationship between the two variables in the region is evaluated using Moderate Resolution Imaging Spectroradiometer–Normalized Difference Vegetation Index data for 2000–13. We then reconstruct the SOS time series based on the temperature data for 1960–2013.The regional mean SOS shows an advancing trend of 1.42 d(10 yr)during 1960–2013, with the SOS occurring on the 160th and 151st days in 1960 and 2013, respectively. The advancing trend enhances to 6.04 d(10 yr)during the past 14 years. The spatiotemporal variations of the reconstructed SOS data are similar to those deduced from remote sensing data during the past 14 years. The latter exhibit an even larger regional mean trend of SOS [7.98 d(10 yr)] during 2000–13. The Arctic Oscillation is found to have significantly influenced the changing SOS, especially for the eastern part of the region,during 2000–13.展开更多
Global warming causes an unstable response in tree radial growth at high latitudes in the Northern Hemisphere.Additionally,different climatic responses of different age groups of trees have been found due to their dif...Global warming causes an unstable response in tree radial growth at high latitudes in the Northern Hemisphere.Additionally,different climatic responses of different age groups of trees have been found due to their different physiological mechanisms.In this study,the response stability and growth trend of three age groups(young<100 a,middle 100-200 a,old≥200 a)of Picea schrenkiana(Schrenk spruce)to climate change and the causes of the different responses in different age groups were analyzed in the relatively dry climate of the eastern Tianshan Mountains.The results showed that:(1)With the abrupt increase in temperature in 1989,the annual mean minimum temperature became the dominant radial growth-limiting factor of the three age groups of Schrenk spruce.(2)The radial growth of the middle and young groups was more sensitive than that of the old group based on growth-climate correlation analysis.(3)The radial growth of the different age groups had different responses to climate factors,and all age groups were unstable on time scales.(4)The trend of the linear regression simulation of the basal area increment(BAI)indicated that the Schrenk spruce had the same growth trends in different age groups with growth first increased and then decreased;however,the decreased growth rate was higher in the middle and young age groups than in the old age group after the abrupt increase in temperature.Therefore,we should pay active attention to the impact of drought on Schrenk spruce in the eastern Tianshan Mountains and should particularly strengthen the conservation and management of the middle and young age groups.展开更多
[Objective] The aim was to provide direction for the development of flowers and plants industry at Beibei area of Chongqing.[Method] Effects of temperature ranges and influencing time of chilling damages in winter on ...[Objective] The aim was to provide direction for the development of flowers and plants industry at Beibei area of Chongqing.[Method] Effects of temperature ranges and influencing time of chilling damages in winter on local flowers and plants at Beibei area were analyzed,using extreme minimum temperature data during 1960 to 2009 and the phenological growth conditions and phenological observation data of Bougainvillea spectabilis Willd and Michelia champaca during 2005 to 2007 at Beibei area.[Result] Chilling damages affecting flowers and plants at Beibei area mostly emerged from late December to early February,the effects of which were relative serious in January with a temperature range from-2 to 5 ℃;the optimum temperatures were 12-28 ℃ for flowers and plants grown at Beibei area in Chongqing,being higher or lower than that temperature range will affect the normally overwintering flowering and growing;chilling damages affecting the flower seedlings would appear when being at extreme minimum temperatures lower than 6 ℃ for 3 d in any phenophase in winter.[Conclusion] According to the characters of chilling damages in winter,the influences of which on flowers and plants can be reduced through combining tendency prediction and adopting corresponding measures.展开更多
Change related to climate in Macao was studied on the basis of daily temperature observations over the period 1901-2007. The result shows that annual mean surface air temperature in Macao as a whole rose with a warmin...Change related to climate in Macao was studied on the basis of daily temperature observations over the period 1901-2007. The result shows that annual mean surface air temperature in Macao as a whole rose with a warming rate of about 0.066℃ per 10 years in the recent 107 years. The most evident warming occurred in spring and winter. The interdecadal variations of the seasonal mean temperature in summer and winter appeared as a series of waves with a time scale of about 30 years and 60 years, respectively. The annual mean minimum temperature increased about twice as fast as the annual mean maximum temperature, resulting in a broad decline in the annual mean diurnal range. The interdecadal variations of annual mean maximum temperature are obviously different from those of annual mean minimum temperature. It appears that the increase in the annual mean maximum temperature in the recent 20 years may be part of slow climate fluctuations with a periodicity of about 60 years, whereas that in the annual mean minimum temperature appears to be the continuation of a long-term warming trend.展开更多
In forest ecosystems, gap formation changes the allocation of abiotic resources and thus affects the survival and growth of understory plants. However, how tree seedling survival and growth respond to low-temperature ...In forest ecosystems, gap formation changes the allocation of abiotic resources and thus affects the survival and growth of understory plants. However, how tree seedling survival and growth respond to low-temperature events and the influencing mechanisms remain unclear. To clarify how low-temperature event limits the survival and growth of tree seedlings in the montane regions of eastern Liaoning Province, northeast China, we investigated temperature and light intensity within secondary forest gaps, and the survival and growth of Juglans mandshurica seedlings after a low-temperature event in the spring of 2014. Damage to seedlings due to low temperature sig- nificantly varied in different aspects. Seedlings in gaps on southeast-facing slopes were the most seriously damaged, followed by those in gaps on northeast-facing slopes. In contrast, seedlings in west-facing gaps and in control plots without slope aspect were not damaged. The freezing injury index for seedlings was negatively correlated with minimum temperature (r = - 0.608, P 〈 0.01), but it was positively correlated with light intensity (r= 0.818, P 〈 0.01). In addition, height and root collar diameter of damaged seedlings were significantly lower than those of the undamaged seedlings (P 〈 0.01) during the early growing season (April-July), but no significant difference were observed during the late growing season (July-Oc- tober) (P 〉 0.05). The extent of seedling damage was directly related to slope aspect. Low temperature and high light intensity were found to be the dominant factors affecting extent of damage to seedlings on southeast- and northeast-facing slopes.展开更多
Mt.Everest (27°54' N,86°54' E),the highest peak,is often referred to as the earth's 'third' pole,at an elevation of 8844.43 m. Due to the difficult logistics in the extreme high elevation...Mt.Everest (27°54' N,86°54' E),the highest peak,is often referred to as the earth's 'third' pole,at an elevation of 8844.43 m. Due to the difficult logistics in the extreme high elevation regions over the Himalayas,observational meteorological data are very few on Mt. Everest. In 2005,an automatic weather station was operated at the East Rongbuk glacier Col of Mt. Everest over the Himalayas. The observational data have been compared with the reanalysis data from the National Centers for Environmental Prediction/National Center for Atmospheric Research (NCEP/NCAR),and the reliability of NCEP/NCAR reanalysis data has been investigated in the Himalayan region,after the reanalyzed data were interpolated in the horizontal to the location of Mt. Everest and in the vertical to the height of the observed sites. The reanalysis data can capture much of the synoptic-scale variability in temperature and pressure,although the reanalysis values are systematically lower than the observation. Furthermore,most of the variability magnitude is,to some degree,underestimated. In addition,the variation extracted from the NCEP/NCAR reanalyzed pressure and temperature prominently appears one-day lead to that from the observational data,which is more important from the standpoint of improving the safety of climbers who attempt to climb Mt. Everest peak.展开更多
The long-term trend of diurnal temperature range(DTR)over Nigeria was examined using daily station-based datasets for the period 1971–2013.The results show that the regionally averaged DTR has decreased significantly...The long-term trend of diurnal temperature range(DTR)over Nigeria was examined using daily station-based datasets for the period 1971–2013.The results show that the regionally averaged DTR has decreased significantly(-0.34°C per decade)over the Nigerian Sahel(north of 10°N),but there has been a slight increasing trend(0.01°C per decade)over the Nigerian Guinea Coast.The annual decreasing trend of DTR in the Nigerian Sahel is mainly attributable to the significant increasing trend in daily minimum temperature(Tmin,0.51°C per decade),which far outstrips the rate of increase in the daily maximum(Tmax,0.17°C per decade).In contrast,the comparable trends in Tmin(0.19°C per decade)and Tmax(0.20°C per decade)may explain the non-significant trend of the DTR averaged over the Guinea Coast region.It is observed that the DTR has decreased more in boreal summer(June–July–August)than in boreal winter(December–January–February)for the regions.Furthermore,it is found that the significant DTR declining trend over the Nigerian Sahel is closely associated with an increasing trend of annual and summer precipitation in the region,but the increasing DTR trend in the Nigerian Guinea Coast region can be attributed to the decreasing trend of cloud cover over the region.展开更多
文摘[Objective] The research aimed to analyze temporal and spatial variation characteristics of temperature in Shangqiu City during 1961-2010.[Method] Based on temperature data in eight meteorological stations of Shangqiu during 1961-2010,by using trend analysis method,the temporal and spatial evolution characteristics of annual average temperature,annual average maximum and minimum temperatures,annual extreme maximum and minimum temperatures,daily range of annual average temperature in Shangqiu City were analyzed.M-K method was used to determine mutation year of temperature.[Result] The annual average temperature,annual average minimum temperature and annual extreme minimum temperature respectively rose at 0.122,0.255 and 0.488 ℃/10 a.The variation trend of annual average maximum temperature wasn’t obvious.The daily range of annual average temperature and annual extreme maximum temperature respectively declined at-0.217 and-0.292 ℃/10 a.Seen from spatial distribution,the increase amplitudes of annual average temperature,annual average minimum temperature and annual extreme minimum temperature were all large in the east and small in the west.The decrease amplitude of daily range of annual average temperature was large in the east and small in the west.The decrease amplitude of annual extreme maximum temperature was large in the west and small in the east.The annual average maximum temperature had trends of increase and decrease.The annual average temperature,annual average minimum temperature and daily range of annual average temperature all mutated in 1997.The annual average maximum temperature didn’t have obvious mutation point.The annual extreme maximum temperature mutated in 1973.The annual extreme minimum temperature respectively mutated in 1989 and 1999.[Conclusion] The research played important guidance significances in adjustment of agricultural production structure,regional climate planning,reasonably using climate resource and replying climate change in Shangqiu City.
基金supported by the National Natural Science Foundation of China (Grant No. 41130103)the 973 Program (Grant Nos. 2009CB421406 and 2012CB955401)+1 种基金the US National Oceanographic and Atmospheric Administration (Grant No. EL133E09SE4048)the US National Science Foundation (Grant Nos. AGS-1015926 and AGS-1015957)
文摘In this paper we report an analysis of sampling error uncertainties in mean maximum and minimum temperatures (Tmax and Tmin) carried out on monthly,seasonal and annual scales,including an examination of homogenized and original data collected at 731 meteorological stations across China for the period 1951-2004.Uncertainties of the gridded data and national average,linear trends and their uncertainties,as well as the homogenization effect on uncertainties are assessed.It is shown that the sampling error variances of homogenized Tmax and Tmin,which are larger in winter than in summer,have a marked northwest-southeast gradient distribution,while the sampling error variances of the original data are found to be larger and irregular.Tmax and Tmin increase in all months of the year in the study period 1951-2004,with the largest warming and uncertainties being 0.400℃ (10 yr)-1 + 0.269℃ (10 yr)-1 and 0.578℃ (10 yr)-1 + 0.211℃ (10 yr)-1 in February,and the least being 0.022℃ (10 yr)-1 + 0.085℃ (10 yr)-1 and 0.104℃ (10 yr)-1 +0.070℃ (10 yr)-1 in August.Homogenization can remove large uncertainties in the original records resulting from various non-natural changes in China.
文摘Based on China's observational data in 1951-1990,after minimizing the possible biases caused by station relocation and urban heat island,the spatial and temporal distributions of trends for maximum and minimum temperatures are studied.The results show that increasing trends of maximum temperatures are in the areas west to 95°E,and north to the Huanghe(Yellow)River, while decreasing trends exist in eastern China south to the Yellow River.Minimum temperatures are generally increasing throughout China,with dominant warming trends at the higher latitudes. This resulted in very obvious decreasing trends in diurnal temperature ranges. The periodic cycles are consistent between the maximum and minimum temperatures,but asymmetric trends are very obvious.The significant increase of minimum(nighttime)temperatures reflects the evidence of enhancement of greenhouse effect.Further analysis shows that the changes of maximum and minimum temperatures are mainly related to sunshine duration and atmospheric water vapor content.
基金funded by the National Key Research and Development Program of China(No.2018YFA0605601)Hong Kong Research Grants Council(No.106220169)+1 种基金the National Natural Science Foundation of China(No.42105155,41671042,and 42077417)the National Geographic Society(No.EC-95776R-22)。
文摘Minimum temperatures have remarkable impacts on tree growth at high-elevation sites on the Tibetan Plateau,but the shortage of long-term and high-resolution paleoclimate records inhibits understanding of recent minimum temperature anomalies.In this study,a warm season(April–September)reconstruction is presented for the past 467 years(1550–2016)based on Sabina tibetica ring-width chronology on the Lianbaoyeze Mountain of the central eastern Tibetan Plateau.Eight warm periods and eight cold periods were identified.Long-term minimum temperature variations revealed a high degree of coherence with nearby reconstructions.Spatial correlations between our reconstruction and global sea surface temperatures suggest that warm season minimum temperature anomalies in the central eastern Tibetan Plateau were strongly influenced by large-scale ocean atmospheric circulations,such as the El Ni?o-Southern Oscillation and the Atlantic Multidecadal Oscillation.
基金supported by the National Basic Research Program of China 2009CB421401 and 2006CB400503
文摘Inhomogeneities in the daily mean/maximum/ minimum temperature (Tm/Tmax/Tmin) series from 1960- 2008 at 549 National Standard Stations (NSSs) in China were analyzed by using the Multiple Analysis of Series for Homogenization (MASH) software package. Typical biases in the dataset were illustrated via the cases of Beijing (B J), Wutaishan (WT), Urumqi (UR) and Henan (HN) stations. The homogenized dataset shows a mean warming trend of 0.261/0.193/0.344℃/decade for the annual series of Tm/Tmax/Tmin, slightly smaller than that of the original dataset by 0.006/0.009/0.007℃/decade. However, considerable differences between the adjusted and original datasets were found at the local scale. The adjusted Tmin series shows a significant warming trend almost everywhere for all seasons, while there are a number of stations with an insignificant trend in the original dataset. The adjusted Tm data exhibit significant warming trends annually as well as for the autumn and winter seasons in northern China, and cooling trends only for the summer in the middle reaches of the Yangtze River and parts of central China and for the spring in southwestern China, while the original data show cooling trends at several stations for the annual and seasonal scales in the Qinghai, Shanxi, Hebei, and Xinjiang provinces. The adjusted Tmax data exhibit cooling trends for summers at a number of stations in the mid-lower reaches of the Yangtze and Yellow Rivers and for springs and winters at a few stations in southwestern China, while the original data show cooling trends at three/four stations for the annual/autumn periods in the Qinghai and Yunnan provinces. In general, the number of stations with a cooling trend was much smaller in the adjusted Tm and Tmax dataset than in the original dataset. The cooling trend for summers is mainly due to cooling in August. The results of homogenization using MASH appear to be robust; in particular, different groups of stations with consideration of elevation led to minor effects in the results.
基金supported by a grant form the National Key Research and Development Program,No.2019YFA0607302。
文摘Biologists have considered both winter coldness and temperature seasonality as major determinants of the northern limits of plants and animals in the Northern Hemisphere,which in turn drive the well-known latitudinal diversity gradient.However,few studies have tested which of the two climate variables is the primary determinant.In this study,we assess whether winter coldness or temperature seasonality is more strongly associated with the northern latitudinal limits of tree species and with tree species richness in North America.Tree species were recorded in each of 1198 quadrats of 110 km×110 km in North America.We used correlation and regression analyses to assess the relationship of the latitude of the northern boundary of each species,and of species richness per quadrat,with winter coldness and temperature seasonality.Species richness was analyzed within 38 longitudinal,i.e.,north-south,bands(each being>1100 km long and 110 km wide).The latitudes of the northern range limits of tree species were three times better correlated with minimum temperatures at those latitudes than with temperature seasonality.On average,minimum temperature and temperature seasonality together explained 81.5%of the variation in the northern range limits of the tree species examined,and minimum temperature uniquely explained six-fold(33.7%versus 5.8%)more of this variation than did temperature seasonality.Correlations of tree species richness with minimum temperatures were stronger than correlations with temperature seasonality for most of the longitudinal bands analyzed.Compared to temperature seasonality,winter coldness is more strongly associated with species distributions at high latitudes,and is likely a more important driver of the latitudinal diversity gradient.
文摘[Objective] The research aimed to study the short-time forecast method of winterminimum temperature in the northern area of Fujian.[Method] By analyzing the variation trends and distribution characteristics of extremely and averageminimum temperatures in northern Fujian in winter during 1969-2008,the relative meteorological factors which affected the low temperature weather in winter were found.The influences of relative meteorological factors on winterminimum temperature and the forecast method were summarized by combining with the climate characteristics in northern Fujian.[Result] Winterminimum temperature in Guangze and Pucheng in the north of northern Fujian was the lowest.The second one was in Shaowu,Wuyishan,Jianyang,Songxi and Zhenghe.Theminimum temperature in Jian’ou and Shunchang was higher and was the highest in Yanping.Theminimum temperature mainly depended on the temperature reduction degree from the afternoon to the night.The temperature reduction degree varied with the sky condition and cold air intensity.The temperature reduction included the advection,radiation,advection-radiation and non-advection-radiation types.The temperature had the different reduction characteristics under the different sky conditions.The forecast ofminimum temperature should be carried out based on the weather typing.Meanwhile,the successful forecast key ofminimum temperature was grasping the shift pathway and speed of cold air.[Conclusion] The research provided the theory basis for improving the forecast accuracy of winterminimum temperature.
文摘Post-processing correction is an effective way to improve the model forecasting result. Especially, the machine learning methods have played increasingly important roles in recent years. Taking the meteorological observational data in a period of two years as the reference, the maximum and minimum temperature predictions of Shenyang station from the European Center for Medium-Range Weather Forecasts (ECMWF) and national intelligent grid forecasts are objectively corrected by using wavelet analysis, sliding training and other technologies. The evaluation results show that the sliding training time window of the maximum temperature is smaller than that of the minimum temperature, and their difference is the largest in August, with a difference of 2.6 days. The objective correction product of maximum temperature shows a good performance in spring, while that of minimum temperature performs well throughout the whole year, with an accuracy improvement of 97% to 186%. The correction effect in the central plains is better than in the regions with complex terrain. As for the national intelligent grid forecasts, the objective correction products have shown positive skills in predicting the maximum temperatures in spring (the skill-score reaches 0.59) and in predicting the minimum temperature at most times of the year (the skill-score reaches 0.68).
基金Supported by the PetroChina Science and Technology Project(2023ZG18).
文摘The miscibility of flue gas and different types of light oils is investigated through slender-tube miscible displacement experiment at high temperature and high pressure.Under the conditions of high temperature and high pressure,the miscible displacement of flue gas and light oil is possible.At the same temperature,there is a linear relationship between oil displacement efficiency and pressure.At the same pressure,the oil displacement efficiency increases gently and then rapidly to more than 90% to achieve miscible displacement with the increase of temperature.The rapid increase of oil displacement efficiency is closely related to the process that the light components of oil transit in phase state due to distillation with the rise of temperature.Moreover,at the same pressure,the lighter the oil,the lower the minimum miscibility temperature between flue gas and oil,which allows easier miscibility and ultimately better performance of thermal miscible flooding by air injection.The miscibility between flue gas and light oil at high temperature and high pressure is more typically characterized by phase transition at high temperature in supercritical state,and it is different from the contact extraction miscibility of CO_(2) under conventional high pressure conditions.
基金Supported by the Petro China Science and Technology Project(2023ZG18)。
文摘The high temperature and high pressure visualization pressure-volume-temperature(PVT)experiments of different gas media-crude oil were carried using the interface disappearance method.There are two miscible temperature domains in the miscibility of CO_(2)-crude oil during heating process under constant pressure.Under the experiment pressure of 15 MPa,when the temperature is less than 140℃,the miscible zone shows liquid phase characteristics,and increasing the temperature inhibits the miscible process;when the temperature is greater than 230℃,the miscible zone tends to show gas phase characteristics,and increasing the temperature is conducive to the miscibility formation.Under a certain pressure,with the increase of temperature,the miscibility of flue gas,nitrogen and crude oil is realized.When the temperature is low,the effect of CO_(2) on promoting miscibility is obvious,and the order of miscible temperature of gas medium and crude oil is N_(2)>flue gas>CO_(2);however,when the temperature is high,the effect of CO_(2) on promoting miscibility gradually decreases,and the miscible temperature of N_(2) and crude oil is close to that of flue gas.The miscibility is dominated by the distillation and volatilization of light components of crude oil.There are many light hydrocarbon components in the gas phase at phase equilibrium,and the miscible zone is characterized by gas phase.
文摘In the Hubble sphere,we assume that the wavelength of pure energy spreads out in all directions.The maximum wavelength in the Hubble sphere is then the circumference of the Hubble sphere.We assume the minimum wavelength occurs in a Planck mass black hole,which is given by,4πR_(s,p)= 8πl_(p).Here,we build further on the geometric mean CMB approach by Haug and Tatum and based on new analysis given in this paper1 we conclude that the CMB temperature is simply given as:cmb min max T_(cmb)=T_(min)T_(max),which is the geometric mean of the minimum and maximum physically possible temperatures in the Hubble sphere.This again means the CMB temperature simply is the geometric mean of the Hawking temperature of the Hubble sphere(in black hole cosmology)and the Hawking temperature of the Planck mass black hole,se we have also T_(cmb)=T_(Haw,H) T_(Haw,p).
基金Funded by"Strategic Priority Research Program"of the Chinese Academy of Sciences(XDA05090101,XDA05090104)China Global Change Research Program(2010CB950101,2012CB955403)+2 种基金Basic Research Project of the Ministry of Science and Technology(2011FY120300)Doctor Foundation of Xinyang Normal University(0201403)National Natural Science Foundation of China(41271124,41101549)~~
文摘The aim of this study was to investigate the responses of frost dates to global warming and its influences on grain yields. In this study, based on the frost date series defined by daily minimum ground temperature, the spatial and temporal characteristics of first frost date (FFD), last frost date (LFD) and frost-free period (FFP) were analyzed. The impact of extending FFP on major crop yields was also studied. The results were as follows: FFD showed a significantly delaying trend of 2.2 d/10 y, and LFD presented an advancing trend of 2.4 d/10 y. FFP extended at a rate of 4.5 d/10 y due to the later FFD and earlier LFD. The most obvious trend of FFD was in westem Henan, while the most significant trend of LFD and FFP oc- curred in south central parts of the study area. However, in eestem region, the trends of FFD, LFD and FFP were not so obvious. Major crop yield showed a sig- nificant correlation with frost-free period for Henan during 1961-2013. The yields of grain, rice, wheat, and maize increased by 79.5, 90.0, 79.5 and 70.5 kg/hm2 with FFP extending by one day.
文摘Based on the data of monthly average air temperature,extreme maximum,minimum air temperature and precipitation of Shenyang from 1960 to 2009,the climate changes and its characteristics in Shenyang in recent 50 years were comprehensively analyzed and studied.The results showed that the increasing trend of air temperature in recent 50 years was obvious.With the rising of the air temperature,the precipitation in Shenyang City showed a decreasing trend.
基金supported by the National Key Research and Development Program of China(Grant Nos.2016YFA0600400 and 2016YFA0602500)supported by the Open Research Fund of the Key Laboratory of Tibetan Environmental Changes and Land Surface Processes,Chinese Academy of Sciencesthe National Natural Science Foundation of China(Grant No.41405082)
文摘The variation of the vegetation growing season in the Three-Rivers Headwater Region of the Tibetan Plateau has recently become a controversial topic. One issue is that the estimated local trend in the start of the vegetation growing season(SOS)based on remote sensing data is easily affected by outliers because this data series is short. In this study, we determine that the spring minimum temperature is the most influential factor for SOS. The significant negative linear relationship between the two variables in the region is evaluated using Moderate Resolution Imaging Spectroradiometer–Normalized Difference Vegetation Index data for 2000–13. We then reconstruct the SOS time series based on the temperature data for 1960–2013.The regional mean SOS shows an advancing trend of 1.42 d(10 yr)during 1960–2013, with the SOS occurring on the 160th and 151st days in 1960 and 2013, respectively. The advancing trend enhances to 6.04 d(10 yr)during the past 14 years. The spatiotemporal variations of the reconstructed SOS data are similar to those deduced from remote sensing data during the past 14 years. The latter exhibit an even larger regional mean trend of SOS [7.98 d(10 yr)] during 2000–13. The Arctic Oscillation is found to have significantly influenced the changing SOS, especially for the eastern part of the region,during 2000–13.
基金supported by the National Natural Science Foundation of China(Projects No.41861006 and 41630750)the Scientific Research Program of Higher Education Institutions of Gansu Province(2018C-02)the Research Ability Promotion Program for Young Teachers of Northwest Normal University(NWNU-LKQN2019-4)。
文摘Global warming causes an unstable response in tree radial growth at high latitudes in the Northern Hemisphere.Additionally,different climatic responses of different age groups of trees have been found due to their different physiological mechanisms.In this study,the response stability and growth trend of three age groups(young<100 a,middle 100-200 a,old≥200 a)of Picea schrenkiana(Schrenk spruce)to climate change and the causes of the different responses in different age groups were analyzed in the relatively dry climate of the eastern Tianshan Mountains.The results showed that:(1)With the abrupt increase in temperature in 1989,the annual mean minimum temperature became the dominant radial growth-limiting factor of the three age groups of Schrenk spruce.(2)The radial growth of the middle and young groups was more sensitive than that of the old group based on growth-climate correlation analysis.(3)The radial growth of the different age groups had different responses to climate factors,and all age groups were unstable on time scales.(4)The trend of the linear regression simulation of the basal area increment(BAI)indicated that the Schrenk spruce had the same growth trends in different age groups with growth first increased and then decreased;however,the decreased growth rate was higher in the middle and young age groups than in the old age group after the abrupt increase in temperature.Therefore,we should pay active attention to the impact of drought on Schrenk spruce in the eastern Tianshan Mountains and should particularly strengthen the conservation and management of the middle and young age groups.
文摘[Objective] The aim was to provide direction for the development of flowers and plants industry at Beibei area of Chongqing.[Method] Effects of temperature ranges and influencing time of chilling damages in winter on local flowers and plants at Beibei area were analyzed,using extreme minimum temperature data during 1960 to 2009 and the phenological growth conditions and phenological observation data of Bougainvillea spectabilis Willd and Michelia champaca during 2005 to 2007 at Beibei area.[Result] Chilling damages affecting flowers and plants at Beibei area mostly emerged from late December to early February,the effects of which were relative serious in January with a temperature range from-2 to 5 ℃;the optimum temperatures were 12-28 ℃ for flowers and plants grown at Beibei area in Chongqing,being higher or lower than that temperature range will affect the normally overwintering flowering and growing;chilling damages affecting the flower seedlings would appear when being at extreme minimum temperatures lower than 6 ℃ for 3 d in any phenophase in winter.[Conclusion] According to the characters of chilling damages in winter,the influences of which on flowers and plants can be reduced through combining tendency prediction and adopting corresponding measures.
文摘Change related to climate in Macao was studied on the basis of daily temperature observations over the period 1901-2007. The result shows that annual mean surface air temperature in Macao as a whole rose with a warming rate of about 0.066℃ per 10 years in the recent 107 years. The most evident warming occurred in spring and winter. The interdecadal variations of the seasonal mean temperature in summer and winter appeared as a series of waves with a time scale of about 30 years and 60 years, respectively. The annual mean minimum temperature increased about twice as fast as the annual mean maximum temperature, resulting in a broad decline in the annual mean diurnal range. The interdecadal variations of annual mean maximum temperature are obviously different from those of annual mean minimum temperature. It appears that the increase in the annual mean maximum temperature in the recent 20 years may be part of slow climate fluctuations with a periodicity of about 60 years, whereas that in the annual mean minimum temperature appears to be the continuation of a long-term warming trend.
基金supported by the National Key Research and Development Program of China(2016YFC0500302)the National Nature Scientific Foundation Project of China(31200432)
文摘In forest ecosystems, gap formation changes the allocation of abiotic resources and thus affects the survival and growth of understory plants. However, how tree seedling survival and growth respond to low-temperature events and the influencing mechanisms remain unclear. To clarify how low-temperature event limits the survival and growth of tree seedlings in the montane regions of eastern Liaoning Province, northeast China, we investigated temperature and light intensity within secondary forest gaps, and the survival and growth of Juglans mandshurica seedlings after a low-temperature event in the spring of 2014. Damage to seedlings due to low temperature sig- nificantly varied in different aspects. Seedlings in gaps on southeast-facing slopes were the most seriously damaged, followed by those in gaps on northeast-facing slopes. In contrast, seedlings in west-facing gaps and in control plots without slope aspect were not damaged. The freezing injury index for seedlings was negatively correlated with minimum temperature (r = - 0.608, P 〈 0.01), but it was positively correlated with light intensity (r= 0.818, P 〈 0.01). In addition, height and root collar diameter of damaged seedlings were significantly lower than those of the undamaged seedlings (P 〈 0.01) during the early growing season (April-July), but no significant difference were observed during the late growing season (July-Oc- tober) (P 〉 0.05). The extent of seedling damage was directly related to slope aspect. Low temperature and high light intensity were found to be the dominant factors affecting extent of damage to seedlings on southeast- and northeast-facing slopes.
基金the Strategic Study Foundation of Chinese Polar Science (Grant No. 2007228) the National Nature Science Foundation of China (Grant No. 40501015) the Chinese Academy of Science (Grant No. KZCX3-SW-354 and KZCX3-SW-344).
文摘Mt.Everest (27°54' N,86°54' E),the highest peak,is often referred to as the earth's 'third' pole,at an elevation of 8844.43 m. Due to the difficult logistics in the extreme high elevation regions over the Himalayas,observational meteorological data are very few on Mt. Everest. In 2005,an automatic weather station was operated at the East Rongbuk glacier Col of Mt. Everest over the Himalayas. The observational data have been compared with the reanalysis data from the National Centers for Environmental Prediction/National Center for Atmospheric Research (NCEP/NCAR),and the reliability of NCEP/NCAR reanalysis data has been investigated in the Himalayan region,after the reanalyzed data were interpolated in the horizontal to the location of Mt. Everest and in the vertical to the height of the observed sites. The reanalysis data can capture much of the synoptic-scale variability in temperature and pressure,although the reanalysis values are systematically lower than the observation. Furthermore,most of the variability magnitude is,to some degree,underestimated. In addition,the variation extracted from the NCEP/NCAR reanalyzed pressure and temperature prominently appears one-day lead to that from the observational data,which is more important from the standpoint of improving the safety of climbers who attempt to climb Mt. Everest peak.
基金jointly supported by the Strategic Priority Research Program of the Chinese Academy of Sciences(CAS)[grant number XDA19030403]the National Natural Science Foundation of China [grant number 41575095]+2 种基金the CAS ‘Belt and Road Initiatives’ Program on International Cooperation [grant number 134111KYSB20160010]Victor Nnamdi DIKE acknowledges support from the CAS–TWAS(The World Academy of Sciences)President FellowshipHyacinth NNAMCHI is supported by the International Federation for Science(W/4849)
文摘The long-term trend of diurnal temperature range(DTR)over Nigeria was examined using daily station-based datasets for the period 1971–2013.The results show that the regionally averaged DTR has decreased significantly(-0.34°C per decade)over the Nigerian Sahel(north of 10°N),but there has been a slight increasing trend(0.01°C per decade)over the Nigerian Guinea Coast.The annual decreasing trend of DTR in the Nigerian Sahel is mainly attributable to the significant increasing trend in daily minimum temperature(Tmin,0.51°C per decade),which far outstrips the rate of increase in the daily maximum(Tmax,0.17°C per decade).In contrast,the comparable trends in Tmin(0.19°C per decade)and Tmax(0.20°C per decade)may explain the non-significant trend of the DTR averaged over the Guinea Coast region.It is observed that the DTR has decreased more in boreal summer(June–July–August)than in boreal winter(December–January–February)for the regions.Furthermore,it is found that the significant DTR declining trend over the Nigerian Sahel is closely associated with an increasing trend of annual and summer precipitation in the region,but the increasing DTR trend in the Nigerian Guinea Coast region can be attributed to the decreasing trend of cloud cover over the region.