Arctic sea-ice extent reaches its minimum each year in September. On 11 September 2023 the minimum was 4.969 million square kilometers(mill.km^(2)). This was not a record low, which occurred in 2012, when the minimum ...Arctic sea-ice extent reaches its minimum each year in September. On 11 September 2023 the minimum was 4.969 million square kilometers(mill.km^(2)). This was not a record low, which occurred in 2012, when the minimum was 4.175 mill.km^(2), 0.794 mill.km^(2) less than the minimum in 2023. However, the ice extent had decreased by 0.432 mill.km^(2) compared with 2022. Nevertheless, the summer melting in 2023 was remarkably less than expected when considering the strong heat waves in the atmosphere and ocean, with record temperatures set around the world. In general, there is a high correlation between the long-term decrease in sea-ice extent and the increasing CO_(2) in the atmosphere, where the increase of CO_(2) in recent decades explains about 80% of the decrease in sea ice in September, while the remainder is caused by natural variability.展开更多
For a graph G,a vertex is said to be pendant if its neighborhood contains exactly one vertex.In this paper,we determine the extremal graphs among all n-vertex graphs with the minimum spectral radius andβpendant verti...For a graph G,a vertex is said to be pendant if its neighborhood contains exactly one vertex.In this paper,we determine the extremal graphs among all n-vertex graphs with the minimum spectral radius andβpendant vertices,whereβe{1,2,3,4,n-3,n-2,n-1}.展开更多
Currently,the International Maritime Organization(IMO)has approved and implemented the assessment requirement for Minimum Propulsion Power(MPP)of ships in adverse sea conditions.The assessment method and relevant infl...Currently,the International Maritime Organization(IMO)has approved and implemented the assessment requirement for Minimum Propulsion Power(MPP)of ships in adverse sea conditions.The assessment method and relevant influence factors will have a vital impact on ship's design and operation.On the other hand,MPP is essentially a criterion for manoeuvring safety at actual seas.However,the practical assessment methods adopted in IMO guidelines do not directly and accurately account for ship's coursekeeping ability in severe seas.A time-domain comprehensive method with supplementary course-keeping ability criteria has been proposed in the authors'preliminary research.Based on an updated mathematical model and criteria,this paper presents more detailed elaborations,results and discussions on the time-domain method,including the comparative analyses with a power line method and two steady-state equilibrium methods based on IMO guidelines and draft.Discussions on the influences of key factors,involving criterion conditions and calculation parameters,are also presented.The results indicate that different methods exhibit varying advantages and complexity in MPP assessment,thus constituting a multi-level assessment framework for MPP.In particular,the time-domain comprehensive assessment has a higher accuracy with more realistic description of manoeuvre behaviors,capable of offering a solution for the ships that cannot meet other assessments,or for the assessment requiring additional course-keeping ability.Furthermore,an expanded range of wave direction sets a stricter but potentially necessary requirement,while using the self-propulsion factors at low speeds can eliminate the unnecessary conservation of assessment result caused by those at design speed.展开更多
Conventional adaptive filtering algorithms often exhibit performance degradation when processing multipath interference in raw echoes of spaceborne synthetic aperture radar(SAR)systems due to anomalous outliers,manife...Conventional adaptive filtering algorithms often exhibit performance degradation when processing multipath interference in raw echoes of spaceborne synthetic aperture radar(SAR)systems due to anomalous outliers,manifesting as insufficient convergence and low estimation accuracy.To address this issue,this study proposes a novel robust adaptive filtering algorithm,namely the M-estimation-based minimum error entropy with affine projection(APMMEE)algorithm.This algorithm inherits the joint multi-data-block update mechanism of the affine projection algorithm,enabling rapid adaptation to the dynamic characteristics of raw echoes and achieving fast convergence.Meanwhile,it incorporates the M-estimation-based minimum error entropy(MMEE)criterion,which weights error samples in raw echoes through M-estimation functions,effectively suppressing outlier interference during the algorithm update.Both the system identification simulations and practical multipath interference suppression experiments using raw echoes demonstrate that the proposed APMMEE algorithm exhibits superior filtering performance.展开更多
Dengue is a mosquito-borne disease that is rampant worldwide,with up to 70%of cases reported to be asymptomatic during epidemics.In this paper,a reaction-diffusion dengue model with asymptomatic carrier transmission i...Dengue is a mosquito-borne disease that is rampant worldwide,with up to 70%of cases reported to be asymptomatic during epidemics.In this paper,a reaction-diffusion dengue model with asymptomatic carrier transmission is investigated.We aim to study the existence,nonexistence and minimum wave speed of traveling wave solutions to the model.The results show that the existence and nonexistence of traveling wave solutions are fully determined by the threshold values,which are,the basic reproduction number R0 and critical wave speed c^(*)>0.Specifically,when R0>1 and the wave speed c≥c^(*),the existence of the traveling wave solution is obtained by using Schauder's fixed point theorem and Lyapunov functional.It is proven that the model has no nontrivial traveling wave solutions for R0≤1 or R0>1 and 0<c<c^(*)by employing comparison principle and limit theory.As a consequence,we conclude that the critical wave speed c^(*)is the minimum wave speed of the model.Finally,numerical simulations are carried out to illustrate the effects of several important parameters on the minimum wave speed.展开更多
This paper proposes an extension of the Modified-Plant ADRC(MP-ADRC)strategy to broaden its application to minimum phase dynamical systems.The main features of the MP-ADRC method are the inclusion of a constant gain i...This paper proposes an extension of the Modified-Plant ADRC(MP-ADRC)strategy to broaden its application to minimum phase dynamical systems.The main features of the MP-ADRC method are the inclusion of a constant gain in series with the plant output error and a linear filter in parallel with the overall error system.These structural changes do not influence the input/output dynamics of the original plant,but are intentionally introduced to modify the dynamics to be estimated by the extended state observer(ESO)and,thus,promote an increase in the robustness of the method.Some advantages can also be attributed to the proposed methodology,such as(i)the design procedures of both the controller and the ESO only require knowledge of the sign(±)of the plant input channel coefficient(or control gain);(ii)the plant control input is generated directly by a single ESO state variable.Despite the advantages and the characteristics of MP-ADRC mentioned earlier,closed-loop stability cannot be guaranteed when it is applied to dynamical systems that have finite zeros.To overcome this difficulty,this work introduces an extension in the MP-ADRC method.It basically consists of rewriting the minimum phase plant dynamics according to its relative order,and then follows with the design of the ESO by conveniently increasing the number of ESO state variables.The simulation results are also presented to illustrate the application of the proposed method.展开更多
Minimum quantity lubrication(MQL)is a technique that achieves effective lubrication and cooling of the cutting zone by using a minimal amount of cutting fluid.This results in a decrease in the cutting temperature,exte...Minimum quantity lubrication(MQL)is a technique that achieves effective lubrication and cooling of the cutting zone by using a minimal amount of cutting fluid.This results in a decrease in the cutting temperature,extending the cutting tool life and improving the surface quality of the workpiece.Optimizing the nozzle settings can enhance the cooling and lubrication performance of MQL,leading to increased processing efficiency and product quality.Nozzles with different shapes are fabricated,and different outlet diameters and wall thicknesses are set.The cutting process takes into account the impact of spindle speed and feed rate.An experimental study is conducted to investigate the atomization cone angle and particle size distribution of different nozzles.The circular nozzle is more conducive to the concentrated injection of an atomized liquid beam.The atomization cone angle is the largest when the nozzle outlet diameter is 1.2 mm.Enlarging the nozzle outlet diameter will increase the diameter of the atomized droplets.The atomization cone angle increases while the droplet diameter decreases with the increase of outlet wall thickness.Properly increasing the outlet wall thickness is beneficial to improving the atomization quality.The droplet diameter increases firstly and then decreases with the increase of spindle speed and feed rate.Increasing the MQL gas supply pressure and reducing the lubricating oil flow rate will improve the atomization quality of the nozzle.Studies on the influence of the MQL nozzle processing technology on the atomization effect can help to enhance the cooling and lubrication performance of the MQL technology,leading to improved processing efficiency and quality.展开更多
This paper presents a dynamic modeling method to test and examine the minimum mass of pressurized pore-gas for triggering landslides in stable gentle soil slopes.A stable gentle soil slope model is constructed with a ...This paper presents a dynamic modeling method to test and examine the minimum mass of pressurized pore-gas for triggering landslides in stable gentle soil slopes.A stable gentle soil slope model is constructed with a dry cement powder core,a saturated clay middle layer,and a dry sand upper layer.The test injects H_(2)O_(2)solution into the cement core to produce new pore-gas.The model test includes three identical H_(2)O_(2)injections.The small mass of generated oxygen gas(0.07%of slope soil mass and landslide body)from the first injection can build sufficient pore-gas pressure to cause soil upheaval and slide.Meanwhile,despite the first injection causing leak paths in the clay layer,the generated small mass of gas from the second and third injections can further trigger the landslide.A dynamic theoretical analysis of the slope failure is carried out and the required minimum pore-gas pressure for the landslide is calculated.The mass and pressure of generated gas in the model test are also estimated based on the calibration test for oxygen generation from H_(2)O_(2)solution in cement powder.The results indicate that the minimum mass of the generated gas for triggering the landslide is 2 ppm to 0.07%of the landslide body.Furthermore,the small mass of gas can provide sufficient pressure to cause soil upheaval and soil sliding in dynamic analysis.展开更多
Based on the survey data of nine primitive broad-leaved Korean pine forest plots ranging from 1 to 10.4 ha in Heilongjiang Province,this study used the moving window method and GIS technology to analyze the variation ...Based on the survey data of nine primitive broad-leaved Korean pine forest plots ranging from 1 to 10.4 ha in Heilongjiang Province,this study used the moving window method and GIS technology to analyze the variation characteristics of the spatial distribution pattern of forest biomass in each plot.We explored the minimum area that can reflect the structural and functional characteristics of the primitive broad-leaved Korean pine forest,and used computer simulation random sampling method to verify the accuracy of the minimum area.The results showed that:(1)Through the analysis of the spatial distribution raster map of biomass deviation in the plots at various scales of 10−100 m,there is a minimum area(0.64 ha)for the critical range of biomass density variation in the primitive broad-leaved Korean pine forest.This minimum area based on biomass density can indirectly reflect the comprehensive characteristics of productivity level per unit area,structure,function,and environmental quality of the primitive broad-leaved Korean pine forest community.(2)Using computer simulation random sampling,it was found that only by sampling in a specific plot larger than or equal to the minimum area can equivalent or similar results be achieved as random sampling within the plot,indicating that the minimum area determined by the moving window method is accurate.(3)The minimum area determined in this paper is an excellent indicator reflecting the complexity of community structure,which can be used for comparing changes in community structure and function before and after external disturbances,and has a good evaluation effect.This minimum area can also be used as a basis for scientific and reasonable setting of plot size in the investigation and monitoring work of broad-leaved Korean pine forests in this region,thereby achieving the goals of improving work efficiency and saving work costs.展开更多
As a critical component of the in situ stress state,determination of the minimum horizontal principal stress plays a significant role in both geotechnical and petroleum engineering.To this end,a gene expression progra...As a critical component of the in situ stress state,determination of the minimum horizontal principal stress plays a significant role in both geotechnical and petroleum engineering.To this end,a gene expression programming(GEP)algorithm-based model,in which the data of borehole breakout size,vertical principal stress,and rock strength characteristics are used as the inputs,is proposed to predict the minimum horizontal principal stress.Seventy-nine(79)samples with seven features are collected to construct the minimum horizontal principal stress dataset used for training models.Twenty-four(24)GEP model hyperparameter sets were configured to explore the key parameter combinations among the inputs and their potential relationships with the minimum horizontal principal stresses.Model performance was evaluated using root mean squared error(RMSE),mean absolute error(MAE),mean absolute percentage error(MAPE),and coefficient of determination(R^(2)).By comparing predictive performance and parameter composition,two models were selected from 24 GEP models that demonstrated excellent predictive performance and simpler parameter composition.Compared with prevalent models,the results indicate that the two selected GEP models have better performance on the test set(R^(2)=0.9568 and 0.9621).Additionally,the results conducted by SHapley Additive exPlanations(SHAP)sensitivity analysis and Local Interpretable Model-agnostic Explanations(LIME)demonstrate that the vertical principal stress is the most influential parameter in both GEP models.The two GEP models have simple parameter compositions as well as stable and excellent prediction performance,which is a viable method for predicting the minimum horizontal principal stresses.展开更多
Weak turbulence often occurs during heavy pollution events in eastern China(EC).However,existing mesoscale meteorology models cannot accurately simulate turbulent diffusion under weakened turbulence,particularly under...Weak turbulence often occurs during heavy pollution events in eastern China(EC).However,existing mesoscale meteorology models cannot accurately simulate turbulent diffusion under weakened turbulence,particularly under the nocturnal stable boundary layer(SBL),often leading to significant turbulent diffusivity underestimation and surface aerosol overestimation.In this study,a new parameterization of minimum turbulent diffusivity coefficient(Kz_(min))was tested and applied to PM_(2.5)simulations in EC under SBL conditions in WRF-Chem.The original model overestimated the PM_(2.5)simulation and the simulation performance can be improved by adding Kz_(min).Sensitivity experiments revealed different ranges of available Kz_(min)values over the northern(0.8 to 1.2 m^(2)/s)and southern(1.0 to 1.5 m^(2)/s)regions of EC.The geographically related Kz_(min)was parameterized by sensible heat flux(H)and latent heat flux(LE),which also exhibited regional differences related to the climate and underlying surface.Furthermore,we assign physical significance to the parameterized formula Kz_(min)and found that our proposed Kz_(min)scheme can reasonably yield dynamic Kz_(min)values over EC.The revised Kz_(min)scheme(EXP_(NEW))enhanced the turbulent diffusion(north:0.93 m^(2)/s,south:1.10 m^(2)/s on average)in the SBL,simultaneously improving the PM_(2.5)simulations on the surface(north:65.78 to 0.67μg/m^(3);south 30.48 to 12.86μg/m^(3))and upper SBL.A process analysis showed that vertical mixing was the key process for improving PM_(2.5)simulations on the surface in EXP_(NEW).This study highlighted the importance of improving turbulent diffusion in current mesoscale models under SBL and has great significance for aerosol simulation.展开更多
To address the excessive complexity of monthly scheduling and the impact of uncertain net load on the chargeable energy of storage,a reduced time-period monthly scheduling model for thermal generators and energy stora...To address the excessive complexity of monthly scheduling and the impact of uncertain net load on the chargeable energy of storage,a reduced time-period monthly scheduling model for thermal generators and energy storage,incorporating daily minimum chargeable energy constraints,was developed.Firstly,considering the variations in the frequency of unit start-ups and shutdowns under different levels of net load fluctuation,a method was proposed to reduce decision time periods for unit start-up and shut-down operations.This approach,based on the characteristics of net load fluctuations,minimizes the decision variables of units,thereby simplifying the monthly schedulingmodel.Secondly,the relationship between energy storage charging and discharging power,net load,and the total maximum/minimum output of units was analyzed.Based on this,daily minimum chargeable energy constraints were established to ensure the energy storage system meets charging requirements under extreme net load scenarios.Finally,taking into account the operational costs of thermal generators and energy storage,load loss costs,and operational constraints,the reduced time-period monthly schedulingmodel was constructed.Case studies demonstrate that the proposedmethod effectively generates economical monthly operation plans for thermal generators and energy storage,significantly reduces model solution time,and satisfies the charging requirements of energy storage under extreme net load conditions.展开更多
A novel approach is proposed for computing the minimum thickness of a metal foil that can be achieved by asymmetric rolling using rolls with identical diameter. This approach is based on simultaneously solving Tseliko...A novel approach is proposed for computing the minimum thickness of a metal foil that can be achieved by asymmetric rolling using rolls with identical diameter. This approach is based on simultaneously solving Tselikov equation for the rolling pressure and the modified Hitchcock equation for the roller flattening. To minimize the effect of the elastic deformation on the equal flow per second during the ultrathin foil rolling process, the law of conservation of mass was employed to compute the proportions of the forward slip, backward slip, and the cross shear zones in the contact arc, and then a formula was derived for computing the minimum thickness for asymmetric rolling. Experiment was conducted to find the foil minimum thickness for 304 steel by asymmetric rolling under the asymmetry ratios of 1.05, 1.15 and 1.30. The experimental results are in good agreement with the calculated ones. It was validated that the proposed formula can be used to calculate the foil minimum thickness under the asymmetric rolling condition.展开更多
An improved Gaussian mixture model (GMM)- based clustering method is proposed for the difficult case where the true distribution of data is against the assumed GMM. First, an improved model selection criterion, the ...An improved Gaussian mixture model (GMM)- based clustering method is proposed for the difficult case where the true distribution of data is against the assumed GMM. First, an improved model selection criterion, the completed likelihood minimum message length criterion, is derived. It can measure both the goodness-of-fit of the candidate GMM to the data and the goodness-of-partition of the data. Secondly, by utilizing the proposed criterion as the clustering objective function, an improved expectation- maximization (EM) algorithm is developed, which can avoid poor local optimal solutions compared to the standard EM algorithm for estimating the model parameters. The experimental results demonstrate that the proposed method can rectify the over-fitting tendency of representative GMM-based clustering approaches and can robustly provide more accurate clustering results.展开更多
To improve the classification performance of the kernel minimum squared error( KMSE), an enhanced KMSE algorithm( EKMSE) is proposed. It redefines the regular objective function by introducing a novel class label ...To improve the classification performance of the kernel minimum squared error( KMSE), an enhanced KMSE algorithm( EKMSE) is proposed. It redefines the regular objective function by introducing a novel class label definition, and the relative class label matrix can be adaptively adjusted to the kernel matrix.Compared with the common methods, the newobjective function can enlarge the distance between different classes, which therefore yields better recognition rates. In addition, an iteration parameter searching technique is adopted to improve the computational efficiency. The extensive experiments on FERET and GT face databases illustrate the feasibility and efficiency of the proposed EKMSE. It outperforms the original MSE, KMSE,some KMSE improvement methods, and even the sparse representation-based techniques in face recognition, such as collaborate representation classification( CRC).展开更多
Necessary and sufficient conditions for equalities between a 2 y′(I-P Xx)y and minimum norm quadratic unbiased estimator of variance under the general linear model, where a 2 is a known positive number, are...Necessary and sufficient conditions for equalities between a 2 y′(I-P Xx)y and minimum norm quadratic unbiased estimator of variance under the general linear model, where a 2 is a known positive number, are derived. Further, when the Gauss? Markov estimators and the ordinary least squares estimator are identical, a relative simply equivalent condition is obtained. At last, this condition is applied to an interesting example.展开更多
Blockage is a kind of phenomenon frequently occurred in a transport network, in which the human beings are the moving subjects. The minimum flow of a network defined in this paper means the maximum flow quantity throu...Blockage is a kind of phenomenon frequently occurred in a transport network, in which the human beings are the moving subjects. The minimum flow of a network defined in this paper means the maximum flow quantity through the network in the seriously blocked situation. It is an important parameter in designing and operating a transport network, especially in an emergency evacuation network. A branch and bound method is presented to solve the minimum flow problem on the basis of the blocking flow theory and the algorithm and its application are illustrated by examples.展开更多
文摘Arctic sea-ice extent reaches its minimum each year in September. On 11 September 2023 the minimum was 4.969 million square kilometers(mill.km^(2)). This was not a record low, which occurred in 2012, when the minimum was 4.175 mill.km^(2), 0.794 mill.km^(2) less than the minimum in 2023. However, the ice extent had decreased by 0.432 mill.km^(2) compared with 2022. Nevertheless, the summer melting in 2023 was remarkably less than expected when considering the strong heat waves in the atmosphere and ocean, with record temperatures set around the world. In general, there is a high correlation between the long-term decrease in sea-ice extent and the increasing CO_(2) in the atmosphere, where the increase of CO_(2) in recent decades explains about 80% of the decrease in sea ice in September, while the remainder is caused by natural variability.
文摘For a graph G,a vertex is said to be pendant if its neighborhood contains exactly one vertex.In this paper,we determine the extremal graphs among all n-vertex graphs with the minimum spectral radius andβpendant vertices,whereβe{1,2,3,4,n-3,n-2,n-1}.
文摘Currently,the International Maritime Organization(IMO)has approved and implemented the assessment requirement for Minimum Propulsion Power(MPP)of ships in adverse sea conditions.The assessment method and relevant influence factors will have a vital impact on ship's design and operation.On the other hand,MPP is essentially a criterion for manoeuvring safety at actual seas.However,the practical assessment methods adopted in IMO guidelines do not directly and accurately account for ship's coursekeeping ability in severe seas.A time-domain comprehensive method with supplementary course-keeping ability criteria has been proposed in the authors'preliminary research.Based on an updated mathematical model and criteria,this paper presents more detailed elaborations,results and discussions on the time-domain method,including the comparative analyses with a power line method and two steady-state equilibrium methods based on IMO guidelines and draft.Discussions on the influences of key factors,involving criterion conditions and calculation parameters,are also presented.The results indicate that different methods exhibit varying advantages and complexity in MPP assessment,thus constituting a multi-level assessment framework for MPP.In particular,the time-domain comprehensive assessment has a higher accuracy with more realistic description of manoeuvre behaviors,capable of offering a solution for the ships that cannot meet other assessments,or for the assessment requiring additional course-keeping ability.Furthermore,an expanded range of wave direction sets a stricter but potentially necessary requirement,while using the self-propulsion factors at low speeds can eliminate the unnecessary conservation of assessment result caused by those at design speed.
基金supported by Shandong Provincial Natural Science Foundation(No.ZR2022MF314).
文摘Conventional adaptive filtering algorithms often exhibit performance degradation when processing multipath interference in raw echoes of spaceborne synthetic aperture radar(SAR)systems due to anomalous outliers,manifesting as insufficient convergence and low estimation accuracy.To address this issue,this study proposes a novel robust adaptive filtering algorithm,namely the M-estimation-based minimum error entropy with affine projection(APMMEE)algorithm.This algorithm inherits the joint multi-data-block update mechanism of the affine projection algorithm,enabling rapid adaptation to the dynamic characteristics of raw echoes and achieving fast convergence.Meanwhile,it incorporates the M-estimation-based minimum error entropy(MMEE)criterion,which weights error samples in raw echoes through M-estimation functions,effectively suppressing outlier interference during the algorithm update.Both the system identification simulations and practical multipath interference suppression experiments using raw echoes demonstrate that the proposed APMMEE algorithm exhibits superior filtering performance.
基金supported by the National Natural Science Foundation of China(12271317,11871316)。
文摘Dengue is a mosquito-borne disease that is rampant worldwide,with up to 70%of cases reported to be asymptomatic during epidemics.In this paper,a reaction-diffusion dengue model with asymptomatic carrier transmission is investigated.We aim to study the existence,nonexistence and minimum wave speed of traveling wave solutions to the model.The results show that the existence and nonexistence of traveling wave solutions are fully determined by the threshold values,which are,the basic reproduction number R0 and critical wave speed c^(*)>0.Specifically,when R0>1 and the wave speed c≥c^(*),the existence of the traveling wave solution is obtained by using Schauder's fixed point theorem and Lyapunov functional.It is proven that the model has no nontrivial traveling wave solutions for R0≤1 or R0>1 and 0<c<c^(*)by employing comparison principle and limit theory.As a consequence,we conclude that the critical wave speed c^(*)is the minimum wave speed of the model.Finally,numerical simulations are carried out to illustrate the effects of several important parameters on the minimum wave speed.
基金supported in part by the Brazilian research agencies CNPq and CAPESby the Fundação Carlos Chagas Filho de AmparoàPesquisa do Estado do Rio de Janeiro,FAPERJ-Brasil(Project E-26/210.425/2024).
文摘This paper proposes an extension of the Modified-Plant ADRC(MP-ADRC)strategy to broaden its application to minimum phase dynamical systems.The main features of the MP-ADRC method are the inclusion of a constant gain in series with the plant output error and a linear filter in parallel with the overall error system.These structural changes do not influence the input/output dynamics of the original plant,but are intentionally introduced to modify the dynamics to be estimated by the extended state observer(ESO)and,thus,promote an increase in the robustness of the method.Some advantages can also be attributed to the proposed methodology,such as(i)the design procedures of both the controller and the ESO only require knowledge of the sign(±)of the plant input channel coefficient(or control gain);(ii)the plant control input is generated directly by a single ESO state variable.Despite the advantages and the characteristics of MP-ADRC mentioned earlier,closed-loop stability cannot be guaranteed when it is applied to dynamical systems that have finite zeros.To overcome this difficulty,this work introduces an extension in the MP-ADRC method.It basically consists of rewriting the minimum phase plant dynamics according to its relative order,and then follows with the design of the ESO by conveniently increasing the number of ESO state variables.The simulation results are also presented to illustrate the application of the proposed method.
文摘Minimum quantity lubrication(MQL)is a technique that achieves effective lubrication and cooling of the cutting zone by using a minimal amount of cutting fluid.This results in a decrease in the cutting temperature,extending the cutting tool life and improving the surface quality of the workpiece.Optimizing the nozzle settings can enhance the cooling and lubrication performance of MQL,leading to increased processing efficiency and product quality.Nozzles with different shapes are fabricated,and different outlet diameters and wall thicknesses are set.The cutting process takes into account the impact of spindle speed and feed rate.An experimental study is conducted to investigate the atomization cone angle and particle size distribution of different nozzles.The circular nozzle is more conducive to the concentrated injection of an atomized liquid beam.The atomization cone angle is the largest when the nozzle outlet diameter is 1.2 mm.Enlarging the nozzle outlet diameter will increase the diameter of the atomized droplets.The atomization cone angle increases while the droplet diameter decreases with the increase of outlet wall thickness.Properly increasing the outlet wall thickness is beneficial to improving the atomization quality.The droplet diameter increases firstly and then decreases with the increase of spindle speed and feed rate.Increasing the MQL gas supply pressure and reducing the lubricating oil flow rate will improve the atomization quality of the nozzle.Studies on the influence of the MQL nozzle processing technology on the atomization effect can help to enhance the cooling and lubrication performance of the MQL technology,leading to improved processing efficiency and quality.
基金supported by grants from the Research Grant Council of the Hong Kong Special Administrative Region,China(Project No.HKU 17207518).
文摘This paper presents a dynamic modeling method to test and examine the minimum mass of pressurized pore-gas for triggering landslides in stable gentle soil slopes.A stable gentle soil slope model is constructed with a dry cement powder core,a saturated clay middle layer,and a dry sand upper layer.The test injects H_(2)O_(2)solution into the cement core to produce new pore-gas.The model test includes three identical H_(2)O_(2)injections.The small mass of generated oxygen gas(0.07%of slope soil mass and landslide body)from the first injection can build sufficient pore-gas pressure to cause soil upheaval and slide.Meanwhile,despite the first injection causing leak paths in the clay layer,the generated small mass of gas from the second and third injections can further trigger the landslide.A dynamic theoretical analysis of the slope failure is carried out and the required minimum pore-gas pressure for the landslide is calculated.The mass and pressure of generated gas in the model test are also estimated based on the calibration test for oxygen generation from H_(2)O_(2)solution in cement powder.The results indicate that the minimum mass of the generated gas for triggering the landslide is 2 ppm to 0.07%of the landslide body.Furthermore,the small mass of gas can provide sufficient pressure to cause soil upheaval and soil sliding in dynamic analysis.
基金supported by Science and Technology Foundation Project of Ministry of Science and Technology of China(2012FY112000).
文摘Based on the survey data of nine primitive broad-leaved Korean pine forest plots ranging from 1 to 10.4 ha in Heilongjiang Province,this study used the moving window method and GIS technology to analyze the variation characteristics of the spatial distribution pattern of forest biomass in each plot.We explored the minimum area that can reflect the structural and functional characteristics of the primitive broad-leaved Korean pine forest,and used computer simulation random sampling method to verify the accuracy of the minimum area.The results showed that:(1)Through the analysis of the spatial distribution raster map of biomass deviation in the plots at various scales of 10−100 m,there is a minimum area(0.64 ha)for the critical range of biomass density variation in the primitive broad-leaved Korean pine forest.This minimum area based on biomass density can indirectly reflect the comprehensive characteristics of productivity level per unit area,structure,function,and environmental quality of the primitive broad-leaved Korean pine forest community.(2)Using computer simulation random sampling,it was found that only by sampling in a specific plot larger than or equal to the minimum area can equivalent or similar results be achieved as random sampling within the plot,indicating that the minimum area determined by the moving window method is accurate.(3)The minimum area determined in this paper is an excellent indicator reflecting the complexity of community structure,which can be used for comparing changes in community structure and function before and after external disturbances,and has a good evaluation effect.This minimum area can also be used as a basis for scientific and reasonable setting of plot size in the investigation and monitoring work of broad-leaved Korean pine forests in this region,thereby achieving the goals of improving work efficiency and saving work costs.
基金partially supported by the National Natural Science Foundation of China(Grant Nos.42177164 and 52474121)the Distinguished Youth Science Foundation of Hunan Province of China(Grant No.2022JJ10073).
文摘As a critical component of the in situ stress state,determination of the minimum horizontal principal stress plays a significant role in both geotechnical and petroleum engineering.To this end,a gene expression programming(GEP)algorithm-based model,in which the data of borehole breakout size,vertical principal stress,and rock strength characteristics are used as the inputs,is proposed to predict the minimum horizontal principal stress.Seventy-nine(79)samples with seven features are collected to construct the minimum horizontal principal stress dataset used for training models.Twenty-four(24)GEP model hyperparameter sets were configured to explore the key parameter combinations among the inputs and their potential relationships with the minimum horizontal principal stresses.Model performance was evaluated using root mean squared error(RMSE),mean absolute error(MAE),mean absolute percentage error(MAPE),and coefficient of determination(R^(2)).By comparing predictive performance and parameter composition,two models were selected from 24 GEP models that demonstrated excellent predictive performance and simpler parameter composition.Compared with prevalent models,the results indicate that the two selected GEP models have better performance on the test set(R^(2)=0.9568 and 0.9621).Additionally,the results conducted by SHapley Additive exPlanations(SHAP)sensitivity analysis and Local Interpretable Model-agnostic Explanations(LIME)demonstrate that the vertical principal stress is the most influential parameter in both GEP models.The two GEP models have simple parameter compositions as well as stable and excellent prediction performance,which is a viable method for predicting the minimum horizontal principal stresses.
基金supported by the National Natural Science Foundation of China(Nos.92044302 and 42275115)the Natural Science Foundation of Jiangsu Province(No.BK20241711)the Postgraduate Research and Practice Innovation of Jiangsu Province Program(No.KYCX20_0952)。
文摘Weak turbulence often occurs during heavy pollution events in eastern China(EC).However,existing mesoscale meteorology models cannot accurately simulate turbulent diffusion under weakened turbulence,particularly under the nocturnal stable boundary layer(SBL),often leading to significant turbulent diffusivity underestimation and surface aerosol overestimation.In this study,a new parameterization of minimum turbulent diffusivity coefficient(Kz_(min))was tested and applied to PM_(2.5)simulations in EC under SBL conditions in WRF-Chem.The original model overestimated the PM_(2.5)simulation and the simulation performance can be improved by adding Kz_(min).Sensitivity experiments revealed different ranges of available Kz_(min)values over the northern(0.8 to 1.2 m^(2)/s)and southern(1.0 to 1.5 m^(2)/s)regions of EC.The geographically related Kz_(min)was parameterized by sensible heat flux(H)and latent heat flux(LE),which also exhibited regional differences related to the climate and underlying surface.Furthermore,we assign physical significance to the parameterized formula Kz_(min)and found that our proposed Kz_(min)scheme can reasonably yield dynamic Kz_(min)values over EC.The revised Kz_(min)scheme(EXP_(NEW))enhanced the turbulent diffusion(north:0.93 m^(2)/s,south:1.10 m^(2)/s on average)in the SBL,simultaneously improving the PM_(2.5)simulations on the surface(north:65.78 to 0.67μg/m^(3);south 30.48 to 12.86μg/m^(3))and upper SBL.A process analysis showed that vertical mixing was the key process for improving PM_(2.5)simulations on the surface in EXP_(NEW).This study highlighted the importance of improving turbulent diffusion in current mesoscale models under SBL and has great significance for aerosol simulation.
基金This study was supported by State Grid Corporation headquarters technology project(4000-202399368A-2-2-ZB).
文摘To address the excessive complexity of monthly scheduling and the impact of uncertain net load on the chargeable energy of storage,a reduced time-period monthly scheduling model for thermal generators and energy storage,incorporating daily minimum chargeable energy constraints,was developed.Firstly,considering the variations in the frequency of unit start-ups and shutdowns under different levels of net load fluctuation,a method was proposed to reduce decision time periods for unit start-up and shut-down operations.This approach,based on the characteristics of net load fluctuations,minimizes the decision variables of units,thereby simplifying the monthly schedulingmodel.Secondly,the relationship between energy storage charging and discharging power,net load,and the total maximum/minimum output of units was analyzed.Based on this,daily minimum chargeable energy constraints were established to ensure the energy storage system meets charging requirements under extreme net load scenarios.Finally,taking into account the operational costs of thermal generators and energy storage,load loss costs,and operational constraints,the reduced time-period monthly schedulingmodel was constructed.Case studies demonstrate that the proposedmethod effectively generates economical monthly operation plans for thermal generators and energy storage,significantly reduces model solution time,and satisfies the charging requirements of energy storage under extreme net load conditions.
基金Projects(51374069U1460107)supported by the National Natural Science Foundation of China
文摘A novel approach is proposed for computing the minimum thickness of a metal foil that can be achieved by asymmetric rolling using rolls with identical diameter. This approach is based on simultaneously solving Tselikov equation for the rolling pressure and the modified Hitchcock equation for the roller flattening. To minimize the effect of the elastic deformation on the equal flow per second during the ultrathin foil rolling process, the law of conservation of mass was employed to compute the proportions of the forward slip, backward slip, and the cross shear zones in the contact arc, and then a formula was derived for computing the minimum thickness for asymmetric rolling. Experiment was conducted to find the foil minimum thickness for 304 steel by asymmetric rolling under the asymmetry ratios of 1.05, 1.15 and 1.30. The experimental results are in good agreement with the calculated ones. It was validated that the proposed formula can be used to calculate the foil minimum thickness under the asymmetric rolling condition.
基金The National Natural Science Foundation of China(No.61105048,60972165)the Doctoral Fund of Ministry of Education of China(No.20110092120034)+2 种基金the Natural Science Foundation of Jiangsu Province(No.BK2010240)the Technology Foundation for Selected Overseas Chinese Scholar,Ministry of Human Resources and Social Security of China(No.6722000008)the Open Fund of Jiangsu Province Key Laboratory for Remote Measuring and Control(No.YCCK201005)
文摘An improved Gaussian mixture model (GMM)- based clustering method is proposed for the difficult case where the true distribution of data is against the assumed GMM. First, an improved model selection criterion, the completed likelihood minimum message length criterion, is derived. It can measure both the goodness-of-fit of the candidate GMM to the data and the goodness-of-partition of the data. Secondly, by utilizing the proposed criterion as the clustering objective function, an improved expectation- maximization (EM) algorithm is developed, which can avoid poor local optimal solutions compared to the standard EM algorithm for estimating the model parameters. The experimental results demonstrate that the proposed method can rectify the over-fitting tendency of representative GMM-based clustering approaches and can robustly provide more accurate clustering results.
基金The Priority Academic Program Development of Jiangsu Higher Education Institutions(PAPD)the National Natural Science Foundation of China(No.61572258,61103141,51405241)+1 种基金the Natural Science Foundation of Jiangsu Province(No.BK20151530)Overseas Training Programs for Outstanding Young Scholars of Universities in Jiangsu Province
文摘To improve the classification performance of the kernel minimum squared error( KMSE), an enhanced KMSE algorithm( EKMSE) is proposed. It redefines the regular objective function by introducing a novel class label definition, and the relative class label matrix can be adaptively adjusted to the kernel matrix.Compared with the common methods, the newobjective function can enlarge the distance between different classes, which therefore yields better recognition rates. In addition, an iteration parameter searching technique is adopted to improve the computational efficiency. The extensive experiments on FERET and GT face databases illustrate the feasibility and efficiency of the proposed EKMSE. It outperforms the original MSE, KMSE,some KMSE improvement methods, and even the sparse representation-based techniques in face recognition, such as collaborate representation classification( CRC).
文摘Necessary and sufficient conditions for equalities between a 2 y′(I-P Xx)y and minimum norm quadratic unbiased estimator of variance under the general linear model, where a 2 is a known positive number, are derived. Further, when the Gauss? Markov estimators and the ordinary least squares estimator are identical, a relative simply equivalent condition is obtained. At last, this condition is applied to an interesting example.
文摘Blockage is a kind of phenomenon frequently occurred in a transport network, in which the human beings are the moving subjects. The minimum flow of a network defined in this paper means the maximum flow quantity through the network in the seriously blocked situation. It is an important parameter in designing and operating a transport network, especially in an emergency evacuation network. A branch and bound method is presented to solve the minimum flow problem on the basis of the blocking flow theory and the algorithm and its application are illustrated by examples.