期刊文献+
共找到1,361篇文章
< 1 2 69 >
每页显示 20 50 100
Low Complexity Minimum Mean Square Error Channel Estimation for Adaptive Coding and Modulation Systems 被引量:2
1
作者 GUO Shuxia SONG Yang +1 位作者 GAO Ying HAN Qianjin 《China Communications》 SCIE CSCD 2014年第1期126-137,共12页
Performance of the Adaptive Coding and Modulation(ACM) strongly depends on the retrieved Channel State Information(CSI),which can be obtained using the channel estimation techniques relying on pilot symbol transmissio... Performance of the Adaptive Coding and Modulation(ACM) strongly depends on the retrieved Channel State Information(CSI),which can be obtained using the channel estimation techniques relying on pilot symbol transmission.Earlier analysis of methods of pilot-aided channel estimation for ACM systems were relatively little.In this paper,we investigate the performance of CSI prediction using the Minimum Mean Square Error(MMSE)channel estimator for an ACM system.To solve the two problems of MMSE:high computational operations and oversimplified assumption,we then propose the Low-Complexity schemes(LC-MMSE and Recursion LC-MMSE(R-LC-MMSE)).Computational complexity and Mean Square Error(MSE) are presented to evaluate the efficiency of the proposed algorithm.Both analysis and numerical results show that LC-MMSE performs close to the wellknown MMSE estimator with much lower complexity and R-LC-MMSE improves the application of MMSE estimation to specific circumstances. 展开更多
关键词 adaptive coding and modulation channel estimation minimum mean square error low-complexity minimum mean square error
在线阅读 下载PDF
Recursive weighted least squares estimation algorithm based on minimum model error principle 被引量:2
2
作者 雷晓云 张志安 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2021年第2期545-558,共14页
Kalman filter is commonly used in data filtering and parameters estimation of nonlinear system,such as projectile's trajectory estimation and control.While there is a drawback that the prior error covariance matri... Kalman filter is commonly used in data filtering and parameters estimation of nonlinear system,such as projectile's trajectory estimation and control.While there is a drawback that the prior error covariance matrix and filter parameters are difficult to be determined,which may result in filtering divergence.As to the problem that the accuracy of state estimation for nonlinear ballistic model strongly depends on its mathematical model,we improve the weighted least squares method(WLSM)with minimum model error principle.Invariant embedding method is adopted to solve the cost function including the model error.With the knowledge of measurement data and measurement error covariance matrix,we use gradient descent algorithm to determine the weighting matrix of model error.The uncertainty and linearization error of model are recursively estimated by the proposed method,thus achieving an online filtering estimation of the observations.Simulation results indicate that the proposed recursive estimation algorithm is insensitive to initial conditions and of good robustness. 展开更多
关键词 minimum model error Weighted least squares method State estimation Invariant embedding method Nonlinear recursive estimate
在线阅读 下载PDF
Efficient Mean Estimation in Log-normal Linear Models with First-order Correlated Errors
3
作者 Zhang Song Wang De-hui 《Communications in Mathematical Research》 CSCD 2013年第3期271-279,共9页
In this paper, we propose a log-normal linear model whose errors are first-order correlated, and suggest a two-stage method for the efficient estimation of the conditional mean of the response variable at the original... In this paper, we propose a log-normal linear model whose errors are first-order correlated, and suggest a two-stage method for the efficient estimation of the conditional mean of the response variable at the original scale. We obtain two estimators which minimize the asymptotic mean squared error (MM) and the asymptotic bias (MB), respectively. Both the estimators are very easy to implement, and simulation studies show that they are perform better. 展开更多
关键词 log-normal first-order correlated maximum likelihood two-stage estimation mean squared error
在线阅读 下载PDF
Mean Square Error Comparisons of Estimatorsin Two SUR Models
4
作者 LIU Jin-shan GUI Qing-ming 《Chinese Quarterly Journal of Mathematics》 CSCD 2000年第3期63-71,共9页
For a system of two seerningly umrelated regressions.some general results of mean square er-ror matrix comparisons are presented.A class of linear estimators and a class of two-stage estimatorsbased on a generalized u... For a system of two seerningly umrelated regressions.some general results of mean square er-ror matrix comparisons are presented.A class of linear estimators and a class of two-stage estimatorsbased on a generalized unrestricted estimate of the dispersion matrix are proposed.Some exact finitesample properties of the two-stage estimators are obtained. 展开更多
关键词 seemingly unrelated regressions two-stage estimator mean square error matrix
在线阅读 下载PDF
Adaptive Linear Filtering Design with Minimum Symbol Error Probability Criterion 被引量:2
5
作者 Sheng Chen 《International Journal of Automation and computing》 EI 2006年第3期291-303,共13页
Adaptive digital filtering has traditionally been developed based on the minimum mean square error (MMSE) criterion and has found ever-increasing applications in communications. This paper presents an alternative ad... Adaptive digital filtering has traditionally been developed based on the minimum mean square error (MMSE) criterion and has found ever-increasing applications in communications. This paper presents an alternative adaptive filtering design based on the minimum symbol error rate (MSER) criterion for communication applications. It is shown that the MSER filtering is smarter, as it exploits the non-Gaussian distribution of filter output effectively. Consequently, it provides significant performance gain in terms of smaller symbol error over the MMSE approach. Adopting Parzen window or kernel density estimation for a probability density function, a block-data gradient adaptive MSER algorithm is derived. A stochastic gradient adaptive MSER algorithm, referred to as the least symbol error rate, is further developed for sample-by-sample adaptive implementation of the MSER filtering. Two applications, involving single-user channel equalization and beamforming assisted receiver, are included to demonstrate the effectiveness and generality of the proposed adaptive MSER filtering approach. 展开更多
关键词 Adaptive filtering mean square error probability density function non-Gaussian distribution Parzen window estimate symbol error rate stochastic gradient algorithm.
在线阅读 下载PDF
Convolutional Neural Network Auto Encoder Channel Estimation Algorithm in MIMO-OFDM System 被引量:2
6
作者 I.Kalphana T.Kesavamurthy 《Computer Systems Science & Engineering》 SCIE EI 2022年第4期171-185,共15页
Higher transmission rate is one of the technological features of promi-nently used wireless communication namely Multiple Input Multiple Output-Orthogonal Frequency Division Multiplexing(MIMO–OFDM).One among an effec... Higher transmission rate is one of the technological features of promi-nently used wireless communication namely Multiple Input Multiple Output-Orthogonal Frequency Division Multiplexing(MIMO–OFDM).One among an effective solution for channel estimation in wireless communication system,spe-cifically in different environments is Deep Learning(DL)method.This research greatly utilizes channel estimator on the basis of Convolutional Neural Network Auto Encoder(CNNAE)classifier for MIMO-OFDM systems.A CNNAE classi-fier is one among Deep Learning(DL)algorithm,in which video signal is fed as input by allotting significant learnable weights and biases in various aspects/objects for video signal and capable of differentiating from one another.Improved performances are achieved by using CNNAE based channel estimation,in which extension is done for channel selection as well as achieve enhanced performances numerically,when compared with conventional estimators in quite a lot of scenar-ios.Considering reduction in number of parameters involved and re-usability of weights,CNNAE based channel estimation is quite suitable and properlyfits to the video signal.CNNAE classifier weights updation are done with minimized Sig-nal to Noise Ratio(SNR),Bit Error Rate(BER)and Mean Square Error(MSE). 展开更多
关键词 Deep learning channel estimation multiple input multiple output least square linear minimum mean square error and orthogonal frequency division multiplexing
在线阅读 下载PDF
LMMSE-based SAGE channel estimation and data detection joint algorithm for MIMO-OFDM system 被引量:1
7
作者 申京 Wu Muqing 《High Technology Letters》 EI CAS 2012年第2期195-201,共7页
A new channel estimation and data detection joint algorithm is proposed for multi-input multi-output (MIMO) - orthogonal frequency division multiplexing (OFDM) system using linear minimum mean square error (LMMSE... A new channel estimation and data detection joint algorithm is proposed for multi-input multi-output (MIMO) - orthogonal frequency division multiplexing (OFDM) system using linear minimum mean square error (LMMSE)- based space-alternating generalized expectation-maximization (SAGE) algorithm. In the proposed algorithm, every sub-frame of the MIMO-OFDM system is divided into some OFDM sub-blocks and the LMMSE-based SAGE algorithm in each sub-block is used. At the head of each sub-flame, we insert training symbols which are used in the initial estimation at the beginning. Channel estimation of the previous sub-block is applied to the initial estimation in the current sub-block by the maximum-likelihood (ML) detection to update channel estimatjon and data detection by iteration until converge. Then all the sub-blocks can be finished in turn. Simulation results show that the proposed algorithm can improve the bit error rate (BER) performance. 展开更多
关键词 multi-input multi-output (MIMO) orthogonal frequency division multiplexing (OFDM) linear minimum mean square error (LMMSE) space-alternating generalized expectation-maximization (SAGE) ITERATION channel estimation data detection joint algorithm.
在线阅读 下载PDF
A time domain multiple-CFOs and CIRs estimation algorithm over wireless multimedia sensor networks
8
作者 姜建 《High Technology Letters》 EI CAS 2009年第3期294-300,共7页
Channel parameters estimation in an orthogonal for the receiver station is a multi-dimensional (MD) frequency division multiple access (OFDMA) system optimization problem, because every user node has a separate lo... Channel parameters estimation in an orthogonal for the receiver station is a multi-dimensional (MD) frequency division multiple access (OFDMA) system optimization problem, because every user node has a separate local oscillator and every transmitter to receiver link has individual carrier frequency offset (CFO) and channel impulse response (CIR) parameters. In order to reduce the computational complexity for MD optimization, a time domain CFOs and CIRs estimation algorithm over the OFDMA based wireless multimedia sensor networks (WMSN) is proposed in this paper. In this algorithm, the receiver station can decouple the signal from every node by correlation based on specially designed training sequences, so that the MD optimization problem is simplified to an 1-D optimal problem. It is proved that the multiple CFOs can be identified from the correlation result using the phase shift of the consecutive training se- quences. Based on the CFOs estimation result, the CIRs can then he estimated according to the minimum mean square error (MMSE) criterion. The theoretic analysis and simulation results show that the proposed algorithm can effectively decouple the signal from different user nodes and the bit error rate (BER) per- formance curves are close to the ideal estimation when the user number is not large. 展开更多
关键词 wireless multimedia sensor networks (WMSN) orthogonal frequency division multiple access (OFDMA) multiple carrier frequency offsets (CFOs) multiple channel impulse responses (CIRs) minimum mean square error (MMSE)
在线阅读 下载PDF
A Study of EM Algorithm as an Imputation Method: A Model-Based Simulation Study with Application to a Synthetic Compositional Data
9
作者 Yisa Adeniyi Abolade Yichuan Zhao 《Open Journal of Modelling and Simulation》 2024年第2期33-42,共10页
Compositional data, such as relative information, is a crucial aspect of machine learning and other related fields. It is typically recorded as closed data or sums to a constant, like 100%. The statistical linear mode... Compositional data, such as relative information, is a crucial aspect of machine learning and other related fields. It is typically recorded as closed data or sums to a constant, like 100%. The statistical linear model is the most used technique for identifying hidden relationships between underlying random variables of interest. However, data quality is a significant challenge in machine learning, especially when missing data is present. The linear regression model is a commonly used statistical modeling technique used in various applications to find relationships between variables of interest. When estimating linear regression parameters which are useful for things like future prediction and partial effects analysis of independent variables, maximum likelihood estimation (MLE) is the method of choice. However, many datasets contain missing observations, which can lead to costly and time-consuming data recovery. To address this issue, the expectation-maximization (EM) algorithm has been suggested as a solution for situations including missing data. The EM algorithm repeatedly finds the best estimates of parameters in statistical models that depend on variables or data that have not been observed. This is called maximum likelihood or maximum a posteriori (MAP). Using the present estimate as input, the expectation (E) step constructs a log-likelihood function. Finding the parameters that maximize the anticipated log-likelihood, as determined in the E step, is the job of the maximization (M) phase. This study looked at how well the EM algorithm worked on a made-up compositional dataset with missing observations. It used both the robust least square version and ordinary least square regression techniques. The efficacy of the EM algorithm was compared with two alternative imputation techniques, k-Nearest Neighbor (k-NN) and mean imputation (), in terms of Aitchison distances and covariance. 展开更多
关键词 Compositional Data Linear Regression Model Least square Method Robust Least square Method Synthetic Data Aitchison Distance Maximum Likelihood estimation Expectation-Maximization algorithm k-Nearest Neighbor and mean imputation
在线阅读 下载PDF
基于GWO-LMS-RSSD的旋转机械耦合故障分离及特征强化方法
10
作者 许文 施卫华 +3 位作者 李红钢 华如南 刘厚林 董亮 《机电工程》 北大核心 2025年第4期677-685,共9页
针对旋转机械耦合故障中较弱故障易被较强故障淹没及噪声干扰严重的问题,提出了基于灰狼优化算法(GWO)的自适应滤波最小均方(LMS)算法,结合共振稀疏分解(RSSD)的耦合故障特征分离及强化方法。首先,采用自适应滤波LMS算法对耦合故障信号... 针对旋转机械耦合故障中较弱故障易被较强故障淹没及噪声干扰严重的问题,提出了基于灰狼优化算法(GWO)的自适应滤波最小均方(LMS)算法,结合共振稀疏分解(RSSD)的耦合故障特征分离及强化方法。首先,采用自适应滤波LMS算法对耦合故障信号进行了滤波处理,使故障特征得到了初步强化;然后,根据耦合故障的不同共振属性,利用RSSD算法将故障耦合分解为高共振分量和低共振分量,完成了耦合故障分离;特别地,针对LMS算法中参数依赖人工经验、自适应差等问题,研究了基于灰狼优化算法(GWO)的参数自适应优化方法,设计了以信噪比和均方误差构成的优化目标;最后,对稀疏分解得到的信号进行了包络解调,完成了耦合故障分离及特征强化,同时,利用模拟信号和实验信号对该方法进行了验证分析。研究结果表明:GWO-LMS-RSSD算法能用于有效降低噪声干扰,分离旋转机械耦合故障及强化故障特征。该研究成果可为强噪声干扰下耦合故障的特征分离及强化提供一种新的思路。 展开更多
关键词 耦合故障诊断 旋转机械 共振稀疏分解 自适应滤波最小均方算法 灰狼优化算法 信噪比 均方误差
在线阅读 下载PDF
仿射频分复用系统中低复杂度消息传递检测算法研究
11
作者 宁晓燕 武泽宇 +1 位作者 尹巧灵 孙志国 《哈尔滨工程大学学报》 北大核心 2025年第3期601-608,共8页
为解决未来高速移动通信场景中传统正交频分复用技术受载波频偏影响,在时频双选择性衰落信道下性能恶化的问题,本文研究了仿射频分复用技术。在双选衰落信道下,基于仿射频分复用等效信道矩阵的稀疏性,首次提出一种消息传递检测的仿射频... 为解决未来高速移动通信场景中传统正交频分复用技术受载波频偏影响,在时频双选择性衰落信道下性能恶化的问题,本文研究了仿射频分复用技术。在双选衰落信道下,基于仿射频分复用等效信道矩阵的稀疏性,首次提出一种消息传递检测的仿射频分复用接收算法,利用迭代运算的思想对信号进行处理。为了进一步降低消息传递检测算法的复杂度,提出一种并行判决消息传递检测算法,通过改进判决迭代停止条件,减少最大迭代次数。仿真结果表明:在双选衰落信道下,本文提出的消息传递检测算法具有优于迫零检测和最小均方误差检测的误码率性能。改进后的并行判决消息传递检测算法在降低复杂度的同时,仍能保证优于最小均方误差检测的误码率性能。 展开更多
关键词 仿射频分复用 时频双选择性衰落信道 稀疏信道矩阵 迫零检测 最小均方误差检测 消息传递检测 平均迭代次数 误码率
在线阅读 下载PDF
极端次序统计量在均匀分布统计推断中的应用
12
作者 姜培华 刘文震 张小敏 《高师理科学刊》 2025年第6期100-107,共8页
参数估计是概率统计中的一个重要内容,也是研究生入学考试高等数学科目中的一个重要考点。受2024年研究生入学考试高等数学试卷中一道考题的启发,对此题进行拓展和深化,系统研究了均匀分布总体下基于极端次序统计量如何来构造参数的点估... 参数估计是概率统计中的一个重要内容,也是研究生入学考试高等数学科目中的一个重要考点。受2024年研究生入学考试高等数学试卷中一道考题的启发,对此题进行拓展和深化,系统研究了均匀分布总体下基于极端次序统计量如何来构造参数的点估计,并讨论了不同估计量的有效性以及在均方误差意义下的最优估计问题。所用的处理方法和技巧,对于培养学生的发散思维,提高学生的创新能力是非常有益的。 展开更多
关键词 最大次序统计量 最小次序统计量 点估计 有效性 均方误差.
在线阅读 下载PDF
一种低复杂度的OTFS系统信号检测算法
13
作者 陈发堂 陈甲杰 +1 位作者 夏麒煜 黄梁 《电讯技术》 北大核心 2025年第2期205-213,共9页
针对正交时频空(Orthogonal Time Frequency Space, OTFS)调制系统中均衡器性能不佳及线性滤波器复杂度较高等问题,提出了一种LU(Lower-Upper)分解与迭代最小均方误差(Iterative Minimum Mean Square Error, IMMSE)均衡器结合的OTFS系... 针对正交时频空(Orthogonal Time Frequency Space, OTFS)调制系统中均衡器性能不佳及线性滤波器复杂度较高等问题,提出了一种LU(Lower-Upper)分解与迭代最小均方误差(Iterative Minimum Mean Square Error, IMMSE)均衡器结合的OTFS系统信号检测算法(LU-IMMSE)。该算法依据时延多普勒域稀疏信道矩阵的特征,采用一种低复杂度的LU分解方法,以避免MMSE均衡器求解矩阵逆的过程,在保证均衡器性能的前提下降低了均衡器复杂度。在OTFS系统中引入一种IMMSE均衡器,通过不断迭代更新发送符号均值和方差这些先验信息来逼近MMSE均衡器最优估计值。LU-IMMSE算法通过调节迭代次数可以有效降低误比特率。在比特信噪比为8 dB时,5次迭代后的LU-IMMSE均衡器误比特率相比传统的MMSE均衡器降低了约11 dB。随着迭代次数的增大,较传统IMMSE算法降低了计算复杂度。在最大时延系数为4、符号数为16的情况下,与直接求逆相比,所提出的低复杂度LU分解方法降低了约91.72%的矩阵求逆计算复杂度。 展开更多
关键词 正交时频空(OTFS) 信号检测 最小均方误差均衡 三角分解
在线阅读 下载PDF
近场ISAC多用户安全通信波束设计
14
作者 邓志祥 张志威 《电子与信息学报》 北大核心 2025年第11期4166-4175,共10页
该文研究了近场通感一体化系统(ISAC)中多用户安全波束设计问题,其中多个单天线通信用户和一个雷达感知目标都位于发射机的近场区域内,雷达目标作为潜在窃听者,可能从联合波束中获取通信信息。为保证系统通信安全性和感知精度,该文以多... 该文研究了近场通感一体化系统(ISAC)中多用户安全波束设计问题,其中多个单天线通信用户和一个雷达感知目标都位于发射机的近场区域内,雷达目标作为潜在窃听者,可能从联合波束中获取通信信息。为保证系统通信安全性和感知精度,该文以多用户可达安全和速率最大化为目标、以基站发射功率和感知性能为约束条件,构建了通信信号与雷达感知信号波束形成向量的联合优化模型。其中,雷达感知信号间兼具双重功能:一方面作为人工噪声,干扰窃听者对合法通信用户信息的解码;另一方面用于实现对目标的感知,其感知性能通过克拉美罗界(CRB)进行量化。为解决该多变量的非凸优化问题,该文提出了基于半正定松弛(SDR)和加权最小均方误差(WMMSE)的优化算法求解该优化问题。仿真结果表明近场模型所提供的距离自由度,以及引入人工噪声信号,能够为多用户ISAC通信安全带来性能增益。 展开更多
关键词 近场通信 通感一体化 物理层安全 加权最小均方误差
在线阅读 下载PDF
用于块稀疏信道估计的改进μ率PNLMS算法
15
作者 靳展 李前进 +1 位作者 马霖峰 杨忠豪 《微处理机》 2025年第4期1-7,共7页
针对现有通信系统中存在信道响应呈现块稀疏特性的问题,对成比例自适应滤波算法展开研究。由于块稀疏信道大幅值系数成簇分布,因此将自适应滤波器抽头权重平均划分成若干分组,将大幅值系数分配到一个或几个分组中,再对每个分组统一分配... 针对现有通信系统中存在信道响应呈现块稀疏特性的问题,对成比例自适应滤波算法展开研究。由于块稀疏信道大幅值系数成簇分布,因此将自适应滤波器抽头权重平均划分成若干分组,将大幅值系数分配到一个或几个分组中,再对每个分组统一分配步长,取代传统算法中为每个系数单独分配步长的方案。本研究在μ律比例归一化最小均方(MPNLMS)算法的代价函数中,加入两种混合范数约束l2,1和l2,0,提出l2,1-MPNLMS算法和l2,0-MPNLMS算法,详细推导了所提出的算法,并且在网络回声信道估计背景下对算法性能进行分析。仿真结果表明,与传统算法相比,所提算法无论在处理单块稀疏还是多块稀疏的情况下,都具有更快的收敛速度和更低的稳定性。 展开更多
关键词 自适应滤波 块稀疏 μ律比例归一化最小均方(MPNLMS)算法 混合范数约束
在线阅读 下载PDF
LTE系统中的Mean-OTDOA定位算法 被引量:7
16
作者 陈亚军 彭建华 +1 位作者 黄开枝 罗文宇 《计算机应用研究》 CSCD 北大核心 2014年第6期1783-1786,共4页
由于LTE蜂窝网中远近效应的影响,终端测量到的邻近基站信号的定位参数会存在较大的偏差,导致OTDOA定位方法(到达时间差定位法)估计的终端位置存在较大误差。基于此,提出一种改进的Mean-OTDOA定位算法。首先估计终端与各基站的时延,然后... 由于LTE蜂窝网中远近效应的影响,终端测量到的邻近基站信号的定位参数会存在较大的偏差,导致OTDOA定位方法(到达时间差定位法)估计的终端位置存在较大误差。基于此,提出一种改进的Mean-OTDOA定位算法。首先估计终端与各基站的时延,然后对终端与多基站的距离测量值进行平均,作为OTDOA定位方法中的参考距离,最后利用泰勒级数展开法对终端位置进行估计。仿真结果表明,该算法可提高终端的定位精度,在基站数目为5、测量误差标准差为50 m时,本算法的均方根误差比OTDOA算法降低了5.2039 m,且随着基站数目的增加,定位精度的改善程度优于OTDOA算法。 展开更多
关键词 LTE系统 远近效应 mean-OTDOA定位算法 泰勒级数 均方根误差
在线阅读 下载PDF
基于空域维纳滤波的多天线无线通信抗干扰技术
17
作者 常海锐 刘寅生 +1 位作者 武思军 王雷 《现代防御技术》 北大核心 2025年第3期120-128,共9页
在现代高科技战争中,电子攻击武器几乎已经覆盖所有军用通信频段,形成了电子进攻“软”“硬”杀伤态势。无线通信作为现代战争主要的通信手段,抗干扰能力制约武器系统作战效能的发挥。多接收天线可以提供除传统时域和频域之外的空域自由... 在现代高科技战争中,电子攻击武器几乎已经覆盖所有军用通信频段,形成了电子进攻“软”“硬”杀伤态势。无线通信作为现代战争主要的通信手段,抗干扰能力制约武器系统作战效能的发挥。多接收天线可以提供除传统时域和频域之外的空域自由度,充分挖掘和利用空域自由度,可以有效对抗有意干扰对通信链路的干扰。研究基于空域维纳滤波理论的多天线抗干扰技术在无线通信干扰对抗场景下的应用和仿真,分析了大信噪比条件下空域抗干扰技术的几何模型,并结合几何模型深入分析了空域抗干扰技术机制和局限性。计算机仿真结果表明,所提出的基于空域维纳滤波理论的空域抗干扰技术有效提升了对抗恶意干扰对通信链路的干扰。 展开更多
关键词 无线抗干扰 多天线 空域 维纳滤波 最小均方误差准则
在线阅读 下载PDF
基于IPOA-SVR模型的边坡安全系数预测 被引量:1
18
作者 张佳琳 王孝东 +4 位作者 吴雅菡 水宽 张玉 程玥淞 杜青文 《有色金属(矿山部分)》 2025年第1期115-123,共9页
安全系数是用来评估边坡稳定性的重要指标之一,复杂的边坡系统导致安全系数预测存在不确定性。因此,为了获得更加可靠的安全系数,同时解决鹈鹕算法(POA)随着迭代次数的增加易陷入局部最优的缺点,提出了一种融合多策略的鹈鹕算法(IPOA)... 安全系数是用来评估边坡稳定性的重要指标之一,复杂的边坡系统导致安全系数预测存在不确定性。因此,为了获得更加可靠的安全系数,同时解决鹈鹕算法(POA)随着迭代次数的增加易陷入局部最优的缺点,提出了一种融合多策略的鹈鹕算法(IPOA)与支持向量机(SVR)结合的回归模型来预测边坡安全系数。首先,融合多策略将原始的鹈鹕算法进行改进;再运用改进的鹈鹕算法与支持向量机结合,选取六个影响因素作为IPOA-SVR模型的输入层指标并对模型进行训练,得到IPOA-SVR边坡稳定性预测模型;最后,分别与KNN、RF和Adaboost模型对比,并计算各个模型在训练集和测试集上的均方误差(MSE),以此来验证IPOA-SVR模型的优越性。实验结果显示:与其他模型相比,IPOA-SVR模型寻优性能强,在测试集上的均方误差为0.030 9、相关系数为0.91,说明本文对POA算法所用策略的有效性,IPOA-SVR模型可以为边坡失稳灾害的相关预测提供坚实的技术基础。 展开更多
关键词 安全系数 鹈鹕算法 支持向量机 边坡稳定性 均方误差
在线阅读 下载PDF
基于约束优化模型的智能电表运行误差及日线损率联合估计方法 被引量:3
19
作者 吕玉玲 陈文礼 +3 位作者 程瑛颖 苏宇 陈飞宇 刘学文 《电网技术》 北大核心 2025年第3期1257-1265,共9页
台区日线损率是影响智能电表运行误差估计的重要因素。在现有的智能电表误差估计方法中,或假设日线损率为常值,或与总供电量成正比,这些假设通常与真实日线损率的实际变化规律不符,也会降低智能电表误差估计方法的性能。该文提出一种基... 台区日线损率是影响智能电表运行误差估计的重要因素。在现有的智能电表误差估计方法中,或假设日线损率为常值,或与总供电量成正比,这些假设通常与真实日线损率的实际变化规律不符,也会降低智能电表误差估计方法的性能。该文提出一种基于约束优化模型的智能电表误差与日线损率联合估计方法。首先,为精准刻画能量守恒方程,建立以智能电表误差与日线损率为变量的线性方程组;然后,通过对实际台区数据进行分析,获得智能电表误差与日线损率波动的上下界,并以此构造约束优化模型;最后,根据模型特点推导高效的原始-对偶算法迭代寻找约束优化问题的最优解。通过实际数据验证发现,与现有方法相比,该文所提方法在智能电表误差与日线损率的估计上均有更好的效果。 展开更多
关键词 智能电表 误差估计 日线损率 约束最小二乘 原始-对偶算法
原文传递
基于麻雀搜寻优化算法的代理购电用户用电量多维度协同校核 被引量:1
20
作者 周颖 乔婧 +4 位作者 陈宋宋 赵伟博 丁一 武亚杰 田宇 《电网技术》 北大核心 2025年第2期604-612,I0064-I0067,共13页
随着代理购电业务稳步推进,用电量预测在智能电网运行中发挥着至关重要的作用。现阶段研究大多侧重于通过算法来提高预测结果的准确度和可靠性,而这些方法缺乏对电力系统多维因素的全面考量和精确校核。因此,多维度且全面地对代理购电... 随着代理购电业务稳步推进,用电量预测在智能电网运行中发挥着至关重要的作用。现阶段研究大多侧重于通过算法来提高预测结果的准确度和可靠性,而这些方法缺乏对电力系统多维因素的全面考量和精确校核。因此,多维度且全面地对代理购电用户用电量进行预测是代理购电业务中面临的问题之一。对此,该文提出了计及多维度协同的用户用电量预测结果校核方法。首先,该文采用了偏差概率分布模型分析各个维度(区域、行业、电压等级)的有效偏差分布,进行各维度有效偏差识别;其次,以误差最小为目标采用改进麻雀搜索算法(improved sparrow search algorithm,ISSA)优化算法进行多维度权重优化配比,构建预测值和权重值组合加权的多维度协同校核模型;最后选取误差指标对多维度校核后的预测值进行误差指标评估。结合某省的代理购电用户用电量对上述算法进行了验证,结果表明,基于ISSA优化算法的多维度协同校核方法在平均绝对误差指标下较行业维度、区域维度及电压等级维度分别降低了51.9%、23.4%和19.1%,均方根误差指标下较行业维度、区域维度及电压等级维度分别降低了40.0%、15.0%和8.6%,具有良好的泛化性。 展开更多
关键词 代理购电 误差校核 ISSA优化算法 组合权重 均方根误差
原文传递
上一页 1 2 69 下一页 到第
使用帮助 返回顶部