The interior tomography is commonly met in practice, whereas the self-calibration method for geometric parameters remains far from explored. To determine the geometry of interior tomography, a modified interval subdiv...The interior tomography is commonly met in practice, whereas the self-calibration method for geometric parameters remains far from explored. To determine the geometry of interior tomography, a modified interval subdividing based method, which was originally developed by Tan et al.,^[11] was presented in this paper. For the self-calibration method, it is necessary to obtain the reconstructed image with only geometric artifacts. Therefore, truncation artifacts reduction is a key problem for the self-calibration method of an interior tomography. In the method, an interior reconstruction algorithm instead of the Feldkamp-Davis-Kress (FDK) algorithm was employed for truncation artifact reduction. Moreover, the concept of a minimum interval was defined as the stop criterion of subdividing to ensure the geometric parameters are determined nicely. The results of numerical simulation demonstrated that our method could provide a solution to the self- calibration for interior tomography while the original interval subdividing based method could not. Furthermore, real data experiment results showed that our method could significantly suppress geometric artifacts and obtain high quality images for interior tomography with less imaging cost and faster speed compared with the traditional geometric calibration method with a dedicated calibration phantom.展开更多
Based on the Nagel-Schreckenberg model, we propose a new cellular automata model to simulate the urban rail traffic flow under moving block system and present a new minimum instantaneous distance formula under pure mo...Based on the Nagel-Schreckenberg model, we propose a new cellular automata model to simulate the urban rail traffic flow under moving block system and present a new minimum instantaneous distance formula under pure moving block. We also analyze the characteristics of the urban rail traffic flow under the influence of train density, station dwell times, the length of train, and the train velocity. Train delays can be decreased effectively through flexible departure intervals according to the preceding train type before its departure. The results demonstrate that a suitable adjustment of the current train velocity based on the following train velocity can greatly shorten the minimum departure intervals and then increase the capacity of rail transit.展开更多
基金supported by the National Basic Research Program of China(Grant No.2011CB707701)the National High Technology Research and Development Program of China(Grant No.2012AA011603)the National Natural Science Foundation of China(Grant Nos.30970772 and 61372172)
文摘The interior tomography is commonly met in practice, whereas the self-calibration method for geometric parameters remains far from explored. To determine the geometry of interior tomography, a modified interval subdividing based method, which was originally developed by Tan et al.,^[11] was presented in this paper. For the self-calibration method, it is necessary to obtain the reconstructed image with only geometric artifacts. Therefore, truncation artifacts reduction is a key problem for the self-calibration method of an interior tomography. In the method, an interior reconstruction algorithm instead of the Feldkamp-Davis-Kress (FDK) algorithm was employed for truncation artifact reduction. Moreover, the concept of a minimum interval was defined as the stop criterion of subdividing to ensure the geometric parameters are determined nicely. The results of numerical simulation demonstrated that our method could provide a solution to the self- calibration for interior tomography while the original interval subdividing based method could not. Furthermore, real data experiment results showed that our method could significantly suppress geometric artifacts and obtain high quality images for interior tomography with less imaging cost and faster speed compared with the traditional geometric calibration method with a dedicated calibration phantom.
基金Supported by the National Basic Research Program of China under Grant No. 2012CB725400the National Natural Science Foundation of China under Grant No. 71131001-1the Research Foundation of State Key Laboratory of Rail Traffic Control and Safety under Grant No. RCS2011ZZ003, Beijing Jiaotong University
文摘Based on the Nagel-Schreckenberg model, we propose a new cellular automata model to simulate the urban rail traffic flow under moving block system and present a new minimum instantaneous distance formula under pure moving block. We also analyze the characteristics of the urban rail traffic flow under the influence of train density, station dwell times, the length of train, and the train velocity. Train delays can be decreased effectively through flexible departure intervals according to the preceding train type before its departure. The results demonstrate that a suitable adjustment of the current train velocity based on the following train velocity can greatly shorten the minimum departure intervals and then increase the capacity of rail transit.