This paper presents the characteristics of nickel-based alloys, alongside their division into groups, and describes thefeatures that make such materials difficult to grind. The possibilities of exerting a positive inf...This paper presents the characteristics of nickel-based alloys, alongside their division into groups, and describes thefeatures that make such materials difficult to grind. The possibilities of exerting a positive influence upon machining conditions,especially through the proper application of grinding fluids, are briefly presented. Both the precise methodologies for, and theresults of, the experimental tests carried out on flat surfaces are also detailed. The aim of these tests was to determine the influenceof the application of two types of grinding liquid (Ecocut Mikro Plus 82 and Biocut 3000) upon the grinding force values andsurface roughness of the machined workpieces made from three nickel alloys (Nickel 201, INCONEL~ alloy 600, and MONEL^alloy 400). An additional goal of the tests was to determine the influence of grinding wheel structure on the course and results ofthe machining process. The results indicate that the physical and chemical properties of Biocut 3000 enabled the most advanta-geous properties of the machined surface roughness, alongside a simultaneous increase in grinding power, when compared to theresults when applying Ecocut Mikro Plus 82. The results showed an almost inversely proportional dependence upon the specifictangential grinding force Ft' and arithmetic mean deviation of the surface profile Ra values, especially in cases of machining Nickel201 and INCONEL alloy 600. The original traverse grinding methodology used in the tests made it possible to assess the changesof the grinding conditions within the conventionally selected zones.展开更多
The pulse-control operation technique which alternates between total reflux operation and total efflux operation in batch distillation was studied along with the minimum amount of slop cut. Total reflux time was confi...The pulse-control operation technique which alternates between total reflux operation and total efflux operation in batch distillation was studied along with the minimum amount of slop cut. Total reflux time was confirmed by dynamic simulation, and total efflux time was adopted by statistic method. For the mixture of hexane and cyclohexane and the traditional constant reflux ratio operation strategy, the amount of slop cut is 1.8-2.1 times of the minimum amount of slop cut; whereas for the pulse-control operation strategy, it is 1. 2 -1.4 times of the minimum amount of slop cut. So compared with the traditional constant reflux ratio operation, the pulse-control operation can decrease the amount of slop cut and operation time, and meanwhile, enhance separation efficiency and yield.展开更多
Monocrystalline Cu exhibits excellent electrical and signal-transmission properties due to its absence of grain boundaries,making it a critical material for the production of micro-machinery and micro-components;howev...Monocrystalline Cu exhibits excellent electrical and signal-transmission properties due to its absence of grain boundaries,making it a critical material for the production of micro-machinery and micro-components;however,achieving ultrahigh precision and ultralow damage machining of functional devices using traditional techniques such as grinding and polishing is extremely challenging.Consequently,nanocutting has emerged as an efficient means to fabricate monocrystalline materials with complex surface characteristics and high surface integrity.Nevertheless,the macroscopic cutting theory of metal materials cannot be applied to nanocutting.Accordingly,in this paper,both simulations and experiments were conducted to examine the chip deformation mechanisms of monocrystalline Cu.First,large-scale molecular dynamics(MD)simulations were conducted to gain a comprehensive understanding of the deformation behavior during nanocutting.This included examining the influencing factors and the variation patterns of the chip deformation coefficient,cutting force,and minimum cutting thickness.Subsequently,nanocutting experiments were performed using a specially designed nanocutting platform with high-resolution online observation by scanning electron microscopy.The experimental results served to verify the accuracy and reliability of theMDmodeling,as they exhibited excellent consistency with the simulated results.Although this work considered monocrystalline Cu,it is believed that the elucidated chip deformation mechanisms could also be applied to other face-centered-cubic metals.These results are of great value for advancing the understanding of the mechanisms of ultraprecision cutting.展开更多
In ultra-deep and large well sections,high collapse stresses and diminished annular return velocity present significant challenges to wellbore cleaning.With increasing depth,rising temperature and pressure constrain t...In ultra-deep and large well sections,high collapse stresses and diminished annular return velocity present significant challenges to wellbore cleaning.With increasing depth,rising temperature and pressure constrain the regulation of displacement and drilling fluid rheology,impairing the fluid’s capacity to transport cuttings effectively.A precise understanding of cuttings settlement behavior and terminal velocity is therefore essential for optimizing their removal.This study accounts for variations in wellbore temperature and pressure,incorporates non-spherical cuttings and wellbore diameter parameters,and develops accordingly a simplified model to predict terminal settlement velocity.Thecuttings carrying ratio is introduced as a metric for evaluatingwellbore cleanliness.Findings reveal that temperature and pressure fluctuations can alter terminal velocity by up to 3.4%.Cuttings shape plays a crucial role,with block-shaped cuttings requiring higher annular return velocity than flake-shaped ones at the same carrying ratio.As wellbore size increases,the minimum required carrying flow rate rises nonlinearly,though the rate of increase gradually declines.For a Φ444.5mmwellbore,a carrying ratio of at least 0.6 is recommended.Terminal velocity decreases with increasing consistency coefficient,particularly in high-viscosity regimes.The proposed carrying ratio offers a more accurate and practical assessment of wellbore cleanliness.展开更多
To assess road traffic safety risk in civil aviation airports and develop effective accident prevention measures,this study proposed a risk assessment method based on accident tree and Bayesian network for airport air...To assess road traffic safety risk in civil aviation airports and develop effective accident prevention measures,this study proposed a risk assessment method based on accident tree and Bayesian network for airport aircraft activity areas.It identified influencing factors in the aircraft activity area from the perspectives of person-vehicle-road-environment-management and analyzed their relationships.The Bayesian network was utilized to determine initial probabilities for each influencing factor.Findings indicated a relatively high overall safety level in the airport's road traffic system.Accident trees were employed to qualitatively and quantitatively analyze common human-vehicle accident patterns.The initial probabilities obtained from the Bayesian network served as basic event probabilities in the accident tree to determine the occurrence probability of the top event.Taking a 4F airport in China as an example,accident cause analysis identified five important risk sources in human-vehicle accidents,including blind spots for special vehicles,illegal driving by drivers,pedestrians violating regulations,passengers entering restricted areas,and blind spots at intersections.Corresponding safety management measures were formulated.The study concluded that the integration of Bayesian networks and accident trees effectively determines accident probabilities and offers specific solutions,thus playing a crucial role in enhancing road traffic safety management within aviation airports.展开更多
文摘This paper presents the characteristics of nickel-based alloys, alongside their division into groups, and describes thefeatures that make such materials difficult to grind. The possibilities of exerting a positive influence upon machining conditions,especially through the proper application of grinding fluids, are briefly presented. Both the precise methodologies for, and theresults of, the experimental tests carried out on flat surfaces are also detailed. The aim of these tests was to determine the influenceof the application of two types of grinding liquid (Ecocut Mikro Plus 82 and Biocut 3000) upon the grinding force values andsurface roughness of the machined workpieces made from three nickel alloys (Nickel 201, INCONEL~ alloy 600, and MONEL^alloy 400). An additional goal of the tests was to determine the influence of grinding wheel structure on the course and results ofthe machining process. The results indicate that the physical and chemical properties of Biocut 3000 enabled the most advanta-geous properties of the machined surface roughness, alongside a simultaneous increase in grinding power, when compared to theresults when applying Ecocut Mikro Plus 82. The results showed an almost inversely proportional dependence upon the specifictangential grinding force Ft' and arithmetic mean deviation of the surface profile Ra values, especially in cases of machining Nickel201 and INCONEL alloy 600. The original traverse grinding methodology used in the tests made it possible to assess the changesof the grinding conditions within the conventionally selected zones.
文摘The pulse-control operation technique which alternates between total reflux operation and total efflux operation in batch distillation was studied along with the minimum amount of slop cut. Total reflux time was confirmed by dynamic simulation, and total efflux time was adopted by statistic method. For the mixture of hexane and cyclohexane and the traditional constant reflux ratio operation strategy, the amount of slop cut is 1.8-2.1 times of the minimum amount of slop cut; whereas for the pulse-control operation strategy, it is 1. 2 -1.4 times of the minimum amount of slop cut. So compared with the traditional constant reflux ratio operation, the pulse-control operation can decrease the amount of slop cut and operation time, and meanwhile, enhance separation efficiency and yield.
基金support of the National Natural Science Foundation of China(Grant No.51805371)the Innovation and Entrepreneurship Training Program of Tianjin University of Commerce(Grant No.202310069067).
文摘Monocrystalline Cu exhibits excellent electrical and signal-transmission properties due to its absence of grain boundaries,making it a critical material for the production of micro-machinery and micro-components;however,achieving ultrahigh precision and ultralow damage machining of functional devices using traditional techniques such as grinding and polishing is extremely challenging.Consequently,nanocutting has emerged as an efficient means to fabricate monocrystalline materials with complex surface characteristics and high surface integrity.Nevertheless,the macroscopic cutting theory of metal materials cannot be applied to nanocutting.Accordingly,in this paper,both simulations and experiments were conducted to examine the chip deformation mechanisms of monocrystalline Cu.First,large-scale molecular dynamics(MD)simulations were conducted to gain a comprehensive understanding of the deformation behavior during nanocutting.This included examining the influencing factors and the variation patterns of the chip deformation coefficient,cutting force,and minimum cutting thickness.Subsequently,nanocutting experiments were performed using a specially designed nanocutting platform with high-resolution online observation by scanning electron microscopy.The experimental results served to verify the accuracy and reliability of theMDmodeling,as they exhibited excellent consistency with the simulated results.Although this work considered monocrystalline Cu,it is believed that the elucidated chip deformation mechanisms could also be applied to other face-centered-cubic metals.These results are of great value for advancing the understanding of the mechanisms of ultraprecision cutting.
基金partly supported by the National Natural Science Foundation of China(52304045)the Open Fund(PLN2023-40)of the National Key Laboratory of Oil and Gas Reservoir Geology and Exploitation(Southwest Petroleum University)the Open Fund(2024-KFKT-08)of China National Petroleum Corporation Science and Technology Research Institute.
文摘In ultra-deep and large well sections,high collapse stresses and diminished annular return velocity present significant challenges to wellbore cleaning.With increasing depth,rising temperature and pressure constrain the regulation of displacement and drilling fluid rheology,impairing the fluid’s capacity to transport cuttings effectively.A precise understanding of cuttings settlement behavior and terminal velocity is therefore essential for optimizing their removal.This study accounts for variations in wellbore temperature and pressure,incorporates non-spherical cuttings and wellbore diameter parameters,and develops accordingly a simplified model to predict terminal settlement velocity.Thecuttings carrying ratio is introduced as a metric for evaluatingwellbore cleanliness.Findings reveal that temperature and pressure fluctuations can alter terminal velocity by up to 3.4%.Cuttings shape plays a crucial role,with block-shaped cuttings requiring higher annular return velocity than flake-shaped ones at the same carrying ratio.As wellbore size increases,the minimum required carrying flow rate rises nonlinearly,though the rate of increase gradually declines.For a Φ444.5mmwellbore,a carrying ratio of at least 0.6 is recommended.Terminal velocity decreases with increasing consistency coefficient,particularly in high-viscosity regimes.The proposed carrying ratio offers a more accurate and practical assessment of wellbore cleanliness.
文摘To assess road traffic safety risk in civil aviation airports and develop effective accident prevention measures,this study proposed a risk assessment method based on accident tree and Bayesian network for airport aircraft activity areas.It identified influencing factors in the aircraft activity area from the perspectives of person-vehicle-road-environment-management and analyzed their relationships.The Bayesian network was utilized to determine initial probabilities for each influencing factor.Findings indicated a relatively high overall safety level in the airport's road traffic system.Accident trees were employed to qualitatively and quantitatively analyze common human-vehicle accident patterns.The initial probabilities obtained from the Bayesian network served as basic event probabilities in the accident tree to determine the occurrence probability of the top event.Taking a 4F airport in China as an example,accident cause analysis identified five important risk sources in human-vehicle accidents,including blind spots for special vehicles,illegal driving by drivers,pedestrians violating regulations,passengers entering restricted areas,and blind spots at intersections.Corresponding safety management measures were formulated.The study concluded that the integration of Bayesian networks and accident trees effectively determines accident probabilities and offers specific solutions,thus playing a crucial role in enhancing road traffic safety management within aviation airports.