In previous papers, the stationary distributions of a class of discrete and continuoustime random graph processes with state space consisting of the simple and directed graphs on Nvenices were studied. In this paper, ...In previous papers, the stationary distributions of a class of discrete and continuoustime random graph processes with state space consisting of the simple and directed graphs on Nvenices were studied. In this paper, the random graph graph process is extended one impotent stepfurther by allowing interaction of edges. Similarly, We obtha the expressions of the stationarydistributions and prove that the process is ergodic under different editions.展开更多
A parity check matrix construction method for constructing a low-density parity-check (LDPC) codes over GF(q) (q〉2) based on the modified progressive edge growth (PEG) algorithm is introduced. First, the nonz...A parity check matrix construction method for constructing a low-density parity-check (LDPC) codes over GF(q) (q〉2) based on the modified progressive edge growth (PEG) algorithm is introduced. First, the nonzero locations of the parity check matrix are selected using the PEG algorithm. Then the nonzero elements are defined by avoiding the definition of subcode. A proof is given to show the good minimum distance property of constructed GF(q)-LDPC codes. Simulations are also presented to illustrate the good error performance of the designed codes.展开更多
文摘In previous papers, the stationary distributions of a class of discrete and continuoustime random graph processes with state space consisting of the simple and directed graphs on Nvenices were studied. In this paper, the random graph graph process is extended one impotent stepfurther by allowing interaction of edges. Similarly, We obtha the expressions of the stationarydistributions and prove that the process is ergodic under different editions.
基金supported by the National Natural Science Foundation of China (60672087)
文摘A parity check matrix construction method for constructing a low-density parity-check (LDPC) codes over GF(q) (q〉2) based on the modified progressive edge growth (PEG) algorithm is introduced. First, the nonzero locations of the parity check matrix are selected using the PEG algorithm. Then the nonzero elements are defined by avoiding the definition of subcode. A proof is given to show the good minimum distance property of constructed GF(q)-LDPC codes. Simulations are also presented to illustrate the good error performance of the designed codes.