期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Stable Methylammonium-Free p-i-n Perovskite Solar Cells and Mini-Modules with Phenothiazine Dimers as Hole-Transporting Materials
1
作者 Luigi Angelo Castriotta Rossella Infantino +9 位作者 Luigi Vesce Maurizio Stefanelli Alessio Dessì Carmen Coppola Massimo Calamante Gianna Reginato Alessandro Mordini Adalgisa Sinicropi Aldo Di Carlo Lorenzo Zani 《Energy & Environmental Materials》 SCIE EI CAS CSCD 2023年第6期383-392,共10页
During the last decade,perovskite solar technologies underwent an impressive development,with power conversion efficiencies reaching 25.5%for single-junction devices and 29.8%for Silicon-Perovskite tandem configuratio... During the last decade,perovskite solar technologies underwent an impressive development,with power conversion efficiencies reaching 25.5%for single-junction devices and 29.8%for Silicon-Perovskite tandem configurations.Even though research mainly focused on improving the efficiency of perovskite photovoltaics(PV),stability and scalability remain fundamental aspects of a mature photovoltaics technology.For n-i-p structure perovskite solar cells,using poly-triaryl(amine)(PTAA)as hole transport layer(HTL)allowed to achieve marked improvements in device stability compared with other common hole conductors.For p-i-n structure,poly-triaryl(amine)is also routinely used as dopant-free hole transport layer,but problems in perovskite film growth,and its limited resistance to stress and imperfect batch-to-batch reproducibility,hamper its use for device upscaling.Following previous computational investigations,in this work,we report the synthesis of two small-molecule organic hole transport layers(BPT-1,2),aiming to solve the above-mentioned issues and allow upscale to the module level.By using BPT-1 and methylammonium-free perovskite,max.Power conversion efficiencies of 17.26%and 15.42%on a small area(0.09 cm^(2))and mini-module size(2.25 cm^(2)),respectively,were obtained,with a better reproducibility than with poly-triaryl(amine).Moreover,BPT-1 was demonstrated to yield more stable devices compared with poly-triaryl(amine)under ISOS-D1,T1,and L1 accelerated life-test protocols,reaching maximum T_(90)values>1000 h on all tests. 展开更多
关键词 methylammonium-free perovskite mini-modules organic hole-transporting layers perovskite solar cells stability studies
在线阅读 下载PDF
A Refined Dual-Fiber Network Morphology as Printable Hole Transport Layers for High-Performance Perovskite Solar Mini-Modules
2
作者 Zhihui Yao Qiyuan Xia +6 位作者 Jin Li Xiangchuan Meng Zengqi Huang Muhammad Bilal Khan Niazi Shaohua Zhang Xiaotian Hu Yiwang Chen 《Aggregate》 2025年第6期97-108,共12页
In the contemporary preparation of perovskite solar cells(PSCs),the prevalent issue of hole transport layers(HTLs)materials is frequently incompatible with large-area deposition techniques.As the area increases,this r... In the contemporary preparation of perovskite solar cells(PSCs),the prevalent issue of hole transport layers(HTLs)materials is frequently incompatible with large-area deposition techniques.As the area increases,this results in nonuniform preparation of the HTLs,which significantly reduces the efficiency and reliability of the device at the module level.To tackle this significant challenge,we propose a strategy for a dual-fiber network structure based on polymer HTLs.This strategy involves the use of organic solar cell polymer donor material(PM6)and poly(3-hexylthiophene)(P3HT),which are spontaneously interwoven into micronsized fiber crystals to establish efficient carrier transport channels.This unique structure not only accelerates charge extraction but also takes advantage of the inherent benefits of polymers,such as excellent printability and homogeneous film formation while enhancing the protection of the perovskite layers.The resulting devices demonstrate a VOC of 1.18 V and a champion PCE of 24.90%,which is higher than the pristine devices(the PCE is 22.87%).Moreover,due to the improved printing characteristics,the PSMs prepared by blade-coating also demonstrate a high PCE of 15.15%within an aperture area of 100 cm^(2).Additionally,this strategy significantly improves the operational stability,thermal stability,and humidity stability of the devices. 展开更多
关键词 dual-fiber network morphology hole transport layers mini-modules perovskite photovoltaic PRINTABILITY
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部