RNAs have important biological functions and the functions of RNAs are generally coupled to their structures, especiallytheir secondary structures. In this work, we have made a comprehensive evaluation of the performa...RNAs have important biological functions and the functions of RNAs are generally coupled to their structures, especiallytheir secondary structures. In this work, we have made a comprehensive evaluation of the performances of existingtop RNA secondary structure prediction methods, including five deep-learning (DL) based methods and five minimum freeenergy (MFE) based methods. First, we made a brief overview of these RNA secondary structure prediction methods.Afterwards, we built two rigorous test datasets consisting of RNAs with non-redundant sequences and comprehensivelyexamined the performances of the RNA secondary structure prediction methods through classifying the RNAs into differentlength ranges and different types. Our examination shows that the DL-based methods generally perform better thanthe MFE-based methods for RNAs with long lengths and complex structures, while the MFE-based methods can achievegood performance for small RNAs and some specialized MFE-based methods can achieve good prediction accuracy forpseudoknots. Finally, we provided some insights and perspectives in modeling RNA secondary structures.展开更多
Algorithms are the primary component of Artificial Intelligence(AI).The algorithm is the process in AI that imitates the human mind to solve problems.Currently evaluating the performance of AI is achieved by evaluatin...Algorithms are the primary component of Artificial Intelligence(AI).The algorithm is the process in AI that imitates the human mind to solve problems.Currently evaluating the performance of AI is achieved by evaluating AI algorithms by metric scores on data sets.However the evaluation of algorithms in AI is challenging because the evaluation of the same type of algorithm has many data sets and evaluation metrics.Different algorithms may have individual strengths and weaknesses in evaluation metric scores on separate data sets,lacking the credibility and validity of the evaluation.Moreover,evaluation of algorithms requires repeated experiments on different data sets,reducing the attention of researchers to the research of the algorithms itself.Crucially,this approach to evaluating comparative metric scores does not take into account the algorithm’s ability to solve problems.And the classical algorithm evaluation of time and space complexity is not suitable for evaluating AI algorithms.Because classical algorithms input is infinite numbers,whereas AI algorithms input is a data set,which is limited and multifarious.According to the AI algorithm evaluation without response to the problem solving capability,this paper summarizes the features of AI algorithm evaluation and proposes an AI evaluation method that incorporates the problem-solving capabilities of algorithms.展开更多
The harmful algal bloom primarily caused by Microcystis aeruginosa(M.aeruginosa)has become one of the serious biological pollution issues in actual water,which has received intense attention worldwide.Over the past ye...The harmful algal bloom primarily caused by Microcystis aeruginosa(M.aeruginosa)has become one of the serious biological pollution issues in actual water,which has received intense attention worldwide.Over the past years,increasing number of publications have reported that metal-organic frameworks(MOFs)based functional materials exhibited significant inhibition against M.aeruginosa via multiple mechanisms,but no review papers systematically presented progresses regarding MOFs-based materials for M.aeruginosa control up to now.With this review paper,we summarized the state-of-the-art studies of MOFsbased materials for M.aeruginosa removal,comparing and discussing the design strategies of MOFs-based materials and their antimicrobial mechanisms.Meanwhile,we discussed methods for evaluating the water purification performances of MOFs-based materials against M.aeruginosa.Finally,the perspectives for design of novel MOFs-based functional materials and application scenarios were proposed to provide an outlook on areas where greater efforts should be made in the future.展开更多
With the accelerating urbanization process,the load demand of urban power grids is constantly increasing,giving rise to a batch of ultra-large urban power grids featuring large electricity demand,dense load distributi...With the accelerating urbanization process,the load demand of urban power grids is constantly increasing,giving rise to a batch of ultra-large urban power grids featuring large electricity demand,dense load distribution,and tight construction land constraints.This paper establishes a network planning method for urban power grids based on series reactors and MMC-MTEDC,focusing on four aspects:short-circuit current suppression,accommodation of external power supply,flexible inter-regional power support,and voltage stability enhancement in load centers.It proposes key indicators including node short-circuit current margin,line thermal stability margin,maximum fault-induced regional power loss,and voltage recovery time,thereby constructing an evaluation system for MMT-MTEDC network planning in urban power grids.Based on the Shenzhen power grid planning data,simulations using DSP software reveal that series reactors reduce short-circuit current by up to 5.0%,while the MMC-MTEDC system enhances node short-circuit margins by 4.212.9%and shortens voltage recovery time by 19.8%.Additionally,the MMC-MTEDC system maintains 3.34-6.76 percentage points higher thermal stability margins than conventional AC systems and enables complete avoidance of external power curtailment during N-2 faults via power reallocation between terminals.Compared with traditional AC or point-to-point HVDC schemes,the proposed hybrid planning method better adapts to the spatial and reliability demands of ultra-large receiving-end grids.This methodology provides practical insights into coordinated AC/DC development under high load density and strong external power reliance.Future work will extend the approach to include electromagnetic transient constraints and lightweight MMC station designs for urban applications.展开更多
Sponge city(SPC)is proposed to solve the issues such as the degradation of urban water ecosystem environment,imbalanced water resource allocation,urban water logging,and water contamination.The PPP(Public Private Part...Sponge city(SPC)is proposed to solve the issues such as the degradation of urban water ecosystem environment,imbalanced water resource allocation,urban water logging,and water contamination.The PPP(Public Private Partnership)model is combined to release the government pressure of SPC project construction.The development of the SPC-PPP model makes significant contributions to the sustainable development and the enhancement of urban resilience against water-related disasters.However,there is no scientific performance evaluation system on its operation period has been conducted.Therefore,the SPC-PPP Evaluation model aims to objectively and reasonably assess project effectiveness,promote its development and refine the evaluation framework.This paper has set up the MEE model for performance evaluation,with improved Matter-Element Extension method to assign values to the evaluation indices.The research results show that:(1)The MEE model is more accurate in the performance evaluation and its effectiveness is reflected in its ability to capture the correlation among different indices in the same membership,rather than merely focusing on individual indices.(2)The proposed approach provided a new aspect for performance evaluation,improving the accuracy of evaluation and promoting the development of SPC-PPP project.展开更多
Objective:To explore the application value of a new empowerment teaching method based on Kirkpatrick’s evaluation model in teaching Chinese medicine nursing in otorhinolaryngology.Methods:60 nurses who practiced in t...Objective:To explore the application value of a new empowerment teaching method based on Kirkpatrick’s evaluation model in teaching Chinese medicine nursing in otorhinolaryngology.Methods:60 nurses who practiced in the otolaryngology department of our hospital from June 2022 to October 2024 were included in the study and equally divided into two groups using a convenient sampling method.30 nurses who chose traditional Chinese medicine skill teaching management were included in the control group,and 30 nurses who chose the new empowerment teaching method based on Kirkpatrick’s evaluation model were included in the observation group.Relevant indicators such as clinical teaching environment perception,theoretical knowledge scores of Chinese medicine nursing,and excellent rate of practical operation assessment were compared.Results:The nurses in the observation group had higher scores for clinical teaching environment perception than the control group(P<0.05).However,the midterm and final exam scores for theoretical knowledge of Chinese medicine nursing were higher in the observation group than in the control group(P<0.05).Compared with the control group,the observation group had a higher excellent rate of practical operation assessment(93.33%>73.33%)and a higher Chinese medicine nursing ability score[(215.69±19.73)points>(184.87±15.66)points](P<0.05).Conclusion:Applying the new empowerment teaching method based on Kirkpatrick’s evaluation model to Chinese medicine nursing teaching in otolaryngology can help nurses understand the theoretical knowledge of Chinese medicine nursing and optimize the clinical teaching environment,thereby promoting their practical skills and Chinese medicine nursing abilities.展开更多
As a key sector in advancing China’s“carbon neutrality”goal,the machinery manufacturing industry has achieved remarkable development in recent years.Against this backdrop,the scientific and objective evaluation of ...As a key sector in advancing China’s“carbon neutrality”goal,the machinery manufacturing industry has achieved remarkable development in recent years.Against this backdrop,the scientific and objective evaluation of the financial performance of machinery manufacturing enterprises has become a pressing issue in financial research.This topic is not only crucial for optimizing enterprise management and improving operational efficiency but also essential for enhancing overall industry performance and promoting sustainable development.This paper first introduces the concept of financial performance,followed by an analysis of related financial performance evaluation theories.It then focuses on the application of the entropy method in evaluating the financial performance of machinery manufacturing enterprises,detailing its analytical steps.Finally,a financial performance evaluation index system is constructed based on four dimensions:profitability,solvency,operational efficiency,and growth potential.展开更多
The stability of the tunnel portal slope is crucial for ensuring safe tunnel construction.Thus,a sound stability evaluation is of significance.Given the unique geological characteristics of tunnel portal slopes,it is ...The stability of the tunnel portal slope is crucial for ensuring safe tunnel construction.Thus,a sound stability evaluation is of significance.Given the unique geological characteristics of tunnel portal slopes,it is necessary to establish a specific evaluation indicator system that differs from those used for ordinary slopes.Based on the unascertained measure method,uncertainties in the indicator are addressed by introducing the left and right half cloud asymmetric cloud model to optimize the linear membership function.The subjectivity of confidence criterion level identification is also improved by using the Euclidean distance method.Thus,a stability evaluation model for the tunnel portal slope is established based on the improved unascertained measure method.Finally,using the collected tunnel portal slope data,the results of four evaluation methods are compared with the safety factor levels.The evaluation methods include the traditional unascertained measure method,the method improved by using the left and right half cloud asymmetric cloud model,the method improved by using the Euclidean distance method,and the method improved by using both the left and right half cloud asymmetric cloud model and the Euclidean distance method.The results show that the accuracy rates of these four methods are 50%,55%,85%,and 90%,respectively.Among them,the joint improvement method has the slightest deviation,with only one level,while the other three methods had deviations of two levels.This result verifies the stability and effectiveness of the joint improvement method,providing a reference for tunnel portal slope stability evaluation.展开更多
Objective:Existing research mainly relies on quantitative indicators.However,the subjectivity of qualitative indicators and the problem of their difficulty in quantification limit the comprehensiveness of evaluation.T...Objective:Existing research mainly relies on quantitative indicators.However,the subjectivity of qualitative indicators and the problem of their difficulty in quantification limit the comprehensiveness of evaluation.Therefore,a resilience supplier evaluation method based on the improved Z-number-ORESTE is proposed.Methods:Through the construction of a multi-tiered evaluation index system incorporating supplier capabilities,resources,strategic aspects,and resilience,Z-numbers are harnessed to signify qualitative indicators.An advanced Z-number distance metric is implemented,meticulously considering the impact exerted by the reliability portion of Z-numbers on information risk.The refined ORESTE ranking algorithm introduces the concepts of strong and weak orderings and capitalizes on the Borda assignment function.This approach facilitates a more precise appraisal of the performance of alternative solutions.By amalgamating the improved Z-number distance measurement approach with the ORESTE ranking methodology for multi-attribute decision-making,it becomes feasible to more efficiently assess the recovery capacities and adaptability of suppliers in the face of unforeseen incidents and risks.Results:Through the analysis of the comprehensive performance of the existing suppliers of a certain electronics enterprise,the results regarding the suppliers’recovery capabilities and adaptability when facing unexpected events and risks are obtained.Eventually,the suppliers that are in line with the long-term development strategy of the enterprise are selected.Conclusion:This evaluation system has verified its feasibility and effectiveness.Moreover,the system is capable of effectively identifying and selecting resilient suppliers,providing more reliable decision-making support for the enterprise’s supply chain management.展开更多
Brucellosis is a global public health issue that severely affects human health,Brucella melitensis is currently the predominant species in China.Brucella spondylitis is the primary cause of the debilitating and disabl...Brucellosis is a global public health issue that severely affects human health,Brucella melitensis is currently the predominant species in China.Brucella spondylitis is the primary cause of the debilitating and disabling complications[1].The lumbar vertebra was the most commonly affected site,followed by the thoracic,cervical,thoracolumbar,and lumbosacral segments,and back pain,fever,sweating,and fatigue were the most common symptoms[2].However,the diagnosis of Brucella spondylitis is challenging owing to its wide spectrum of clinical presentations,cross-reactions with other bacteria,and low strain isolation rate.Therefore,a timely and accurate diagnosis of spinal brucellosis is crucial for implementing an effective therapeutic plan and improving treatment outcomes.Droplet digital polymerase chain reaction(ddPCR)is widely used for low-abundance nucleic acid detection and is useful for diagnosing infectious diseases[3].Therefore,this study aimed to evaluate the ddPCR approach for the diagnosis of brucellosis with spondylitis to improve its clinical diagnostic capacity.展开更多
The formation water sample in oil and gas fields may be polluted in processes of testing, trial production, collection, storage, transportation and analysis, making the properties of formation water not be reflected t...The formation water sample in oil and gas fields may be polluted in processes of testing, trial production, collection, storage, transportation and analysis, making the properties of formation water not be reflected truly. This paper discusses identification methods and the data credibility evaluation method for formation water in oil and gas fields of petroliferous basins within China. The results of the study show that: (1) the identification methods of formation water include the basic methods of single factors such as physical characteristics, water composition characteristics, water type characteristics, and characteristic coefficients, as well as the comprehensive evaluation method of data credibility proposed on this basis, which mainly relies on the correlation analysis sodium chloride coefficient and desulfurization coefficient and combines geological background evaluation;(2) The basic identifying methods for formation water enable the preliminary identification of hydrochemical data and the preliminary screening of data on site, the proposed comprehensive method realizes the evaluation by classifying the CaCl2-type water into types A-I to A-VI and the NaHCO3-type water into types B-I to B-IV, so that researchers can make in-depth evaluation on the credibility of hydrochemical data and analysis of influencing factors;(3) When the basic methods are used to identify the formation water, the formation water containing anions such as CO_(3)^(2-), OH- and NO_(3)^(-), or the formation water with the sodium chloride coefficient and desulphurization coefficient not matching the geological setting, are all invaded with surface water or polluted by working fluid;(4) When the comprehensive method is used, the data credibility of A-I, A-II, B-I and B-II formation water can be evaluated effectively and accurately only if the geological setting analysis in respect of the factors such as formation environment, sampling conditions, condensate water, acid fluid, leaching of ancient weathering crust, and ancient atmospheric fresh water, is combined, although such formation water is believed with high credibility.展开更多
[Objective] The aim was to propose a new entropy weight fuzzy compre- hensive evaluation method for assessing cotton salt tolerance, realizing the objective, accurate and comprehensive evaluation of salt tolerance of ...[Objective] The aim was to propose a new entropy weight fuzzy compre- hensive evaluation method for assessing cotton salt tolerance, realizing the objective, accurate and comprehensive evaluation of salt tolerance of cotton. [Method] A sand culture experiment under salt stress of 150 mmol/L of NaCI was designed. The in- dicator weight was determined with the entropy weight fuzzy comprehensive evalu- ation method, based on the salt injury index of indicators. The salt tolerance of cotton was evaluated comprehensively. [Result] At the germination stage, the entropy and weight of salt injury index of germination energy, vigor index, hypocotyl length and fresh weight were highest, followed by germination rate and germination index, and of root length were lowest. At the seedling stage, the entropy and weight of salt injury index of plasma membrane permeability, root vigor and leaf expansion rate were highest, followed by plant height and net photosynthetic rate, and of shoot dry weight and root dry weight were lowest. The salt tolerance of cotton differed a- mong growth stages and cultivars. Among the 11 cultivars, CCRI-44 and CCRI-75 were steadily salt-tolerant at both germination and seedling stages; CCRI-17, Sumi- an 22, Sumian 15 and Dexiamianl had a stable moderate salt tolerance; while Sumian 12 and Simian 3 were steadily salt-sensitive. [Conclusion] The evaluated result was objective and exact, which indicated that this method could be used in comprehensive evaluation of salt tolerance of cotton.展开更多
A multi-level evaluation model for the superstructure of a damaged prestressed concrete girder or beam bridge is established, and the evaluation indices of the model as well as the rating standards are defined. A norm...A multi-level evaluation model for the superstructure of a damaged prestressed concrete girder or beam bridge is established, and the evaluation indices of the model as well as the rating standards are defined. A normal relative function about the evaluation indices of each element is developed to calculate the relative degree, and for each element there are no sub-level elements. When evaluating the elements in the sub-item level or the index level of the model, the weights of elements pertain to one adopted element, taking into account their degrees of deterioration. Since the relative degrees and structure evaluation scales on the damage conditions are applied to characterize the superstructure of damaged prestressed concrete girder bridges, this method can evaluate the prestressed structure in detail, and the evaluation results agree with the Code for Maintenance of Highway Bridges and Culvers (JTG Hll--2004 ). Finally, a bridge in Jilin province is taken as an example, using the method developed to evaluate its damage conditions, which gives an effective way for bridge engineering.展开更多
[Objective] This study was to provide references for the evaluation of water quality in aquaculture ponds by evaluating the pond water quality using fuzzy comprehensive evaluation method based on entropy weight. [Meth...[Objective] This study was to provide references for the evaluation of water quality in aquaculture ponds by evaluating the pond water quality using fuzzy comprehensive evaluation method based on entropy weight. [Method] The fuzzy compre- hensive evaluation method based on entropy weight was used to evaluate the water quality in the ponds with Ukraine scale carp (Cyprinus carpio) as the main cultivated fish. The average size of the fish was 71.4 g/ind, and totally three groups of pond were set with the population density of 6 000, 9 000, 12 000 ind/hm2. [Result] According to the GB3838-2002 Environmental Quality Standards for Surface Water of China, the water quality of 6 000 ind/hm2 group was Grade I, and the water quality of 9 000 and 12 000 ind/hm2 were Grade V. [Conclusion] With the increasing of feeding density, the pond water quality would worsen, however, there is no difference on water quality between 9 000 and 12 000 ind/hm2 groups.展开更多
In the process of designing self-elevating drilling unit, it is important, yet complicated, to use comparison and filtering to select the optimum scheme from the feasible ones. In this research, an index system and me...In the process of designing self-elevating drilling unit, it is important, yet complicated, to use comparison and filtering to select the optimum scheme from the feasible ones. In this research, an index system and methodology for the evaluation of self-elevating drilling unit was proposed. Based on this, a multi-objective combinatorial optimization model was developed, using the improved grey relation Analysis (GRA), in which the analytic hierarchy process (AHP) was used to determine the weights of the evaluating indices. It considered the connections within the indices, reflecting the objective nature of things, and also considered the subjective interests of ship owners and the needs of designers. The evaluation index system and evaluation method can be used in the selection of an optimal scheme and advanced assessment. A case study shows the index system and evaluation method are scientific, reasonable, and easy to put into practice. At the same time, such an evaluation index system and evaluation method will be helpful for making decisions for other mobile platforms.展开更多
Poverty incidence is the key index that needs to be measured in the poverty exit examination and evaluation of 832 poverty-stricken counties and 128 000 poverty-stricken villages. In this paper, based on the statement...Poverty incidence is the key index that needs to be measured in the poverty exit examination and evaluation of 832 poverty-stricken counties and 128 000 poverty-stricken villages. In this paper, based on the statement of general concept and conventional calculation method of the poverty incidence, the calculation method of poverty incidence in the exit evaluation of poverty-stricken counties (also including poverty-stricken township and poverty-stricken villages) was investigated through the view of the third-party evaluation. In addition to considering the previous "number of planned poverty remaining population", the method also needed to give consideration to the exiting mistaken population, evaluation missing population. Based on the case in Yuanyang County, Honghe Hani and Yi Autonomous Prefecture, Yunnan Province, the poverty incidences of 10 exit planning villages by the end of 2017 in Yuanyang County were investigated and estimated, and suggestions were proposed to promote the precise poverty alleviation and poverty relief of the county.展开更多
Considering the difficulty of fuzzy synthetic evaluation method in calculation of the multiple factors and ignorance of the relationship among evaluating objects, a new weight evaluation process using entropy method w...Considering the difficulty of fuzzy synthetic evaluation method in calculation of the multiple factors and ignorance of the relationship among evaluating objects, a new weight evaluation process using entropy method was introduced. This improved method for determination of weight of the evaluating indicators was applied in water quality assessment of the Three Gorges reservoir area. The results showed that this method was favorable for fuzzy synthetic evaluation when there were more than one evaluating objects. One calculation was enough for calculating every monitoring point. Compared with the original evaluation method, the method predigested the fuzzy synthetic evaluation process greatly and the evaluation results are more reasonable.展开更多
For natural water, method of water quality evaluation based on improved fuzzy matter-element evaluation method is presented. Two important parts are improved, the weights determining and fuzzy membership functions. Th...For natural water, method of water quality evaluation based on improved fuzzy matter-element evaluation method is presented. Two important parts are improved, the weights determining and fuzzy membership functions. The coefficient of variation of each indicator is used to determine the weight instead of traditional calculating superscales method. On the other hand, fuzzy matter-elements are constructed, and normal membership degrees are used instead of traditional trapezoidal ones. The composite fuzzy matter-elements with associated coefficient are constructed through associated transformation. The levels of natural water quality are determined according to the principle of maximum correlation. The improved fuzzy matter-element evaluation method is applied to evaluate water quality of the Luokou mainstream estuary at the first ten weeks in 2011 with the coefficient of variatiola method determining the weights. Water quality of Luokou mainstream estuary is dropping from level I to level II. The results of the improved evaluation method are basically the same as the official water quality. The variation coefficient method can reduce the workload, and overcome the adverse effects from abnormal values, compared with the traditional calculating superscales method. The results of improved fuzzy matter- element evaluation method are more credible than the ones of the traditional evaluation method. The improved evaluation method can use information of monitoring data more scientifically and comprehensively, and broaden a new evaluation method for water quality assessment.展开更多
The deformation characteristic of bland in deep drawing is discussed. It is pointed out that the friction and lubrication conditions in for drawing are different from that in mechanical motion or machine work or other...The deformation characteristic of bland in deep drawing is discussed. It is pointed out that the friction and lubrication conditions in for drawing are different from that in mechanical motion or machine work or other plastic process. The common test methods in laboratories are analyzed. It shows that though all those test methods can test the friction coefficient, the probe test method is most suitable for the research of friction and lubrication and the process in deep drawing, for this method is identical with the actual work condition either from the test principle or deformation status of the blank. Last the successful application in the deep drawing simulator newly developed the the probe method are intro- duced in detail.展开更多
The existing researches of the evaluation method of ride comfort of vehicle mainly focus on the level of human feelings to vibration. The level of human feelings to vibration is influenced by many factors, however, th...The existing researches of the evaluation method of ride comfort of vehicle mainly focus on the level of human feelings to vibration. The level of human feelings to vibration is influenced by many factors, however, the ride comfort according to the common principle of probability and statistics and simple binary logic is tmable to reflect these uncertainties. The random fuzzy evaluation model from people subjective response to vibration is adopted in the paper, these uncertainties are analyzed from the angle of psychological physics. Discussing the traditional evaluation of ride comfort during vehicle vibration, a fuzzily random evaluation model on the basis of annoyance rate is proposed for the human body's subjective response to vibration, with relevant fuzzy membership function and probability distribution given. A half-car four degrees of freedom suspension vibration model is described, subject to irregular excitations from the road surface, with the aid of software Matlab/Simulink. A new kind of evaluation method for ride comfort of vehicles is proposed in the paper, i.e., the annoyance rate evaluation method. The genetic algorithm and neural network control theory are used to control the system. Simulation results are obtained, such as the comparison of comfort reaction to vibration environments between before and after control, relationship of annoyance rate to vibration frequency and weighted acceleration, based on ISO 2631 / 1 (1982), ISO 2631-1 (1997) and annoyance rate evaluation method, respectively. Simulated assessment results indicate that the proposed active suspension systems prove to be effective in the vibration isolation of the suspension system, and the subjective response of human being can be promoted from very uncomfortable to a little uncomfortable. Furthermore, the novel evaluation method based on annoyance rate can further estimate quantitatively the number of passengers who feel discomfort due to vibration. A new analysis method of vehicle comfort is presented.展开更多
基金supported by grants from the National Science Foundation of China(Grant Nos.12375038 and 12075171 to ZJT,and 12205223 to YLT).
文摘RNAs have important biological functions and the functions of RNAs are generally coupled to their structures, especiallytheir secondary structures. In this work, we have made a comprehensive evaluation of the performances of existingtop RNA secondary structure prediction methods, including five deep-learning (DL) based methods and five minimum freeenergy (MFE) based methods. First, we made a brief overview of these RNA secondary structure prediction methods.Afterwards, we built two rigorous test datasets consisting of RNAs with non-redundant sequences and comprehensivelyexamined the performances of the RNA secondary structure prediction methods through classifying the RNAs into differentlength ranges and different types. Our examination shows that the DL-based methods generally perform better thanthe MFE-based methods for RNAs with long lengths and complex structures, while the MFE-based methods can achievegood performance for small RNAs and some specialized MFE-based methods can achieve good prediction accuracy forpseudoknots. Finally, we provided some insights and perspectives in modeling RNA secondary structures.
基金funded by the General Program of the National Natural Science Foundation of China grant number[62277022].
文摘Algorithms are the primary component of Artificial Intelligence(AI).The algorithm is the process in AI that imitates the human mind to solve problems.Currently evaluating the performance of AI is achieved by evaluating AI algorithms by metric scores on data sets.However the evaluation of algorithms in AI is challenging because the evaluation of the same type of algorithm has many data sets and evaluation metrics.Different algorithms may have individual strengths and weaknesses in evaluation metric scores on separate data sets,lacking the credibility and validity of the evaluation.Moreover,evaluation of algorithms requires repeated experiments on different data sets,reducing the attention of researchers to the research of the algorithms itself.Crucially,this approach to evaluating comparative metric scores does not take into account the algorithm’s ability to solve problems.And the classical algorithm evaluation of time and space complexity is not suitable for evaluating AI algorithms.Because classical algorithms input is infinite numbers,whereas AI algorithms input is a data set,which is limited and multifarious.According to the AI algorithm evaluation without response to the problem solving capability,this paper summarizes the features of AI algorithm evaluation and proposes an AI evaluation method that incorporates the problem-solving capabilities of algorithms.
基金supported by National Natural Science Foundation of China(Nos.22176012,52370025)the Pyramid Talent Training Project of Beijing University of Civil Engineering and Architecture(No.JDLJ20220802)+1 种基金the Doctor Graduate Scientific Research Ability Improvement Project of Beijing University of Civil Engineering and Architecture(No.DG2023014)Guangxi Key Laboratory of Urban Water Environment。
文摘The harmful algal bloom primarily caused by Microcystis aeruginosa(M.aeruginosa)has become one of the serious biological pollution issues in actual water,which has received intense attention worldwide.Over the past years,increasing number of publications have reported that metal-organic frameworks(MOFs)based functional materials exhibited significant inhibition against M.aeruginosa via multiple mechanisms,but no review papers systematically presented progresses regarding MOFs-based materials for M.aeruginosa control up to now.With this review paper,we summarized the state-of-the-art studies of MOFsbased materials for M.aeruginosa removal,comparing and discussing the design strategies of MOFs-based materials and their antimicrobial mechanisms.Meanwhile,we discussed methods for evaluating the water purification performances of MOFs-based materials against M.aeruginosa.Finally,the perspectives for design of novel MOFs-based functional materials and application scenarios were proposed to provide an outlook on areas where greater efforts should be made in the future.
基金Shenzhen Power SupplyCo.,Ltd.Grant number 090000KC24040028.
文摘With the accelerating urbanization process,the load demand of urban power grids is constantly increasing,giving rise to a batch of ultra-large urban power grids featuring large electricity demand,dense load distribution,and tight construction land constraints.This paper establishes a network planning method for urban power grids based on series reactors and MMC-MTEDC,focusing on four aspects:short-circuit current suppression,accommodation of external power supply,flexible inter-regional power support,and voltage stability enhancement in load centers.It proposes key indicators including node short-circuit current margin,line thermal stability margin,maximum fault-induced regional power loss,and voltage recovery time,thereby constructing an evaluation system for MMT-MTEDC network planning in urban power grids.Based on the Shenzhen power grid planning data,simulations using DSP software reveal that series reactors reduce short-circuit current by up to 5.0%,while the MMC-MTEDC system enhances node short-circuit margins by 4.212.9%and shortens voltage recovery time by 19.8%.Additionally,the MMC-MTEDC system maintains 3.34-6.76 percentage points higher thermal stability margins than conventional AC systems and enables complete avoidance of external power curtailment during N-2 faults via power reallocation between terminals.Compared with traditional AC or point-to-point HVDC schemes,the proposed hybrid planning method better adapts to the spatial and reliability demands of ultra-large receiving-end grids.This methodology provides practical insights into coordinated AC/DC development under high load density and strong external power reliance.Future work will extend the approach to include electromagnetic transient constraints and lightweight MMC station designs for urban applications.
基金supported by the Open Fund of Hubei Key Laboratory of Construction Management in Hydropower Engineering(Grant No.2016KSD04)the Open Fund of Engineering Research Center of Eco-environment in Three Gorges Reservoir Region,Ministry of Education(Grant No.KF2016-11).
文摘Sponge city(SPC)is proposed to solve the issues such as the degradation of urban water ecosystem environment,imbalanced water resource allocation,urban water logging,and water contamination.The PPP(Public Private Partnership)model is combined to release the government pressure of SPC project construction.The development of the SPC-PPP model makes significant contributions to the sustainable development and the enhancement of urban resilience against water-related disasters.However,there is no scientific performance evaluation system on its operation period has been conducted.Therefore,the SPC-PPP Evaluation model aims to objectively and reasonably assess project effectiveness,promote its development and refine the evaluation framework.This paper has set up the MEE model for performance evaluation,with improved Matter-Element Extension method to assign values to the evaluation indices.The research results show that:(1)The MEE model is more accurate in the performance evaluation and its effectiveness is reflected in its ability to capture the correlation among different indices in the same membership,rather than merely focusing on individual indices.(2)The proposed approach provided a new aspect for performance evaluation,improving the accuracy of evaluation and promoting the development of SPC-PPP project.
文摘Objective:To explore the application value of a new empowerment teaching method based on Kirkpatrick’s evaluation model in teaching Chinese medicine nursing in otorhinolaryngology.Methods:60 nurses who practiced in the otolaryngology department of our hospital from June 2022 to October 2024 were included in the study and equally divided into two groups using a convenient sampling method.30 nurses who chose traditional Chinese medicine skill teaching management were included in the control group,and 30 nurses who chose the new empowerment teaching method based on Kirkpatrick’s evaluation model were included in the observation group.Relevant indicators such as clinical teaching environment perception,theoretical knowledge scores of Chinese medicine nursing,and excellent rate of practical operation assessment were compared.Results:The nurses in the observation group had higher scores for clinical teaching environment perception than the control group(P<0.05).However,the midterm and final exam scores for theoretical knowledge of Chinese medicine nursing were higher in the observation group than in the control group(P<0.05).Compared with the control group,the observation group had a higher excellent rate of practical operation assessment(93.33%>73.33%)and a higher Chinese medicine nursing ability score[(215.69±19.73)points>(184.87±15.66)points](P<0.05).Conclusion:Applying the new empowerment teaching method based on Kirkpatrick’s evaluation model to Chinese medicine nursing teaching in otolaryngology can help nurses understand the theoretical knowledge of Chinese medicine nursing and optimize the clinical teaching environment,thereby promoting their practical skills and Chinese medicine nursing abilities.
文摘As a key sector in advancing China’s“carbon neutrality”goal,the machinery manufacturing industry has achieved remarkable development in recent years.Against this backdrop,the scientific and objective evaluation of the financial performance of machinery manufacturing enterprises has become a pressing issue in financial research.This topic is not only crucial for optimizing enterprise management and improving operational efficiency but also essential for enhancing overall industry performance and promoting sustainable development.This paper first introduces the concept of financial performance,followed by an analysis of related financial performance evaluation theories.It then focuses on the application of the entropy method in evaluating the financial performance of machinery manufacturing enterprises,detailing its analytical steps.Finally,a financial performance evaluation index system is constructed based on four dimensions:profitability,solvency,operational efficiency,and growth potential.
基金supported by the National Natural Science Foundation of China(Grant No.42377191,42072300)“The 14th Five Year Plan”Hubei Provincial advantaged characteristic disciplines(groups)project of Wuhan University of Science and Technology(Grant No.2023A0303).
文摘The stability of the tunnel portal slope is crucial for ensuring safe tunnel construction.Thus,a sound stability evaluation is of significance.Given the unique geological characteristics of tunnel portal slopes,it is necessary to establish a specific evaluation indicator system that differs from those used for ordinary slopes.Based on the unascertained measure method,uncertainties in the indicator are addressed by introducing the left and right half cloud asymmetric cloud model to optimize the linear membership function.The subjectivity of confidence criterion level identification is also improved by using the Euclidean distance method.Thus,a stability evaluation model for the tunnel portal slope is established based on the improved unascertained measure method.Finally,using the collected tunnel portal slope data,the results of four evaluation methods are compared with the safety factor levels.The evaluation methods include the traditional unascertained measure method,the method improved by using the left and right half cloud asymmetric cloud model,the method improved by using the Euclidean distance method,and the method improved by using both the left and right half cloud asymmetric cloud model and the Euclidean distance method.The results show that the accuracy rates of these four methods are 50%,55%,85%,and 90%,respectively.Among them,the joint improvement method has the slightest deviation,with only one level,while the other three methods had deviations of two levels.This result verifies the stability and effectiveness of the joint improvement method,providing a reference for tunnel portal slope stability evaluation.
文摘Objective:Existing research mainly relies on quantitative indicators.However,the subjectivity of qualitative indicators and the problem of their difficulty in quantification limit the comprehensiveness of evaluation.Therefore,a resilience supplier evaluation method based on the improved Z-number-ORESTE is proposed.Methods:Through the construction of a multi-tiered evaluation index system incorporating supplier capabilities,resources,strategic aspects,and resilience,Z-numbers are harnessed to signify qualitative indicators.An advanced Z-number distance metric is implemented,meticulously considering the impact exerted by the reliability portion of Z-numbers on information risk.The refined ORESTE ranking algorithm introduces the concepts of strong and weak orderings and capitalizes on the Borda assignment function.This approach facilitates a more precise appraisal of the performance of alternative solutions.By amalgamating the improved Z-number distance measurement approach with the ORESTE ranking methodology for multi-attribute decision-making,it becomes feasible to more efficiently assess the recovery capacities and adaptability of suppliers in the face of unforeseen incidents and risks.Results:Through the analysis of the comprehensive performance of the existing suppliers of a certain electronics enterprise,the results regarding the suppliers’recovery capabilities and adaptability when facing unexpected events and risks are obtained.Eventually,the suppliers that are in line with the long-term development strategy of the enterprise are selected.Conclusion:This evaluation system has verified its feasibility and effectiveness.Moreover,the system is capable of effectively identifying and selecting resilient suppliers,providing more reliable decision-making support for the enterprise’s supply chain management.
基金supported by the Key Research and Development Projects of the Ningxia Hui Autonomous Region(Grant no.2022BEG03161)。
文摘Brucellosis is a global public health issue that severely affects human health,Brucella melitensis is currently the predominant species in China.Brucella spondylitis is the primary cause of the debilitating and disabling complications[1].The lumbar vertebra was the most commonly affected site,followed by the thoracic,cervical,thoracolumbar,and lumbosacral segments,and back pain,fever,sweating,and fatigue were the most common symptoms[2].However,the diagnosis of Brucella spondylitis is challenging owing to its wide spectrum of clinical presentations,cross-reactions with other bacteria,and low strain isolation rate.Therefore,a timely and accurate diagnosis of spinal brucellosis is crucial for implementing an effective therapeutic plan and improving treatment outcomes.Droplet digital polymerase chain reaction(ddPCR)is widely used for low-abundance nucleic acid detection and is useful for diagnosing infectious diseases[3].Therefore,this study aimed to evaluate the ddPCR approach for the diagnosis of brucellosis with spondylitis to improve its clinical diagnostic capacity.
基金Supported by the PetroChina Science and Technology Project(2023ZZ0202)。
文摘The formation water sample in oil and gas fields may be polluted in processes of testing, trial production, collection, storage, transportation and analysis, making the properties of formation water not be reflected truly. This paper discusses identification methods and the data credibility evaluation method for formation water in oil and gas fields of petroliferous basins within China. The results of the study show that: (1) the identification methods of formation water include the basic methods of single factors such as physical characteristics, water composition characteristics, water type characteristics, and characteristic coefficients, as well as the comprehensive evaluation method of data credibility proposed on this basis, which mainly relies on the correlation analysis sodium chloride coefficient and desulfurization coefficient and combines geological background evaluation;(2) The basic identifying methods for formation water enable the preliminary identification of hydrochemical data and the preliminary screening of data on site, the proposed comprehensive method realizes the evaluation by classifying the CaCl2-type water into types A-I to A-VI and the NaHCO3-type water into types B-I to B-IV, so that researchers can make in-depth evaluation on the credibility of hydrochemical data and analysis of influencing factors;(3) When the basic methods are used to identify the formation water, the formation water containing anions such as CO_(3)^(2-), OH- and NO_(3)^(-), or the formation water with the sodium chloride coefficient and desulphurization coefficient not matching the geological setting, are all invaded with surface water or polluted by working fluid;(4) When the comprehensive method is used, the data credibility of A-I, A-II, B-I and B-II formation water can be evaluated effectively and accurately only if the geological setting analysis in respect of the factors such as formation environment, sampling conditions, condensate water, acid fluid, leaching of ancient weathering crust, and ancient atmospheric fresh water, is combined, although such formation water is believed with high credibility.
基金Supported by Jiangsu Agricultural Science and Technology Innovation Fund(CX(12)5035)Jiangsu Agricultural "Three New Engineering" Project(SXGC[2014]299)~~
文摘[Objective] The aim was to propose a new entropy weight fuzzy compre- hensive evaluation method for assessing cotton salt tolerance, realizing the objective, accurate and comprehensive evaluation of salt tolerance of cotton. [Method] A sand culture experiment under salt stress of 150 mmol/L of NaCI was designed. The in- dicator weight was determined with the entropy weight fuzzy comprehensive evalu- ation method, based on the salt injury index of indicators. The salt tolerance of cotton was evaluated comprehensively. [Result] At the germination stage, the entropy and weight of salt injury index of germination energy, vigor index, hypocotyl length and fresh weight were highest, followed by germination rate and germination index, and of root length were lowest. At the seedling stage, the entropy and weight of salt injury index of plasma membrane permeability, root vigor and leaf expansion rate were highest, followed by plant height and net photosynthetic rate, and of shoot dry weight and root dry weight were lowest. The salt tolerance of cotton differed a- mong growth stages and cultivars. Among the 11 cultivars, CCRI-44 and CCRI-75 were steadily salt-tolerant at both germination and seedling stages; CCRI-17, Sumi- an 22, Sumian 15 and Dexiamianl had a stable moderate salt tolerance; while Sumian 12 and Simian 3 were steadily salt-sensitive. [Conclusion] The evaluated result was objective and exact, which indicated that this method could be used in comprehensive evaluation of salt tolerance of cotton.
文摘A multi-level evaluation model for the superstructure of a damaged prestressed concrete girder or beam bridge is established, and the evaluation indices of the model as well as the rating standards are defined. A normal relative function about the evaluation indices of each element is developed to calculate the relative degree, and for each element there are no sub-level elements. When evaluating the elements in the sub-item level or the index level of the model, the weights of elements pertain to one adopted element, taking into account their degrees of deterioration. Since the relative degrees and structure evaluation scales on the damage conditions are applied to characterize the superstructure of damaged prestressed concrete girder bridges, this method can evaluate the prestressed structure in detail, and the evaluation results agree with the Code for Maintenance of Highway Bridges and Culvers (JTG Hll--2004 ). Finally, a bridge in Jilin province is taken as an example, using the method developed to evaluate its damage conditions, which gives an effective way for bridge engineering.
基金Supported by the Major Project of Application Foundation and Advanced Technology of Tianjin (the Natural Science Foundation of Tianjin) (09JCZDJC19200),China~~
文摘[Objective] This study was to provide references for the evaluation of water quality in aquaculture ponds by evaluating the pond water quality using fuzzy comprehensive evaluation method based on entropy weight. [Method] The fuzzy compre- hensive evaluation method based on entropy weight was used to evaluate the water quality in the ponds with Ukraine scale carp (Cyprinus carpio) as the main cultivated fish. The average size of the fish was 71.4 g/ind, and totally three groups of pond were set with the population density of 6 000, 9 000, 12 000 ind/hm2. [Result] According to the GB3838-2002 Environmental Quality Standards for Surface Water of China, the water quality of 6 000 ind/hm2 group was Grade I, and the water quality of 9 000 and 12 000 ind/hm2 were Grade V. [Conclusion] With the increasing of feeding density, the pond water quality would worsen, however, there is no difference on water quality between 9 000 and 12 000 ind/hm2 groups.
基金Supported by the National 863 Plan Foundation under Grant No.2003AA414060
文摘In the process of designing self-elevating drilling unit, it is important, yet complicated, to use comparison and filtering to select the optimum scheme from the feasible ones. In this research, an index system and methodology for the evaluation of self-elevating drilling unit was proposed. Based on this, a multi-objective combinatorial optimization model was developed, using the improved grey relation Analysis (GRA), in which the analytic hierarchy process (AHP) was used to determine the weights of the evaluating indices. It considered the connections within the indices, reflecting the objective nature of things, and also considered the subjective interests of ship owners and the needs of designers. The evaluation index system and evaluation method can be used in the selection of an optimal scheme and advanced assessment. A case study shows the index system and evaluation method are scientific, reasonable, and easy to put into practice. At the same time, such an evaluation index system and evaluation method will be helpful for making decisions for other mobile platforms.
文摘Poverty incidence is the key index that needs to be measured in the poverty exit examination and evaluation of 832 poverty-stricken counties and 128 000 poverty-stricken villages. In this paper, based on the statement of general concept and conventional calculation method of the poverty incidence, the calculation method of poverty incidence in the exit evaluation of poverty-stricken counties (also including poverty-stricken township and poverty-stricken villages) was investigated through the view of the third-party evaluation. In addition to considering the previous "number of planned poverty remaining population", the method also needed to give consideration to the exiting mistaken population, evaluation missing population. Based on the case in Yuanyang County, Honghe Hani and Yi Autonomous Prefecture, Yunnan Province, the poverty incidences of 10 exit planning villages by the end of 2017 in Yuanyang County were investigated and estimated, and suggestions were proposed to promote the precise poverty alleviation and poverty relief of the county.
基金The National Natural Science Foundation of China (No. 50378008)
文摘Considering the difficulty of fuzzy synthetic evaluation method in calculation of the multiple factors and ignorance of the relationship among evaluating objects, a new weight evaluation process using entropy method was introduced. This improved method for determination of weight of the evaluating indicators was applied in water quality assessment of the Three Gorges reservoir area. The results showed that this method was favorable for fuzzy synthetic evaluation when there were more than one evaluating objects. One calculation was enough for calculating every monitoring point. Compared with the original evaluation method, the method predigested the fuzzy synthetic evaluation process greatly and the evaluation results are more reasonable.
基金supported by the National Natural Science Foundation of China (No. 41071322, 71031001)
文摘For natural water, method of water quality evaluation based on improved fuzzy matter-element evaluation method is presented. Two important parts are improved, the weights determining and fuzzy membership functions. The coefficient of variation of each indicator is used to determine the weight instead of traditional calculating superscales method. On the other hand, fuzzy matter-elements are constructed, and normal membership degrees are used instead of traditional trapezoidal ones. The composite fuzzy matter-elements with associated coefficient are constructed through associated transformation. The levels of natural water quality are determined according to the principle of maximum correlation. The improved fuzzy matter-element evaluation method is applied to evaluate water quality of the Luokou mainstream estuary at the first ten weeks in 2011 with the coefficient of variatiola method determining the weights. Water quality of Luokou mainstream estuary is dropping from level I to level II. The results of the improved evaluation method are basically the same as the official water quality. The variation coefficient method can reduce the workload, and overcome the adverse effects from abnormal values, compared with the traditional calculating superscales method. The results of improved fuzzy matter- element evaluation method are more credible than the ones of the traditional evaluation method. The improved evaluation method can use information of monitoring data more scientifically and comprehensively, and broaden a new evaluation method for water quality assessment.
文摘The deformation characteristic of bland in deep drawing is discussed. It is pointed out that the friction and lubrication conditions in for drawing are different from that in mechanical motion or machine work or other plastic process. The common test methods in laboratories are analyzed. It shows that though all those test methods can test the friction coefficient, the probe test method is most suitable for the research of friction and lubrication and the process in deep drawing, for this method is identical with the actual work condition either from the test principle or deformation status of the blank. Last the successful application in the deep drawing simulator newly developed the the probe method are intro- duced in detail.
基金supported by National University Basic Scientific Research Fund of China(Grant No.N100403009)National Natural Science Foundation of China(Grant No.50875041)
文摘The existing researches of the evaluation method of ride comfort of vehicle mainly focus on the level of human feelings to vibration. The level of human feelings to vibration is influenced by many factors, however, the ride comfort according to the common principle of probability and statistics and simple binary logic is tmable to reflect these uncertainties. The random fuzzy evaluation model from people subjective response to vibration is adopted in the paper, these uncertainties are analyzed from the angle of psychological physics. Discussing the traditional evaluation of ride comfort during vehicle vibration, a fuzzily random evaluation model on the basis of annoyance rate is proposed for the human body's subjective response to vibration, with relevant fuzzy membership function and probability distribution given. A half-car four degrees of freedom suspension vibration model is described, subject to irregular excitations from the road surface, with the aid of software Matlab/Simulink. A new kind of evaluation method for ride comfort of vehicles is proposed in the paper, i.e., the annoyance rate evaluation method. The genetic algorithm and neural network control theory are used to control the system. Simulation results are obtained, such as the comparison of comfort reaction to vibration environments between before and after control, relationship of annoyance rate to vibration frequency and weighted acceleration, based on ISO 2631 / 1 (1982), ISO 2631-1 (1997) and annoyance rate evaluation method, respectively. Simulated assessment results indicate that the proposed active suspension systems prove to be effective in the vibration isolation of the suspension system, and the subjective response of human being can be promoted from very uncomfortable to a little uncomfortable. Furthermore, the novel evaluation method based on annoyance rate can further estimate quantitatively the number of passengers who feel discomfort due to vibration. A new analysis method of vehicle comfort is presented.