An integral connection exists among the mine production planning, the mined material destination, and the ultimate pit limit (UPL) in the mining engineering economy. This relation is reinforced by real information a...An integral connection exists among the mine production planning, the mined material destination, and the ultimate pit limit (UPL) in the mining engineering economy. This relation is reinforced by real information and the benefits it engenders in the mining economy. Hence, it is important to create optimizing algorithms to reduce the errors of economic calculations. In this work, a logical mathematical algorithm that considers the important designing parameters and the mining economy is proposed. This algorithm creates an optimizing repetitive process among different designing constituents and directs them into the maximum amount of the mine economical parameters. This process will produce the highest amount of ores and the highest degree of safety. The modeling produces a new relation between the concept of the cutoff grade, mine designing, and mine planning, and it provides the maximum benefit by calculating the destination of the ores. The proposed algorithm is evaluated in a real case study. The results show that the net present value of the mine production is increased by 3% compared to previous methods of production design and UPL.展开更多
Land degradation caused by surface mining of gold has been extensive in Ghana. In recent years rehabilitation of some degraded lands by re-vegetation has been undertaken. This study provides quantitative data on the q...Land degradation caused by surface mining of gold has been extensive in Ghana. In recent years rehabilitation of some degraded lands by re-vegetation has been undertaken. This study provides quantitative data on the quality of some rehabilitated and un-rehabilitated mined soils within the AngloGold-Ashanti gold concession in parts of the semi-deciduous forest zone of Ghana. Soil properties determined included texture, bulk density and aggregate stability, pH, organic carbon, available phosphorus, total nitrogen, cation exchange capacity, exchangeable bases, exchange acidity, Fe, Mn, Ni, Cu, Zn, Cd, and Pb. Aggregate stability as a physical quality indicator revealed that aggregates of the rehabilitated mined soil had become more stable and similar to the control unmined soil due to litter and carbon additions from planted trees. The nutrient levels were very low because of the presence of low activity clays inherent in the native soil. Organic carbon content in the rehabilitated soil had increased above that of the unrehabilitated soil. Variability in soil properties, especially organic carbon and aggregate stability, was minimal in the unmined and rehabilitated soils implying that soils at the two sites were most robust and resistant to crushing and rupture. Quality index of the unmined control soil was 36.5% indicating that the quality of the soil was 63.5% relative to the optimum quality because of inherent poor soil properties. The mined rehabilitated and unrehabilitated soil had index values of 32.5% and 24.4 %, respectively. The marginal difference of 4% in soil quality between the control and rehabilitated soil shows that it is possible to maintain the health of soils with inherent physical and biochemical deficiencies if reclamation regulations are adhered to. In this way, the socio-economic dilemma of exploiting natural resources for the benefit of societies is ameliorated while maintaining an ecosystem balance.展开更多
In order to obtain a gas seepage law of deep mined coal seams, according to the properties of coalbed methane seepage in in-situ stress and geothermal temperature fields, the gas seepage equation of deep mined coal se...In order to obtain a gas seepage law of deep mined coal seams, according to the properties of coalbed methane seepage in in-situ stress and geothermal temperature fields, the gas seepage equation of deep mined coal seams with the Klinkenberg effect was obtained by confirming the coatbed methane permeability in in-situ stress and geothermal temperature fields. Aimed at the condition in which the coal seams have or do not have an outcrop and outlet on the ground, the application of the gas seepage equation of deep mined coal seams in in-situ stress and geothermal temperature fields on the gas pressure calculation of deep mined coal seams was investigated. The comparison between calculated and measured results indicates that the calculation method of gas pressure, based on the gas seepage equation of deep mined coal seams in in-situ stress and geothermal temperature fields can accu- rately be identical with the measured values and theoretically perfect the calculation method of gas pressure of deep mined coal seams.展开更多
Ground movement and deformation caused by underground mining would destroy the constructions located within subsidence area. Constructions would suffer different destructions with different location. The effect of gro...Ground movement and deformation caused by underground mining would destroy the constructions located within subsidence area. Constructions would suffer different destructions with different location. The effect of ground deformation caused by underground mining to constructions was analyzed. Analyzed the destructive types of constructions in different ground movement and deformation. Taking a two-storey building for example, the walls were reinforced by computation before mining. To protect the construction the reinforcement measures to the construction before mining were studied.展开更多
The overlying strata spatial structure academic viewpoint thinks the primary factor which controls the stope presses is the overlying strata spatial structure movement; the spatial structure above the later period coa...The overlying strata spatial structure academic viewpoint thinks the primary factor which controls the stope presses is the overlying strata spatial structure movement; the spatial structure above the later period coal pillar surrounded by mined areas is the most complex overlying strata spatial structure and study on its evolution law has the important realistic project significance for strata movement control and production safety. The existing research results indicate that the special structure of the first working face of the mine begins to develop lengthways from stratum movement above mined areas and extends level in the exploitation direction. From existing overlying strata spatial structure fundamental research achievement, the spatial structure above the later period coal column surrounded by mined areas have following characteristic: The spatial structure formation is from the top to the lower and from large to small. According to the findings, a formula with the use of rock layer migration angle delta was put forward to estimate isolated island coal column width on which different stratum structure is gonging to form.展开更多
Heavy metal pollution from both anthropogenic and natural processes can have significant effect on environmental quality of stream and river systems. However, in Ghana, heavy metal pollution of waterbodies is attribut...Heavy metal pollution from both anthropogenic and natural processes can have significant effect on environmental quality of stream and river systems. However, in Ghana, heavy metal pollution of waterbodies is attributed mainly to mining activities but the role of natural mechanisms in altering stream water and sediment quality in relation to heavy metals has received little attention. Spatial and temporal variation in water quality parameters and heavy metal concentrations in water and sediments were studied comparatively in a river and two streams in a gold-rich watershed impacted by heavy mining activities. Samples were collected monthly over a twelve-month period from November 2010 to October 2011 from upstream (unmined) and downstream (mined) sections of the studied streams. Parameters measured include temperature, dissolved oxygen, conductivity, pH, turbidity, colour, mercury (Hg) and arsenic. High spatial variability of water quality parameters was found. Hg concentrations in water were extremely low in both upstream and downstream areas. Maximum geochemical background levels of Hg in unmined pristine areas were 2.45 mg/g whilst arsenic was 29.10 mg/g. By contrast, gold-mined downstream areas recorded Hg and arsenic concentrations of 8.75 mg/g and 82.53 mg/g in stream sediments respectively. Levels of Hg and arsenic in sediments were several orders of magnitude greater than concentrations in surface water in downstream sections and this may be explained by substances originating from mining activities, upstream transport or remobilized sedimented materials in the overlying water column. Our study showed that both natural and human activities may contribute to heavy metal pollution in the highly mineralized watershed of the Pra River Basin. Human factors are however likely to amplify the natural background levels of heavy metals.展开更多
Mineral sands mining is worldwide an environmental issue and also at the Hillendale mine in KwaZulu-Natal, South Africa. The post-mined soil is to be rehabilitated to sugarcane cropping. One of the concerns with the p...Mineral sands mining is worldwide an environmental issue and also at the Hillendale mine in KwaZulu-Natal, South Africa. The post-mined soil is to be rehabilitated to sugarcane cropping. One of the concerns with the post-mined soil which is reconstituted with a 70:30 mixture of sand: slimes (silt-plus-clay fraction), is its low phosphorus (P) status, which could be limiting for optimum sugarcane production. A field experiment was conducted on a reconstituted soil at Hillendale to establish the availability of either residual or applied inorganic P to the plant and first ratoon sugarcane crop. Four treatments were evaluated including those where P fertilizer was omitted, applied at half the recommended rate or introduced equal to the recommended rate according to chemical analysis of the soil. In the fourth treatment, no fertilizer was applied at all, whereas nitrogen (N) and potassium (K) were added at recommended rates in the first three treatments. Phosphorus application had a significant effect on sugarcane fractional light interception and aboveground biomass yield of the plant and first ratoon crops, and stalk length and diameter of the first ratoon crop. Pol, brix, purity and fibre content and tiller number were not affected by P application. The application of P increased the foliar N, P, K, calcium (Ca), magnesium (Mg) and sulphur (S) contents of both crops. However, foliar N, P and K were deficient in the first ratoon crop even in the case where fertilizer was applied at the recommended rates, which could have been because of waterlogging. The possible effect of waterlogging on P uptake needs to be addressed in future studies in this reconstituted soil.展开更多
Goal-setting enhances learning by providing a sense of direction and purpose to individuals. Contemporary social media plays an important role in expressing individual users' messages and sharing personal goals withi...Goal-setting enhances learning by providing a sense of direction and purpose to individuals. Contemporary social media plays an important role in expressing individual users' messages and sharing personal goals within a given community. The massiveness of the data available for users calls for a more systematic analysis of goals and meaning-making construction of these goals for educational and research purposes. This research proposes an approach to combine methods of mining, corpus linguistics and SFG (systemic functional grammar) for extracting goals in mined tweets, sorting the data linguistically and devising a model for analyzing the data based on the concepts of SFG and genre-based realization. The results of "meaning-making" analysis of goals show that: (1) mining is a successful tool for processing the large database into the pre-designated typology of goals; (2) the implementation of SFG as an analytical theory for semiotic and semogenic features of goals is a significant expansion of linguistic analysis of goals; (3) the Transitivity Model of SFG for identifying the Ideational Function of social meaning creation shows thc inclination of using "material", "mental" and "relational" processes as well as personal recounts of past learning experiences.展开更多
Active restoration is a critical component of biodiversity conservation for degraded tropical forest ecosystems caused by artisanal gold mining, and the success of restoration is dependent on native species selection....Active restoration is a critical component of biodiversity conservation for degraded tropical forest ecosystems caused by artisanal gold mining, and the success of restoration is dependent on native species selection. However, significant knowledge gaps exist regarding when and where to plant trees. This article reports on a revegetation trial undertaken in St Elizabeth, Mahdia, Guyana, to assess the survival and RGR (Relative Growth Rate) of three native woody trees and shrubs planted within three years old Acacia mangium Willd trees pruned and unpruned blocks. ANOVA (Analysis of Variance) for a completely randomized block design with four blocks, two pruned and two unpruned, within A. mangium plots. Biochar treatment was added to the plants during transplanting. Thirty-six (36) wildlings of Humiria balsamifera (Aublet.) (Tauroniro), Goupia glabra Aublet (Kabukalli), and Vismia guianensis (Aublet.) Choisy (Bloodwood) were collected and raised in a tree nursery for two weeks. The native plants were transplanted 3 m apart, survival observations and each seedling’s initial height and diameter were measured and recorded. After the experiment, 13% of seedlings from a population of 720 had died, with the highest mortality being experienced at the 92 days of the experiment (t ≤ 122 days). While the overall survival rates were high, emphasizing the importance of field trials on native and exotic species in different environments is essential to fill the knowledge gaps on suitable species for restoration in degraded areas with other land use histories.展开更多
Rare-earth elements(REEs)have been listed as“critical metals”by many countries,including China,the USA,the European Union,and Japan.Heavy REEs(HREEs)are particularly significant due to their irreplaceable use in hig...Rare-earth elements(REEs)have been listed as“critical metals”by many countries,including China,the USA,the European Union,and Japan.Heavy REEs(HREEs)are particularly significant due to their irreplaceable use in high-tech and security applications,making them strategically important and economically valuable.Ion-adsorption deposits(IADs)of REEs are the dominant minable resources of HREEs,supplying more than 90%of the global HREEs.However,the existing IAD mining techniques,predominately ammonium-salt in situ leaching,have faced significant challenges,including severe environmental damage,low REE recovery efficiency,and extended leaching durations,leading to its governmental ban in 2018.Writing in Nature Sustainability and The Innovation,Wang et al.1,2 propose a distinctly more efficient technology,i.e.,electrokinetic mining(EKM),that could help to reduce the impacts of REE mining substantially.展开更多
Medical Data Mining published an article entitled Mapping the global research trends and hotspots on hypertensive nephropathy:A novel bibliometrics overview on 10 October 2025.The author confirmed this article’s proo...Medical Data Mining published an article entitled Mapping the global research trends and hotspots on hypertensive nephropathy:A novel bibliometrics overview on 10 October 2025.The author confirmed this article’s proof on 28 September 2025 without any questions.However,on 13 November 2025,the Editorial Office of Medical Data Mining noticed an inconsistency between the data presented in the main text and Figure 1.Specifically,erroneous Figure 1 states“a total of 56,691 literatures were obtained through database search”,while the main text in the Search results section states“According to the search term,a total of 59,220 publications were retrieved from the database.”The authors acknowledge that the original version of Figure 1 was incorrect and have provided the revised,correct version in this corrigendum.The authors would like to assert that there is no change in the body text of the article.展开更多
The integration of machine learning(ML)technology with Internet of Things(IoT)systems produces essential changes in healthcare operations.Healthcare personnel can track patients around the clock thanks to healthcare I...The integration of machine learning(ML)technology with Internet of Things(IoT)systems produces essential changes in healthcare operations.Healthcare personnel can track patients around the clock thanks to healthcare IoT(H-IoT)technology,which also provides proactive statistical findings and precise medical diagnoses that enhance healthcare performance.This study examines how ML might support IoT-based health care systems,namely in the areas of prognostic systems,disease detection,patient tracking,and healthcare operations control.The study looks at the benefits and drawbacks of several machine learning techniques for H-IoT applications.It also examines the fundamental problems,such as data security and cyberthreats,as well as the high processing demands that these systems face.Alongside this,the essay discusses the advantages of all the technologies,including machine learning,deep learning,and the Internet of Things,as well as the significant difficulties and problems that arise when integrating the technology into healthcare forecasts.展开更多
Processes supported by process-aware information systems are subject to continuous and often subtle changes due to evolving operational,organizational,or regulatory factors.These changes,referred to as incremental con...Processes supported by process-aware information systems are subject to continuous and often subtle changes due to evolving operational,organizational,or regulatory factors.These changes,referred to as incremental concept drift,gradually alter the behavior or structure of processes,making their detection and localization a challenging task.Traditional process mining techniques frequently assume process stationarity and are limited in their ability to detect such drift,particularly from a control-flow perspective.The objective of this research is to develop an interpretable and robust framework capable of detecting and localizing incremental concept drift in event logs,with a specific emphasis on the structural evolution of control-flow semantics in processes.We propose DriftXMiner,a control-flow-aware hybrid framework that combines statistical,machine learning,and process model analysis techniques.The approach comprises three key components:(1)Cumulative Drift Scanner that tracks directional statistical deviations to detect early drift signals;(2)a Temporal Clustering and Drift-Aware Forest Ensemble(DAFE)to capture distributional and classification-level changes in process behavior;and(3)Petri net-based process model reconstruction,which enables the precise localization of structural drift using transition deviation metrics and replay fitness scores.Experimental validation on the BPI Challenge 2017 event log demonstrates that DriftXMiner effectively identifies and localizes gradual and incremental process drift over time.The framework achieves a detection accuracy of 92.5%,a localization precision of 90.3%,and an F1-score of 0.91,outperforming competitive baselines such as CUSUM+Histograms and ADWIN+Alpha Miner.Visual analyses further confirm that identified drift points align with transitions in control-flow models and behavioral cluster structures.DriftXMiner offers a novel and interpretable solution for incremental concept drift detection and localization in dynamic,process-aware systems.By integrating statistical signal accumulation,temporal behavior profiling,and structural process mining,the framework enables finegrained drift explanation and supports adaptive process intelligence in evolving environments.Its modular architecture supports extension to streaming data and real-time monitoring contexts.展开更多
The rapid growth of biomedical data,particularly multi-omics data including genomes,transcriptomics,proteomics,metabolomics,and epigenomics,medical research and clinical decision-making confront both new opportunities...The rapid growth of biomedical data,particularly multi-omics data including genomes,transcriptomics,proteomics,metabolomics,and epigenomics,medical research and clinical decision-making confront both new opportunities and obstacles.The huge and diversified nature of these datasets cannot always be managed using traditional data analysis methods.As a consequence,deep learning has emerged as a strong tool for analysing numerous omics data due to its ability to handle complex and non-linear relationships.This paper explores the fundamental concepts of deep learning and how they are used in multi-omics medical data mining.We demonstrate how autoencoders,variational autoencoders,multimodal models,attention mechanisms,transformers,and graph neural networks enable pattern analysis and recognition across all omics data.Deep learning has been found to be effective in illness classification,biomarker identification,gene network learning,and therapeutic efficacy prediction.We also consider critical problems like as data quality,model explainability,whether findings can be repeated,and computational power requirements.We now consider future elements of combining omics with clinical and imaging data,explainable AI,federated learning,and real-time diagnostics.Overall,this study emphasises the need of collaborating across disciplines to advance deep learning-based multi-omics research for precision medicine and comprehending complicated disorders.展开更多
By 2004, the occupied and disturbed land area had reached 3.393 million ha by mining, of which forest land took 532 000 ha; In addition, mining also caused 3.721 million -5.316 million ha of degraded forests and woodl...By 2004, the occupied and disturbed land area had reached 3.393 million ha by mining, of which forest land took 532 000 ha; In addition, mining also caused 3.721 million -5.316 million ha of degraded forests and woodlands. The impact of mining on environment is multi-fold and deep. Thus it is necessary and significant to approach effective methods to speed up vegetation restoration in abandoned mined lands. Phytoremediation is a relatively new technology (in the lastest decade) and the numbers of plant species have been identified to accumulate high levels of heavy metals, which implies that phytoremediation is available, practical and effective. Thereby the main procedure of ecosystem restoration in abandoned mined lands by mean of phytoremediation is discussed in the paper, such as site preparation, species selection, planting techniques, maintenance and tending methods.展开更多
In this paper, we have proposed and designed DPHK (data prediction based on HMM according to activity pattern knowledge mined from trajectories), a real-time distributed predicted data collection system to solve the...In this paper, we have proposed and designed DPHK (data prediction based on HMM according to activity pattern knowledge mined from trajectories), a real-time distributed predicted data collection system to solve the congestion and data loss caused by too many connections to sink node in indoor smart environment scenarios (like Smart Home, Smart Wireless Healthcare and so on). DPHK predicts and sends predicted data at one time instead of sending the triggered data of these sensor nodes which people is going to pass in several times. Firstly, our system learns the knowl- edge of transition probability among sensor nodes from the historical binary motion data through data mining. Secondly, it stores the corresponding knowledge in each sensor node based on a special storage mechanism. Thirdly, each sensor node applies HMM (hidden Markov model) algorithm to pre- dict the sensor node locations people will arrive at according to the received message. At last, these sensor nodes send their triggered data and the predicted data to the sink node. The significances of DPHK are as follows: (a) the procedure of DPHK is distributed; (b) it effectively reduces the connection between sensor nodes and sink node. The time complexities of the proposed algorithms are analyzed and the performance is evaluated by some designed experiments in a smart environment.展开更多
In early October,an announcement was given on official website of Ministry of Natural Resources:exploration and utilization scheme of Xikeng lithium ore in Yifeng County of Jiangxi Province was examined and approved,a...In early October,an announcement was given on official website of Ministry of Natural Resources:exploration and utilization scheme of Xikeng lithium ore in Yifeng County of Jiangxi Province was examined and approved,and the news was finally announced.According to the announcement,design opencast mining scale of the ore is 3000000 tons/year,underground mining scale of the ore is 600000 tons/year,and mine life is 39years(including 1 year of infrastructure construction).展开更多
1.Introduction Changes in land use are key factors promoting global climate change,and the side effects of mining activity that destroy the soil,vegetation,and biodiversity lead to imbalanced carbon cycling in terrest...1.Introduction Changes in land use are key factors promoting global climate change,and the side effects of mining activity that destroy the soil,vegetation,and biodiversity lead to imbalanced carbon cycling in terrestrial ecosystems.展开更多
Gas content serves as a critical indicator for assessing the resource potential of deep coal mines and forecasting coal mine gas outburst risks.However,existing sampling technologies face challenges in maintaining the...Gas content serves as a critical indicator for assessing the resource potential of deep coal mines and forecasting coal mine gas outburst risks.However,existing sampling technologies face challenges in maintaining the integrity of gas content within samples and are often constrained by estimation errors inherent in empirical formulas,which results in inaccurate gas content measurements.This study introduces a lightweight,in-situ pressure-and gas-preserved corer designed to collect coal samples under the pressure conditions at the sampling point,effectively preventing gas loss during transfer and significantly improving measurement accuracy.Additionally,a gas migration model for deep coal mines was developed to elucidate gas migration characteristics under pressure-preserved coring conditions.The model offers valuable insights for optimizing coring parameters,demonstrating that both minimizing the coring hole diameter and reducing the pressure difference between the coring-point pressure and the original pore pressure can effectively improve the precision of gas content measurements.Coring tests conducted at an experimental base validated the performance of the corer and its effectiveness in sample collection.Furthermore,successful horizontal coring tests conducted in an underground coal mine roadway demonstrated that the measured gas content using pressure-preserved coring was 34%higher than that obtained through open sampling methods.展开更多
Deep-sea mining has emerged as a critical solution to address global resource shortages;however,the mechanical interaction between tracked mining vehicles(TMVs)and soft seabed sediments presents fundamental engineerin...Deep-sea mining has emerged as a critical solution to address global resource shortages;however,the mechanical interaction between tracked mining vehicles(TMVs)and soft seabed sediments presents fundamental engineering challenges.This study establishes a multiscale modelling framework coupling the discrete element method(DEM)with multi-body dynamics(MBD)to investigate track-seabed dynamic interactions across three operational modes:flat terrain,slope climbing,and ditch surmounting.The simulation framework,validated against laboratory experiments,systematically evaluates the influence of grouser geometry(involute,triangular,and pin-type)and traveling speed(0.2–1.0 m/s)on traction performance,slip rate,and ground pressure distribution.Results reveal rate-dependent traction mechanisms governed by soil microstructural responses:higher speeds enhance peak traction but exacerbate slip instability on complex terrain.Critical operational thresholds are established—0.7 m/s for flat terrain,≤0.5 m/s for slopes and ditches—with distinct grouser optimization strategies:involute grousers achieve 35%–40%slip reduction on slopes through progressive soil engagement,while triangular grousers provide optimal impact resistance during ditch crossing with 30%–35%performance improvement.These findings provide quantitative design criteria and operational guidelines for optimizing TMV structural parameters and control strategies,offering a robust theoretical foundation for enhancing the performance,safety,and reliability of deep-sea mining equipment in complex submarine environments.展开更多
文摘An integral connection exists among the mine production planning, the mined material destination, and the ultimate pit limit (UPL) in the mining engineering economy. This relation is reinforced by real information and the benefits it engenders in the mining economy. Hence, it is important to create optimizing algorithms to reduce the errors of economic calculations. In this work, a logical mathematical algorithm that considers the important designing parameters and the mining economy is proposed. This algorithm creates an optimizing repetitive process among different designing constituents and directs them into the maximum amount of the mine economical parameters. This process will produce the highest amount of ores and the highest degree of safety. The modeling produces a new relation between the concept of the cutoff grade, mine designing, and mine planning, and it provides the maximum benefit by calculating the destination of the ores. The proposed algorithm is evaluated in a real case study. The results show that the net present value of the mine production is increased by 3% compared to previous methods of production design and UPL.
文摘Land degradation caused by surface mining of gold has been extensive in Ghana. In recent years rehabilitation of some degraded lands by re-vegetation has been undertaken. This study provides quantitative data on the quality of some rehabilitated and un-rehabilitated mined soils within the AngloGold-Ashanti gold concession in parts of the semi-deciduous forest zone of Ghana. Soil properties determined included texture, bulk density and aggregate stability, pH, organic carbon, available phosphorus, total nitrogen, cation exchange capacity, exchangeable bases, exchange acidity, Fe, Mn, Ni, Cu, Zn, Cd, and Pb. Aggregate stability as a physical quality indicator revealed that aggregates of the rehabilitated mined soil had become more stable and similar to the control unmined soil due to litter and carbon additions from planted trees. The nutrient levels were very low because of the presence of low activity clays inherent in the native soil. Organic carbon content in the rehabilitated soil had increased above that of the unrehabilitated soil. Variability in soil properties, especially organic carbon and aggregate stability, was minimal in the unmined and rehabilitated soils implying that soils at the two sites were most robust and resistant to crushing and rupture. Quality index of the unmined control soil was 36.5% indicating that the quality of the soil was 63.5% relative to the optimum quality because of inherent poor soil properties. The mined rehabilitated and unrehabilitated soil had index values of 32.5% and 24.4 %, respectively. The marginal difference of 4% in soil quality between the control and rehabilitated soil shows that it is possible to maintain the health of soils with inherent physical and biochemical deficiencies if reclamation regulations are adhered to. In this way, the socio-economic dilemma of exploiting natural resources for the benefit of societies is ameliorated while maintaining an ecosystem balance.
基金support of the Open Fund of State Key Laboratory of Oil and Gas Reser-voir Geology and Exploitation (Southwest Petroleum University) (PLN0610)the Opening Project of He-nan Key Laboratory of Coal Mine Methane and Fire Prevention (HKLGF200706)+3 种基金 the National Natural Science Foundation of China (No. 50334060, 50474025, 50774106)the National Key Fundamental Research and Development Program of China (No. 2005CB221502)the Natural Science Innovation Group Foundation of China (No. 50621403)the Natural Science Foundation of Chongqing of China(No. CSTC, 2006BB7147, 2006AA7002).
文摘In order to obtain a gas seepage law of deep mined coal seams, according to the properties of coalbed methane seepage in in-situ stress and geothermal temperature fields, the gas seepage equation of deep mined coal seams with the Klinkenberg effect was obtained by confirming the coatbed methane permeability in in-situ stress and geothermal temperature fields. Aimed at the condition in which the coal seams have or do not have an outcrop and outlet on the ground, the application of the gas seepage equation of deep mined coal seams in in-situ stress and geothermal temperature fields on the gas pressure calculation of deep mined coal seams was investigated. The comparison between calculated and measured results indicates that the calculation method of gas pressure, based on the gas seepage equation of deep mined coal seams in in-situ stress and geothermal temperature fields can accu- rately be identical with the measured values and theoretically perfect the calculation method of gas pressure of deep mined coal seams.
文摘Ground movement and deformation caused by underground mining would destroy the constructions located within subsidence area. Constructions would suffer different destructions with different location. The effect of ground deformation caused by underground mining to constructions was analyzed. Analyzed the destructive types of constructions in different ground movement and deformation. Taking a two-storey building for example, the walls were reinforced by computation before mining. To protect the construction the reinforcement measures to the construction before mining were studied.
文摘The overlying strata spatial structure academic viewpoint thinks the primary factor which controls the stope presses is the overlying strata spatial structure movement; the spatial structure above the later period coal pillar surrounded by mined areas is the most complex overlying strata spatial structure and study on its evolution law has the important realistic project significance for strata movement control and production safety. The existing research results indicate that the special structure of the first working face of the mine begins to develop lengthways from stratum movement above mined areas and extends level in the exploitation direction. From existing overlying strata spatial structure fundamental research achievement, the spatial structure above the later period coal column surrounded by mined areas have following characteristic: The spatial structure formation is from the top to the lower and from large to small. According to the findings, a formula with the use of rock layer migration angle delta was put forward to estimate isolated island coal column width on which different stratum structure is gonging to form.
文摘Heavy metal pollution from both anthropogenic and natural processes can have significant effect on environmental quality of stream and river systems. However, in Ghana, heavy metal pollution of waterbodies is attributed mainly to mining activities but the role of natural mechanisms in altering stream water and sediment quality in relation to heavy metals has received little attention. Spatial and temporal variation in water quality parameters and heavy metal concentrations in water and sediments were studied comparatively in a river and two streams in a gold-rich watershed impacted by heavy mining activities. Samples were collected monthly over a twelve-month period from November 2010 to October 2011 from upstream (unmined) and downstream (mined) sections of the studied streams. Parameters measured include temperature, dissolved oxygen, conductivity, pH, turbidity, colour, mercury (Hg) and arsenic. High spatial variability of water quality parameters was found. Hg concentrations in water were extremely low in both upstream and downstream areas. Maximum geochemical background levels of Hg in unmined pristine areas were 2.45 mg/g whilst arsenic was 29.10 mg/g. By contrast, gold-mined downstream areas recorded Hg and arsenic concentrations of 8.75 mg/g and 82.53 mg/g in stream sediments respectively. Levels of Hg and arsenic in sediments were several orders of magnitude greater than concentrations in surface water in downstream sections and this may be explained by substances originating from mining activities, upstream transport or remobilized sedimented materials in the overlying water column. Our study showed that both natural and human activities may contribute to heavy metal pollution in the highly mineralized watershed of the Pra River Basin. Human factors are however likely to amplify the natural background levels of heavy metals.
文摘Mineral sands mining is worldwide an environmental issue and also at the Hillendale mine in KwaZulu-Natal, South Africa. The post-mined soil is to be rehabilitated to sugarcane cropping. One of the concerns with the post-mined soil which is reconstituted with a 70:30 mixture of sand: slimes (silt-plus-clay fraction), is its low phosphorus (P) status, which could be limiting for optimum sugarcane production. A field experiment was conducted on a reconstituted soil at Hillendale to establish the availability of either residual or applied inorganic P to the plant and first ratoon sugarcane crop. Four treatments were evaluated including those where P fertilizer was omitted, applied at half the recommended rate or introduced equal to the recommended rate according to chemical analysis of the soil. In the fourth treatment, no fertilizer was applied at all, whereas nitrogen (N) and potassium (K) were added at recommended rates in the first three treatments. Phosphorus application had a significant effect on sugarcane fractional light interception and aboveground biomass yield of the plant and first ratoon crops, and stalk length and diameter of the first ratoon crop. Pol, brix, purity and fibre content and tiller number were not affected by P application. The application of P increased the foliar N, P, K, calcium (Ca), magnesium (Mg) and sulphur (S) contents of both crops. However, foliar N, P and K were deficient in the first ratoon crop even in the case where fertilizer was applied at the recommended rates, which could have been because of waterlogging. The possible effect of waterlogging on P uptake needs to be addressed in future studies in this reconstituted soil.
文摘Goal-setting enhances learning by providing a sense of direction and purpose to individuals. Contemporary social media plays an important role in expressing individual users' messages and sharing personal goals within a given community. The massiveness of the data available for users calls for a more systematic analysis of goals and meaning-making construction of these goals for educational and research purposes. This research proposes an approach to combine methods of mining, corpus linguistics and SFG (systemic functional grammar) for extracting goals in mined tweets, sorting the data linguistically and devising a model for analyzing the data based on the concepts of SFG and genre-based realization. The results of "meaning-making" analysis of goals show that: (1) mining is a successful tool for processing the large database into the pre-designated typology of goals; (2) the implementation of SFG as an analytical theory for semiotic and semogenic features of goals is a significant expansion of linguistic analysis of goals; (3) the Transitivity Model of SFG for identifying the Ideational Function of social meaning creation shows thc inclination of using "material", "mental" and "relational" processes as well as personal recounts of past learning experiences.
文摘Active restoration is a critical component of biodiversity conservation for degraded tropical forest ecosystems caused by artisanal gold mining, and the success of restoration is dependent on native species selection. However, significant knowledge gaps exist regarding when and where to plant trees. This article reports on a revegetation trial undertaken in St Elizabeth, Mahdia, Guyana, to assess the survival and RGR (Relative Growth Rate) of three native woody trees and shrubs planted within three years old Acacia mangium Willd trees pruned and unpruned blocks. ANOVA (Analysis of Variance) for a completely randomized block design with four blocks, two pruned and two unpruned, within A. mangium plots. Biochar treatment was added to the plants during transplanting. Thirty-six (36) wildlings of Humiria balsamifera (Aublet.) (Tauroniro), Goupia glabra Aublet (Kabukalli), and Vismia guianensis (Aublet.) Choisy (Bloodwood) were collected and raised in a tree nursery for two weeks. The native plants were transplanted 3 m apart, survival observations and each seedling’s initial height and diameter were measured and recorded. After the experiment, 13% of seedlings from a population of 720 had died, with the highest mortality being experienced at the 92 days of the experiment (t ≤ 122 days). While the overall survival rates were high, emphasizing the importance of field trials on native and exotic species in different environments is essential to fill the knowledge gaps on suitable species for restoration in degraded areas with other land use histories.
基金supported by the Strategic Priority Research Program of the Chinese Academy of Sciences(XDA0430205,H.H.)Science and Technology Projects in Guangzhou(2024A04J6520,G.W.)+1 种基金the Guangdong Basic and Applied Basic Research Foundation(2023A1515012927,G.W.)cience and Technology Planning of Guangdong Province,China(2023B1212060048,J.Z.).
文摘Rare-earth elements(REEs)have been listed as“critical metals”by many countries,including China,the USA,the European Union,and Japan.Heavy REEs(HREEs)are particularly significant due to their irreplaceable use in high-tech and security applications,making them strategically important and economically valuable.Ion-adsorption deposits(IADs)of REEs are the dominant minable resources of HREEs,supplying more than 90%of the global HREEs.However,the existing IAD mining techniques,predominately ammonium-salt in situ leaching,have faced significant challenges,including severe environmental damage,low REE recovery efficiency,and extended leaching durations,leading to its governmental ban in 2018.Writing in Nature Sustainability and The Innovation,Wang et al.1,2 propose a distinctly more efficient technology,i.e.,electrokinetic mining(EKM),that could help to reduce the impacts of REE mining substantially.
文摘Medical Data Mining published an article entitled Mapping the global research trends and hotspots on hypertensive nephropathy:A novel bibliometrics overview on 10 October 2025.The author confirmed this article’s proof on 28 September 2025 without any questions.However,on 13 November 2025,the Editorial Office of Medical Data Mining noticed an inconsistency between the data presented in the main text and Figure 1.Specifically,erroneous Figure 1 states“a total of 56,691 literatures were obtained through database search”,while the main text in the Search results section states“According to the search term,a total of 59,220 publications were retrieved from the database.”The authors acknowledge that the original version of Figure 1 was incorrect and have provided the revised,correct version in this corrigendum.The authors would like to assert that there is no change in the body text of the article.
文摘The integration of machine learning(ML)technology with Internet of Things(IoT)systems produces essential changes in healthcare operations.Healthcare personnel can track patients around the clock thanks to healthcare IoT(H-IoT)technology,which also provides proactive statistical findings and precise medical diagnoses that enhance healthcare performance.This study examines how ML might support IoT-based health care systems,namely in the areas of prognostic systems,disease detection,patient tracking,and healthcare operations control.The study looks at the benefits and drawbacks of several machine learning techniques for H-IoT applications.It also examines the fundamental problems,such as data security and cyberthreats,as well as the high processing demands that these systems face.Alongside this,the essay discusses the advantages of all the technologies,including machine learning,deep learning,and the Internet of Things,as well as the significant difficulties and problems that arise when integrating the technology into healthcare forecasts.
文摘Processes supported by process-aware information systems are subject to continuous and often subtle changes due to evolving operational,organizational,or regulatory factors.These changes,referred to as incremental concept drift,gradually alter the behavior or structure of processes,making their detection and localization a challenging task.Traditional process mining techniques frequently assume process stationarity and are limited in their ability to detect such drift,particularly from a control-flow perspective.The objective of this research is to develop an interpretable and robust framework capable of detecting and localizing incremental concept drift in event logs,with a specific emphasis on the structural evolution of control-flow semantics in processes.We propose DriftXMiner,a control-flow-aware hybrid framework that combines statistical,machine learning,and process model analysis techniques.The approach comprises three key components:(1)Cumulative Drift Scanner that tracks directional statistical deviations to detect early drift signals;(2)a Temporal Clustering and Drift-Aware Forest Ensemble(DAFE)to capture distributional and classification-level changes in process behavior;and(3)Petri net-based process model reconstruction,which enables the precise localization of structural drift using transition deviation metrics and replay fitness scores.Experimental validation on the BPI Challenge 2017 event log demonstrates that DriftXMiner effectively identifies and localizes gradual and incremental process drift over time.The framework achieves a detection accuracy of 92.5%,a localization precision of 90.3%,and an F1-score of 0.91,outperforming competitive baselines such as CUSUM+Histograms and ADWIN+Alpha Miner.Visual analyses further confirm that identified drift points align with transitions in control-flow models and behavioral cluster structures.DriftXMiner offers a novel and interpretable solution for incremental concept drift detection and localization in dynamic,process-aware systems.By integrating statistical signal accumulation,temporal behavior profiling,and structural process mining,the framework enables finegrained drift explanation and supports adaptive process intelligence in evolving environments.Its modular architecture supports extension to streaming data and real-time monitoring contexts.
文摘The rapid growth of biomedical data,particularly multi-omics data including genomes,transcriptomics,proteomics,metabolomics,and epigenomics,medical research and clinical decision-making confront both new opportunities and obstacles.The huge and diversified nature of these datasets cannot always be managed using traditional data analysis methods.As a consequence,deep learning has emerged as a strong tool for analysing numerous omics data due to its ability to handle complex and non-linear relationships.This paper explores the fundamental concepts of deep learning and how they are used in multi-omics medical data mining.We demonstrate how autoencoders,variational autoencoders,multimodal models,attention mechanisms,transformers,and graph neural networks enable pattern analysis and recognition across all omics data.Deep learning has been found to be effective in illness classification,biomarker identification,gene network learning,and therapeutic efficacy prediction.We also consider critical problems like as data quality,model explainability,whether findings can be repeated,and computational power requirements.We now consider future elements of combining omics with clinical and imaging data,explainable AI,federated learning,and real-time diagnostics.Overall,this study emphasises the need of collaborating across disciplines to advance deep learning-based multi-omics research for precision medicine and comprehending complicated disorders.
基金This research is one part of the National Research Institution Fund (RISF2006-2007-07)National Scientific & TechnologicalSupport Project (No.2006BAD03A15)0Zhejiang Provincial Key Scientific & Technological Project (No.2004C12030) and(No.2005C13003).
文摘By 2004, the occupied and disturbed land area had reached 3.393 million ha by mining, of which forest land took 532 000 ha; In addition, mining also caused 3.721 million -5.316 million ha of degraded forests and woodlands. The impact of mining on environment is multi-fold and deep. Thus it is necessary and significant to approach effective methods to speed up vegetation restoration in abandoned mined lands. Phytoremediation is a relatively new technology (in the lastest decade) and the numbers of plant species have been identified to accumulate high levels of heavy metals, which implies that phytoremediation is available, practical and effective. Thereby the main procedure of ecosystem restoration in abandoned mined lands by mean of phytoremediation is discussed in the paper, such as site preparation, species selection, planting techniques, maintenance and tending methods.
基金The work was supported by the National Natural Science Foundation of China (Grant No. 61672115) and the Fundamental Research Funds for the Central Universities (CDJZR12180006).
文摘In this paper, we have proposed and designed DPHK (data prediction based on HMM according to activity pattern knowledge mined from trajectories), a real-time distributed predicted data collection system to solve the congestion and data loss caused by too many connections to sink node in indoor smart environment scenarios (like Smart Home, Smart Wireless Healthcare and so on). DPHK predicts and sends predicted data at one time instead of sending the triggered data of these sensor nodes which people is going to pass in several times. Firstly, our system learns the knowl- edge of transition probability among sensor nodes from the historical binary motion data through data mining. Secondly, it stores the corresponding knowledge in each sensor node based on a special storage mechanism. Thirdly, each sensor node applies HMM (hidden Markov model) algorithm to pre- dict the sensor node locations people will arrive at according to the received message. At last, these sensor nodes send their triggered data and the predicted data to the sink node. The significances of DPHK are as follows: (a) the procedure of DPHK is distributed; (b) it effectively reduces the connection between sensor nodes and sink node. The time complexities of the proposed algorithms are analyzed and the performance is evaluated by some designed experiments in a smart environment.
文摘In early October,an announcement was given on official website of Ministry of Natural Resources:exploration and utilization scheme of Xikeng lithium ore in Yifeng County of Jiangxi Province was examined and approved,and the news was finally announced.According to the announcement,design opencast mining scale of the ore is 3000000 tons/year,underground mining scale of the ore is 600000 tons/year,and mine life is 39years(including 1 year of infrastructure construction).
基金supported by the National Natural Science Foun dation of China(52374170 and 51974313)the National Key Research and Development Plan Project(2022YFF1303300).
文摘1.Introduction Changes in land use are key factors promoting global climate change,and the side effects of mining activity that destroy the soil,vegetation,and biodiversity lead to imbalanced carbon cycling in terrestrial ecosystems.
基金supported by the National Natural Science Foundation of China(Nos.51827901,42477191,and 52304033)the Fundamental Research Funds for the Central Universities(No.YJ202449)+1 种基金the Open Research Fund of State Key Laboratory of Geomechanics and Geotechnical Engineering,Institute of Rock and Soil Mechanics,Chinese Academy of Sciences(No.SKLGME022009)the China Postdoctoral Science Foundation(No.2023M742446).
文摘Gas content serves as a critical indicator for assessing the resource potential of deep coal mines and forecasting coal mine gas outburst risks.However,existing sampling technologies face challenges in maintaining the integrity of gas content within samples and are often constrained by estimation errors inherent in empirical formulas,which results in inaccurate gas content measurements.This study introduces a lightweight,in-situ pressure-and gas-preserved corer designed to collect coal samples under the pressure conditions at the sampling point,effectively preventing gas loss during transfer and significantly improving measurement accuracy.Additionally,a gas migration model for deep coal mines was developed to elucidate gas migration characteristics under pressure-preserved coring conditions.The model offers valuable insights for optimizing coring parameters,demonstrating that both minimizing the coring hole diameter and reducing the pressure difference between the coring-point pressure and the original pore pressure can effectively improve the precision of gas content measurements.Coring tests conducted at an experimental base validated the performance of the corer and its effectiveness in sample collection.Furthermore,successful horizontal coring tests conducted in an underground coal mine roadway demonstrated that the measured gas content using pressure-preserved coring was 34%higher than that obtained through open sampling methods.
基金financially supported by the National Key Research and Development Program of China-Young Scientist Project(No.2024YFC2815400)the National Natural Science Foundation of China(No.52588202).
文摘Deep-sea mining has emerged as a critical solution to address global resource shortages;however,the mechanical interaction between tracked mining vehicles(TMVs)and soft seabed sediments presents fundamental engineering challenges.This study establishes a multiscale modelling framework coupling the discrete element method(DEM)with multi-body dynamics(MBD)to investigate track-seabed dynamic interactions across three operational modes:flat terrain,slope climbing,and ditch surmounting.The simulation framework,validated against laboratory experiments,systematically evaluates the influence of grouser geometry(involute,triangular,and pin-type)and traveling speed(0.2–1.0 m/s)on traction performance,slip rate,and ground pressure distribution.Results reveal rate-dependent traction mechanisms governed by soil microstructural responses:higher speeds enhance peak traction but exacerbate slip instability on complex terrain.Critical operational thresholds are established—0.7 m/s for flat terrain,≤0.5 m/s for slopes and ditches—with distinct grouser optimization strategies:involute grousers achieve 35%–40%slip reduction on slopes through progressive soil engagement,while triangular grousers provide optimal impact resistance during ditch crossing with 30%–35%performance improvement.These findings provide quantitative design criteria and operational guidelines for optimizing TMV structural parameters and control strategies,offering a robust theoretical foundation for enhancing the performance,safety,and reliability of deep-sea mining equipment in complex submarine environments.