Cloud resolving Weather Research and Forecasting(WRF)model simulations are used to investigate tropical cyclone(TC)genesis efficiency in an environment with a near bottom vortex(EBV)and an environment with a mid-level...Cloud resolving Weather Research and Forecasting(WRF)model simulations are used to investigate tropical cyclone(TC)genesis efficiency in an environment with a near bottom vortex(EBV)and an environment with a mid-level vortex(EMV).Sensitivity experiments show that the genesis timing depends greatly on initial vorticity vertical profiles.The larger the initial column integrated absolute vorticity,the greater the genesis efficiency is.Given the same column integrated absolute vorticity,a bottom vortex has higher genesis efficiency than a mid-level vortex.A common feature among these experiments is the formation of a mid-level vorticity maximum prior to TC genesis irrespective where the initial vorticity maximum locates.Both the EMV and EBV scenarios share the following development characteristics:1)a transition from non-organized cumulus-scale(~5 km)convective cells into an organized meso-vortex-scale(~50 to 100 km)system through upscale cascade processes,2)the establishment of a nearly saturated air column prior to a rapid drop of the central minimum pressure,and 3)a multiple convective-stratiform phase transition.A genesis efficiency index(GEI)is formulated that includes the following factors:initial column integrated absolute vorticity,vorticity at top of the boundary layer and vertically integrated relative humidity.The calculated GEI reflects well the simulated genesis efficiency and thus may be used to estimate how fast a tropical disturbance develops into a TC.展开更多
Using the NCEP 1°×1°reanalysis data,several obvious differences of the structural characteristics of developed versus undeveloped mid-level vortexes are studied.First,the central vorticity of the develo...Using the NCEP 1°×1°reanalysis data,several obvious differences of the structural characteristics of developed versus undeveloped mid-level vortexes are studied.First,the central vorticity of the developed mid-level vortex increases towards higher levels while the undeveloped one decreases.The low-level convergence structure maintains well in the developed mid-level vortex whereas the undeveloped one does badly.Second,on the one hand,according to the symmetric analysis,the horizontal wind field and wind vertical section of the developed mid-level vortex are well symmetric while those of the undeveloped one are less symmetric.Meanwhile,weak wind vertical shear help the developed mid-level vortex to establish a warm core in upper-and mid-levels of the troposphere.On the other hand,according to the balance analysis,better balance between wind and pressure is shown in the mid-and lower-levels of the troposphere of the developed mid-level vortex than in those of the undeveloped vortex.Third,positive anomaly of potential vorticity is enhanced and developed in the vertical direction of the developed vortex.However,the undeveloped vortex weakens with a weak positive anomaly.展开更多
Public sources show a lot of locally-owned brands are going to roll out mid-level cars: Chery, BYD and JAC in this year, Great Wall, Lifan, Changfeng and Chang'in the next year or so.
福建沿海地区第四系较为发育,是研究晚更新世以来相对海平面变化的理想区域。本文以福建宁德NDQK5岩芯中产出的高分辨率介形类化石为研究对象,结合加速器质谱法(accelerator mass spectrometry,AMS)14C和光释光测年技术建立岩芯年代框架...福建沿海地区第四系较为发育,是研究晚更新世以来相对海平面变化的理想区域。本文以福建宁德NDQK5岩芯中产出的高分辨率介形类化石为研究对象,结合加速器质谱法(accelerator mass spectrometry,AMS)14C和光释光测年技术建立岩芯年代框架,重建了中全新世期间福建沿海地区的相对海平面变化。结果显示,NDQK5岩芯中的介形类化石记录主要分布于4~17.1 m段,对应年代约为8.2~6.9 ka BP。岩芯内共计识别出海相介形类23属26种,根据优势种以及特征种的相对丰度变化特征可将岩芯内的介形类动物群划分为3个组合:①介形类组合A以Bicornucythere bisanensis和Sinocytheridea impressa为主,代表潮下带环境;②介形类组合B以Sinocytheridea impressa和Neomonoceratina delicata为优势种,指示近岸内陆架的沉积环境;③介形类组合C以Sinocytheridea impressa和Loxoconcha ocellifera为主,代表潮间带的沉积环境。基于介形类组合的分布特征,本文推断福建沿海地区海平面约在8.2~7.4 ka BP期间持续上升,并在约7.9~7.4 ka BP区间达到最高;7.4~7.0 ka BP期间海平面下降,随后再次上升。因此,介形类化石记录指示福建沿海地区在全新世高海平面背景下依然存在相对海平面的次一级波动。同时,结合已有福建沿海地区海平面变化驱动机制的研究结果,本研究推断8.2~7 ka BP期间福建沿海地区的海平面变化可能主要受控于冰盖融水;7 ka BP后该地区的海平面波动可能受控于“冰川-水均衡调整”作用。展开更多
基金Office of Naval Research(N000140810256,N000141010774)National Science Foundation of China(41075037)+2 种基金Japan Agency for Marine-Earth Science and Technology(JAMSTEC)NASA(NNX07AG53G)NOAA(NA17RJ1230)
文摘Cloud resolving Weather Research and Forecasting(WRF)model simulations are used to investigate tropical cyclone(TC)genesis efficiency in an environment with a near bottom vortex(EBV)and an environment with a mid-level vortex(EMV).Sensitivity experiments show that the genesis timing depends greatly on initial vorticity vertical profiles.The larger the initial column integrated absolute vorticity,the greater the genesis efficiency is.Given the same column integrated absolute vorticity,a bottom vortex has higher genesis efficiency than a mid-level vortex.A common feature among these experiments is the formation of a mid-level vorticity maximum prior to TC genesis irrespective where the initial vorticity maximum locates.Both the EMV and EBV scenarios share the following development characteristics:1)a transition from non-organized cumulus-scale(~5 km)convective cells into an organized meso-vortex-scale(~50 to 100 km)system through upscale cascade processes,2)the establishment of a nearly saturated air column prior to a rapid drop of the central minimum pressure,and 3)a multiple convective-stratiform phase transition.A genesis efficiency index(GEI)is formulated that includes the following factors:initial column integrated absolute vorticity,vorticity at top of the boundary layer and vertically integrated relative humidity.The calculated GEI reflects well the simulated genesis efficiency and thus may be used to estimate how fast a tropical disturbance develops into a TC.
基金Program for Key National Fundamental Research"Program 973"(2009CB421501)Natural Science Foundation of China(40875026)+1 种基金Specialized Scientific Research for Public Welfare Industry(Meteorological Sector)(GYHY200906008)Meteorological Sciences Research Project on Early Warning and Forecasting Technology for Marine Meteorology of the Guangdong Provincial Bureau of Meteorology
文摘Using the NCEP 1°×1°reanalysis data,several obvious differences of the structural characteristics of developed versus undeveloped mid-level vortexes are studied.First,the central vorticity of the developed mid-level vortex increases towards higher levels while the undeveloped one decreases.The low-level convergence structure maintains well in the developed mid-level vortex whereas the undeveloped one does badly.Second,on the one hand,according to the symmetric analysis,the horizontal wind field and wind vertical section of the developed mid-level vortex are well symmetric while those of the undeveloped one are less symmetric.Meanwhile,weak wind vertical shear help the developed mid-level vortex to establish a warm core in upper-and mid-levels of the troposphere.On the other hand,according to the balance analysis,better balance between wind and pressure is shown in the mid-and lower-levels of the troposphere of the developed mid-level vortex than in those of the undeveloped vortex.Third,positive anomaly of potential vorticity is enhanced and developed in the vertical direction of the developed vortex.However,the undeveloped vortex weakens with a weak positive anomaly.
文摘Public sources show a lot of locally-owned brands are going to roll out mid-level cars: Chery, BYD and JAC in this year, Great Wall, Lifan, Changfeng and Chang'in the next year or so.
文摘福建沿海地区第四系较为发育,是研究晚更新世以来相对海平面变化的理想区域。本文以福建宁德NDQK5岩芯中产出的高分辨率介形类化石为研究对象,结合加速器质谱法(accelerator mass spectrometry,AMS)14C和光释光测年技术建立岩芯年代框架,重建了中全新世期间福建沿海地区的相对海平面变化。结果显示,NDQK5岩芯中的介形类化石记录主要分布于4~17.1 m段,对应年代约为8.2~6.9 ka BP。岩芯内共计识别出海相介形类23属26种,根据优势种以及特征种的相对丰度变化特征可将岩芯内的介形类动物群划分为3个组合:①介形类组合A以Bicornucythere bisanensis和Sinocytheridea impressa为主,代表潮下带环境;②介形类组合B以Sinocytheridea impressa和Neomonoceratina delicata为优势种,指示近岸内陆架的沉积环境;③介形类组合C以Sinocytheridea impressa和Loxoconcha ocellifera为主,代表潮间带的沉积环境。基于介形类组合的分布特征,本文推断福建沿海地区海平面约在8.2~7.4 ka BP期间持续上升,并在约7.9~7.4 ka BP区间达到最高;7.4~7.0 ka BP期间海平面下降,随后再次上升。因此,介形类化石记录指示福建沿海地区在全新世高海平面背景下依然存在相对海平面的次一级波动。同时,结合已有福建沿海地区海平面变化驱动机制的研究结果,本研究推断8.2~7 ka BP期间福建沿海地区的海平面变化可能主要受控于冰盖融水;7 ka BP后该地区的海平面波动可能受控于“冰川-水均衡调整”作用。