期刊文献+
共找到49,167篇文章
< 1 2 250 >
每页显示 20 50 100
Preparation and tailoring electromagnetic shielding and microwave absorbing performance of Fe_(3)O_(4)modified activated carbon foam based on mesophase coal pitch pyrolysis foaming
1
作者 GE Yuanyuan WANG Yuzhe +4 位作者 XU Guozhong ZHU Yaming YUAN Xia SHI Guimei ZHONG Xiangyun 《燃料化学学报(中英文)》 北大核心 2026年第1期120-134,共15页
The development of materials with excellent microwave absorption(MWA)and electromagnetic interference(EMI)shielding performances has currently received attention.Herein,mesophase pitch-based carbon foam(MPCF)with 3D i... The development of materials with excellent microwave absorption(MWA)and electromagnetic interference(EMI)shielding performances has currently received attention.Herein,mesophase pitch-based carbon foam(MPCF)with 3D interconnected pore structure was prepared through the high pressure pyrolysis of mesophase coal tar pitch.It is found that the 3D interconnected cellular pores of MPCF facilitate multiple reflections of electromagnetic waves,which results in the minimum reflection loss(RLmin)value of MPCF reaches-37.84 dB with the effective absorption bandwidth(EAB)of 5.44 GHz at a thickness of 2.70 mm,and the total average electromagnetic shielding effectiveness(SE_(T))under 3.00 mm thickness achieves 26.52 dB in X-band.Subsequently,MPCF is activated by KOH to obtain activated carbon foam(A-MPCF).The average SE_(T)of A-MPCF achieves 103.00 dB for abundant nanopores on the pore cell walls,which leads to a transition from the multiple reflections of electromagnetic waves on the walls to diffuse reflection.Unfortunately,the reflection coefficient(R)of A-MPCF increases from 0.78 to 0.90.To reduce the R value,Fe_(3)O_(4)/A-MPCF was fabricated via the in situ growth of nano Fe_(3)O_(4)on A-MPCF.Consequently,the R value of Fe_(3)O_(4)/A-MPCF was reduced from 0.90 to 0.74,whereas the MWA performance was only slightly decreased.This work proposes a simple strategy for simultaneously adjusting MWA and EMI shielding performances of materials. 展开更多
关键词 carbon foam microwave absorption electromagnetic interference shielding mesophase pitch
在线阅读 下载PDF
Multibipolar radiofrequency vs single needle microwave ablation for the treatment of newly diagnosed hepatocellular carcinoma
2
作者 Cécilia Bahloul Agnès Rode +6 位作者 Pierre Pradat Laurent Milot Jérôme Dumortier Philippe Merle Jean-Yves Mabrut Loïc Boussel Angelo Della Corte 《World Journal of Gastroenterology》 2026年第2期104-113,共10页
BACKGROUND Data comparing the outcomes of hepatocellular carcinoma(HCC)ablation by multibipolar radiofrequency ablation(mbp-RFA)and microwave ablation(MWA)are lacking.This study compares safety and efficacy of the two... BACKGROUND Data comparing the outcomes of hepatocellular carcinoma(HCC)ablation by multibipolar radiofrequency ablation(mbp-RFA)and microwave ablation(MWA)are lacking.This study compares safety and efficacy of the two techniques in treatment-naive HCC.AIM To compare the risk of local tumor progression(LTP)according to the technique;secondary endpoints included technique efficacy rate at one-month,overall survival and major complication rate.METHODS A bi-institutional retrospective analysis of patients undergoing treatment-naive HCC ablation by either technique was performed.Inverse probability of treatment weighting was used to compare the two groups.Mixed effects multivariate Cox regression was applied to identify risk factors for LTP.RESULTS A total of 362 patients(mean age,66.1±6.2 years,308 men)were included,of which 242(323 tumors)treated by mbp-RFA and 120(168 tumors)by MWA.After a median follow-up of 27 months,cumulative LTP was 11.4%after mbp-RFA and 25.2%after MWA.Independent risk factors for LTP at multivariate analysis were MWA(hazard ratio=2.85,P<0.001)and tumor size(hazard ratio=1.08,P<0.001).Two-year LTP-free survival was higher after mbp-RFA than MWA regardless of size(<3 cm:96%vs 87.1%,P<0.01;≥3 cm:87.5%vs 74%,P=0.04).Technique efficacy rate was higher after mbp-RFA(94.1%vs 87.5%,P=0.01).No difference was observed in major complication rate(9.5%vs 7.5%,P=0.59),nor 5-year overall survival(63.6%vs 58.3%,P=0.33).CONCLUSION Mbp-RFA leads to better local tumor control of treatment-naïve HCC than MWA regardless of tumor size and has better primary efficacy,while maintaining a comparable safety profile. 展开更多
关键词 Local tumor progression Ablation microwave RADIOFREQUENCY Hepatocellular carcinoma
暂未订购
Gyroid-structured SiOC composite with excellent broadband microwave absorption and load-bearing performance
3
作者 Hanjun Wei Siyu Chen +5 位作者 Zhiyong Chen Lu Tang Jimei Xue Cunxian Wang Zhijun Wang Ying Li 《Defence Technology(防务技术)》 2026年第1期277-288,共12页
Designing materials with both structural load-bearing capacity and broadband electromagnetic(EM)wave absorption properties remains a significant challenge.In this work,SiOC/SiC/SiO_(2)composite with gyroid structures ... Designing materials with both structural load-bearing capacity and broadband electromagnetic(EM)wave absorption properties remains a significant challenge.In this work,SiOC/SiC/SiO_(2)composite with gyroid structures were prepared through digital light processing(DLP)3D printing,polymer-derived ceramics(PDCs),chemical vapor infiltration(CVI),and oxidation technologies.The incorporation of the CVISiC phase effectively increases the dissipation capability,while the synergistic interaction between the gyroid structure and SiO_(2)phase significantly improves impedance matching performance.The SiOC/SiC/SiO_(2)composite achieved a minimum reflection loss(RL min)of-62.2 d B at 4.3 mm,and the effective absorption bandwidth(EAB)covered the X-band,with a thickness range of 4.1 mm-4.65 mm.The CST simulation results explain the broadband and low-frequency absorption characteristics,with an EAB of 8.4 GHz(9.6-18 GHz)and an RL min of-21.5 dB at 5 GHz.The excellent EM wave attenuation performance is associated primarily with polarization loss,conduction loss,the gyroid structure's enhancement of multiple reflections and scattering of EM waves,and the resonance effect between the structural units.The SiOC/SiC/SiO_(2)composite also demonstrated strong mechanical properties,with a maximum compressive failure strength of 31.6 MPa in the height direction.This work opens novel prospects for the development of multifunctional structural wave-absorbing materials suitable for broadband microwave absorption and load-bearing properties. 展开更多
关键词 Digital light processing Gyroid structure SiOC/SiC/SiO_(2)composite microwave absorption Load-bearing properties
在线阅读 下载PDF
Magneto‑Dielectric Synergy and Multiscale Hierarchical Structure Design Enable Flexible Multipurpose Microwave Absorption and Infrared Stealth Compatibility 被引量:1
4
作者 Chen Li Leilei Liang +2 位作者 Baoshan Zhang Yi Yang Guangbin Ji 《Nano-Micro Letters》 SCIE EI CAS 2025年第2期401-416,共16页
Developing advanced stealth devices to cope with radar-infrared(IR)fusion detection and diverse application scenarios is increasingly demanded,which faces significant challenges due to conflicting microwave and IR clo... Developing advanced stealth devices to cope with radar-infrared(IR)fusion detection and diverse application scenarios is increasingly demanded,which faces significant challenges due to conflicting microwave and IR cloaking mechanisms and functional integration limitations.Here,we propose a multiscale hierarchical structure design,integrating wrinkled MXene IR shielding layer and flexible Fe_(3)O_(4)@C/PDMS microwave absorption layer.The top wrinkled MXene layer induces the intensive diffuse reflection effect,shielding IR radiation signals while allowing microwave to pass through.Meanwhile,the permeable microwaves are assimilated into the bottom Fe_(3)O_(4)@C/PDMS layer via strong magneto-electric synergy.Through theoretical and experimental optimization,the assembled stealth devices realize a near-perfect stealth capability in both X-band(8–12 GHz)and long-wave infrared(8–14μm)wavelength ranges.Specifically,it delivers a radar cross-section reduction of−20 dB m^(2),a large apparent temperature modulation range(ΔT=70℃),and a low average IR emissivity of 0.35.Additionally,the optimal device demonstrates exceptional curved surface conformability,self-cleaning capability(contact angle≈129°),and abrasion resistance(recovery time≈5 s).This design strategy promotes the development of multispectral stealth technology and reinforces its applicability and durability in complex and hostile environments. 展开更多
关键词 microwave absorption Radar-infrared compatible stealth Wrinkled MXene Magneto-dielectric synergy MULTIFUNCTION
在线阅读 下载PDF
Structural design in re duce d graphene oxide(RGO)metacomposites for enhanced microwave absorption in wide temperature spectrum 被引量:4
5
作者 Haoxu Si Yi Zhang +5 位作者 Yuhao Liu Zhiyang Jiang Cuiping Li Jingwei Zhang Xiaoxiao Huang Chunhong Gong 《Journal of Materials Science & Technology》 2025年第3期211-220,共10页
High-temperature microwave absorbing materials(MAMs)and structures are increasingly appealing due to their critical role in stealth applications under harsh environments.However,the impedance mismatch caused by increa... High-temperature microwave absorbing materials(MAMs)and structures are increasingly appealing due to their critical role in stealth applications under harsh environments.However,the impedance mismatch caused by increased conduction loss often leads to a significant decline in electromagnetic wave absorp-tion(EMWA)performance at elevated temperatures,which severely restricts their practical application.In this study,we propose a novel approach for efficient electromagnetic wave absorption across a wide temperature range using reduced graphene oxide(RGO)/epoxy resin(EP)metacomposites that integrate both electromagnetic parameters and metamaterial design concepts.Due to the discrete distribution of the units,electromagnetic waves can more easily penetrate the interior of materials,thereby exhibiting stable microwave absorption(MA)performance and impedance-matching characteristics suitable across a wide temperature range.Consequently,exceptional MA properties can be achieved within the tem-perature range from 298 to 473 K.Furthermore,by carefully controlling the structural parameters in RGO metacomposites,both the resonant frequency and effective absorption bandwidth(EAB)can be optimized based on precise manipulation of equivalent electromagnetic parameters.This study not only provides an effective approach for the rational design of MA performance but also offers novel insights into achieving super metamaterials with outstanding performance across a wide temperature spectrum. 展开更多
关键词 microwave absorbing materials Metacomposites Equivalent electromagnetic parameters Structural parameters Wide temperature spectrum
原文传递
Construction of attapulgite-based one-dimensional nanonetwork composites with corrosion resistance for high-efficiency microwave absorption 被引量:2
6
作者 Kai Xu Qingqing Gao +6 位作者 Shaoqi Shi Pei Liu Yinxu Ni Zhilei Hao Gaojie Xu Yan Fu Fenghua Liu 《International Journal of Minerals,Metallurgy and Materials》 2025年第3期689-698,共10页
Exploring high-efficiency and broadband microwave absorption(MA)materials with corrosion resistance and low cost is ur-gently needed for wide practical applications.Herein,the natural porous attapulgite(ATP)nanorods e... Exploring high-efficiency and broadband microwave absorption(MA)materials with corrosion resistance and low cost is ur-gently needed for wide practical applications.Herein,the natural porous attapulgite(ATP)nanorods embedded with TiO_(2)and polyaniline(PANI)nanoparticles are synthesized via heterogeneous precipitation and in-situ polymerization.The obtained PANI-TiO_(2)-ATP one-di-mensional(1D)nanostructures can intertwine into three-dimensional(3D)conductive network,which favors energy dissipation.The min-imum reflection loss(RL_(min))of the PANI-TiO_(2)-ATP coating(20wt%)reaches-49.36 dB at 9.53 GHz,and the effective absorption band-width(EAB)can reach 6.53 GHz with a thickness of 2.1 mm.The excellent MA properties are attributed to interfacial polarization,mul-tiple loss mechanisms,and good impedance matching induced by the synergistic effect of PANI-TiO_(2)nanoparticle shells and ATP nanor-ods.In addition,salt spray and Tafel polarization curve tests reveal that the PANI-TiO_(2)-ATP coating shows outstanding corrosion resist-ance performance.This study provides a low-cost and high-efficiency strategy for constructing 1D nanonetwork composites for MA and corrosion resistance applications using natural porous ATP nanorods as carriers. 展开更多
关键词 microwave absorption corrosion resistance ATTAPULGITE TiO_(2) POLYANILINE
在线阅读 下载PDF
Harnessing S-scheme junctions for enhanced CO_(2) photoreduction:molecular bonding of copper(Ⅱ)complexes onto K-doped polymeric carbon nitride via microwave heating 被引量:2
7
作者 Ming-Yu Heng Hong-Lei Shao +5 位作者 Jie-Ting Sun Qian Huang Shu-Ling Shen Guang-Zhi Yang Yu-Hua Xue Shu-Ning Xiao 《Rare Metals》 2025年第2期1108-1121,共14页
Photocatalytic conversion of CO_(2) is pivotal for mitigating the global greenhouse effect and fostering sustainable energy development.Nowadays,polymeric carbon nitride(PCN)has gained widespread application in CO_(2)... Photocatalytic conversion of CO_(2) is pivotal for mitigating the global greenhouse effect and fostering sustainable energy development.Nowadays,polymeric carbon nitride(PCN)has gained widespread application in CO_(2) solar reduction due to its excellent visible light response,suitable conduction band position,and good cost-effectiveness.However,the amorphous nature and low conductivity of PCN limit its photocatalytic efficiency by leading to low carrier concentrations and facile electron–hole recombination during photocatalysis.Addressing this bottleneck,in this study,potassium-doped PCN(KPCN)/copper(Ⅱ)-complexed bipyridine hydroxyquinoline carboxylic acid(Cu(Ⅱ)(bpy)(H_(2)hqc))composite catalysts were synthesized through a multistep microwave heating process.In the composite,the formation of an S-scheme junction facilitates the enrichment of more negative electrons on the conduction band of KPCN via intermolecular electron–hole recombination between Cu(Ⅱ)(bpy)(H_(2)hqc)(CuPyQc)and KPCN,thereby promoting efficient photoreduction of CO_(2) to CO.Microwave heating enhances the amidation reaction between these two components,achieving the immobilization of homogeneous molecular catalysts and forming amidation chemical bonds that serve as key channels for the S-scheme charge transfer.This work not only presents a new PCN-based catalytic system for CO_(2) reduction applications,but also offers a novel microwave-practical approach for immobilizing homogeneous catalysts. 展开更多
关键词 Photocatalytic CO_(2)reduction microwave synthesis Polymeric carbon nitride Amide bond Sscheme
原文传递
Perspectives on metal-organic framework-derived microwave absorption materials 被引量:2
8
作者 Meng-Qi Wang Mao-Sheng Cao 《Journal of Materials Science & Technology》 2025年第11期37-52,共16页
Exploring efficient microwave absorbing materials(MAMs)has gradually become a hot topic in recent years because it is crucial in both civil and military fields.Metal-organic framework(MOF)has great potential due to it... Exploring efficient microwave absorbing materials(MAMs)has gradually become a hot topic in recent years because it is crucial in both civil and military fields.Metal-organic framework(MOF)has great potential due to its unique composition and bonding mode,which has advantages such as large specific surface area,high porosity,adjustable structure,and designable composition.Herein,MOF-derived MAMs are highlighted based on morphology and structure.The synthesis strategies of MOF-derived MAMs of different dimensions are discussed.On this basis,the structure-activity relationships can be deeply explored through the precise control of material structure and property by atomic engineering.Finally,perspectives are given for the existing problems of MOF-derived MAMs,which will open a new horizon and promote the development of MAMs. 展开更多
关键词 Metal-organic framework Atomic engineering microwave absorption
原文传递
Multi-objective optimal design for flexible bio-inspired meta-structure with ultra-broadband microwave absorption and thin thickness 被引量:1
9
作者 Mengfei FENG Shenyao LIU +5 位作者 Hui CHENG Kaifu ZHANG Yuan LI Guanjie YU Bo LIU Biao LIANG 《Chinese Journal of Aeronautics》 2025年第3期151-162,共12页
There is an urgent need for the application of broadband Microwave Absorption(MA)structures on the leading edges of aircraft wings,which requires the MA structures to possess both the broadband MA performance and grea... There is an urgent need for the application of broadband Microwave Absorption(MA)structures on the leading edges of aircraft wings,which requires the MA structures to possess both the broadband MA performance and great surface conformability.To meet these requirements,we designed and fabricated a flexible bioinspired meta-structure with ultra-broadband MA,thin thickness and excellent surface conformality.The carbonyl iron powder-carbon nanotubes-polydimethylsiloxane composite was synthesized by physical blending method for fabricating the MA meta-structure.Through geometry-electromagnetic optimal design by heuristic optimization algorithm,the meta-structure mimicking to the nipple photonic nanostructures on the eyes of moth can achieve ultra-broadband MA performance of 35.14 GHz MA bandwidth(reflection loss≤–10 dB),covering 4.86–40.00 GHz,with thickness of only 4.3 mm.Through simple fabrication processes,the meta-structure has been successfully fabricated and bonded on wings’leading edges,exhibiting excellent surface conformability.Furthermore,the designed flexible MA meta-structure possesses significant Radar Cross-Section(RCS)reduction capability,as demonstrated by the RCS analysis of an unmanned aerial vehicle.This flexible ultra-broadband MA meta-structure provides an outstanding candidate to meet the radar stealth requirement of variable curvature structures on aircraft. 展开更多
关键词 Broadband microwave absorption Surface conformability Flexible meta-structure BIO-INSPIRED Electromagnetic Radar cross section
原文传递
Mechanism of Fenton catalytic degradation of Rhodamine B induced by microwave and Fe_(3)O_(4) 被引量:1
10
作者 Qinwen Zheng Xin Liu +3 位作者 Lintao Tian Yi Zhou Libing Liao Guocheng Lv 《Chinese Chemical Letters》 2025年第4期246-255,共10页
The Fenton method is an effective technology for the removal of organic materials from wastewater.In this work,an induced catalyst Fe_(3)O_(4) was synthesized by a hydrothermal method,and the modulation of the chemica... The Fenton method is an effective technology for the removal of organic materials from wastewater.In this work,an induced catalyst Fe_(3)O_(4) was synthesized by a hydrothermal method,and the modulation of the chemical composition of Fe_(3)O_(4) crystals was achieved under the microwave shock method with the same effect as that of calcination treatment.Fe_(3)O_(4) catalyst for the removal of the dye Rhodamine B (Rh B) from polluted wastewater under microwave (MW),H_(2)O_(2) system.The results showed that Fe_(3)O_(4) nanomicrospheres prepared by microwave shock exhibited superior catalytic activity under the conditions of 500 W,0.4 mol/L H_(2)O_(2) and10 mg/L Rh B,and the removal rate of Rh B reached 98.5%after 10 min.The Fe_(3)O_(4) catalysts also exhibited good stability and degradation efficiency.Electron paramagnetic resonance experiments confirmed that·OH plays a major role in the rapid degradation of Rh B.Under microwave action,the catalyst produces electron-hole pairs,in which the holes react with OH-produced by water ionisation to form·OH,and the microwave-treated Fe_(3)O_(4) produces more active species.Fe^(3+)and Fe^(2+)serve as microwave catalytic activity centers and Fenton catalytic activity centers,respectively.This research demonstrates that optimizing the Fe^(2+)/Fe^(3+) ratio significantly enhances the degradation efficiency of Rh B.This study presents novel views regarding the mechanism of microwave synergistic catalyst-induced Fenton. 展开更多
关键词 Fe_(3)O_(4) microwave assisted FENTON Rhodamine B Crystal modification CATALYZE
原文传递
Lessons from Nature:Advances and Perspectives in Bionic Microwave Absorption Materials 被引量:1
11
作者 Dashuang Wang Tuo Ping +2 位作者 Zhilan Du Xiaoying Liu Yuxin Zhang 《Nano-Micro Letters》 2025年第4期454-486,共33页
Inspired by the remarkable electromagnetic response capabilities of the complex morphologies and subtle microstructures evolved by natural organisms,this paper delves into the research advancements and future applicat... Inspired by the remarkable electromagnetic response capabilities of the complex morphologies and subtle microstructures evolved by natural organisms,this paper delves into the research advancements and future application potential of bionic microwave-absorbing materials(BMAMs).It outlines the significance of achieving high-performance microwave-absorbing materials through ingenious microstructural design and judicious composition selection,while emphasizing the innovative strategies offered by bionic manufacturing.Furthermore,this work meticulously analyzes how inspiration can be drawn from the intricate structures of marine organisms,plants,animals,and nonmetallic minerals in nature to devise and develop BMAMs with superior electromagnetic wave absorption properties.Additionally,the paper provides an in-depth exploration of the theoretical underpinnings of BMAMs,particularly the latest breakthroughs in broadband absorption.By incorporating advanced methodologies such as simulation modeling and bionic gradient design,we unravel the scientific principles governing the microwave absorption mechanisms of BMAMs,thereby furnishing a solid theoretical foundation for understanding and optimizing their performance.Ultimately,this review aims to offer valuable insights and inspiration to researchers in related fields,fostering the collective advancement of research on BMAMs. 展开更多
关键词 BIONIC Structural design microwave absorption Electromagnetic theory
在线阅读 下载PDF
Heterointerface engineering of CoO/Co with ordered carbon for synergistic magnetoelectric coupling to enhance wideband microwave absorption 被引量:1
12
作者 Jin Liang Zhiheng Wei +5 位作者 Xiaoyi Chen Zongcheng Li Xiaoshan Li Chenyang Zhang Jun Chen Jie Kong 《Journal of Materials Science & Technology》 2025年第14期93-103,共11页
Highly developed electronic information technology has undoubtedly resulted in numerous benefits to the military and public life.However,the resulting electromagnetic wave(EW)pollution cannot be ignored.Therefore,the ... Highly developed electronic information technology has undoubtedly resulted in numerous benefits to the military and public life.However,the resulting electromagnetic wave(EW)pollution cannot be ignored.Therefore,the application of highly efficient EW materials is becoming an important requirement.In this study,magnetic-dielectric heterointerface strategy was applied to construct absorbers with desirable electromagnetic wave properties.A novel CoO/Co nanoparticle anchored to N-doped mesoporous carbon(CoO/Co/N-CMK-3)composites was fabricated by facile precipitation reaction and the electromagnetic characteristics have been well optimized by adjusting pyrolysis temperature.The CoO/Co/N-CMK-3 yielded its highest performance at an annealing temperature of 800℃,with an extended effective absorption bandwidth of 5.83 GHz and unusually low minimum reflection loss of−63.82 dB,even at a thickness of just 1.8 mm and low filler loading(10%).For the excellent microwave absorption property,the advantages of the CoO/Co/N-CMK-3 can be summed up as follows.Firstly,the incorporation of heterointerfaces among N-CMK-3,CoO,and Co introduces abundant polarization centers,triggering various polarization effects and increasing dielectric losses.Secondly,the CoO/Co magnetic component introduced the strong magnetic loss and improved the impedance matching capability of CoO/Co/N-CMK-3.Thirdly,the extraordinary magnetic-dielectric behavior is supported by multiple magnetic coupling networks and enriched air-material heterointerfaces,boosted the magnetoelectric cooperative loss for further optimizing the electromagnetic dissipation and broadening the effective absorption frequency band.Moreover,the CST simulation results validate the impressive operational bandwidth and reflection loss characteristics of the obtained absorbers.This study demonstrates a novel heterointerface engineering strategy for designing lightweight,wide-band,and high-performance EW absorbers. 展开更多
关键词 Heterointerface engineering CoO/Co/N-CMK-3 CoO/Co Multiple loss microwave absorption
原文传递
Single-cell and spatial transcriptomics reveals an anti-tumor neutrophil subgroup in microwave thermochemotherapy-treated lip cancer 被引量:1
13
作者 Bingjun Chen Huayang Fan +8 位作者 Xin Pang Zeliang Shen Rui Gao Haofan Wang Zhenwei Yu Tianjiao Li Mao Li Yaling Tang Xinhua Liang 《International Journal of Oral Science》 2025年第4期529-543,共15页
Microwave thermochemotherapy(MTC)has been applied to treat lip squamous cell carcinoma(LSCC),but a deeper understanding of its therapeutic mechanisms and molecular biology is needed.To address this,we used single-cell... Microwave thermochemotherapy(MTC)has been applied to treat lip squamous cell carcinoma(LSCC),but a deeper understanding of its therapeutic mechanisms and molecular biology is needed.To address this,we used single-cell transcriptomics(scRNA-seq)and spatial transcriptomics(ST)to highlight the pivotal role of tumor-associated neutrophils(TANs)among tumor-infiltrating immune cells and their therapeutic response to MTC.MNDA+TANs with anti-tumor activity(N1-phenotype)are found to be abundantly infiltrated by MTC with benefit of increased blood perfusion,and these TANs are characterized by enhanced cytotoxicity,ameliorated hypoxia,and upregulated IL1B,activating T&NK cells and fibroblasts via IL1B-IL1R.In this highly anti-tumor immunogenic and hypoxia-reversed microenvironment under MTC,fibroblasts accumulated in the tumor front(TF)can recruit N1-TANs via CXCL2-CXCR2 and clear N2-TANs(pro-tumor phenotype)via CXCL12-CXCR4,which results in the aggregation of N1-TANs and extracellular matrix(ECM)deposition.In addition,we construct an N1-TANs marker,MX2,which positively correlates with better prognosis in LSCC patients,and employ deep learning techniques to predict expression of MX2 from hematoxylin-eosin(H&E)-stained images so as to conveniently guide decision making in clinical practice.Collectively,our findings demonstrate that the N1-TANs/fibroblasts defense wall formed in response to MTC effectively combat LSCC. 展开更多
关键词 spatial transcriptomics st molecular biology lip squamous cell carcinoma lscc single cell transcriptomics tumor associated neutrophils microwave thermochemotherapy mtc spatial transcriptomics anti tumor activity
暂未订购
Fabrication of flake-like NiCo_(2)O_(4)/reduced graphene oxide/melamine-derived carbon foam as an excellent microwave absorber 被引量:1
14
作者 Konghu Tian Hang Yang +4 位作者 Chao Zhang Ruiwen Shu Qun Shao Xiaowei Liu Kaipeng Gao 《International Journal of Minerals,Metallurgy and Materials》 2025年第3期556-565,共10页
Carbon-based foams with a three-dimensional structure can serve as a lightweight template for the rational design and control-lable preparation of metal oxide/carbon-based composite microwave absorption materials.In t... Carbon-based foams with a three-dimensional structure can serve as a lightweight template for the rational design and control-lable preparation of metal oxide/carbon-based composite microwave absorption materials.In this study,a flake-like nickel cobaltate/re-duced graphene oxide/melamine-derived carbon foam(FNC/RGO/MDCF)was successfully fabricated through a combination of solvo-thermal treatment and high-temperature pyrolysis.Results indicated that RGO was evenly distributed in the MDCF skeleton,providing ef-fective support for the load growth of FNC on its surface.Sample S3,the FNC/RGO/MDCF composite prepared by solvothermal method for 16 h,exhibited a minimum reflection loss(RL_(min))of-66.44 dB at a thickness of 2.29 mm.When the thickness was reduced to 1.50 mm,the optimal effective absorption bandwidth was 3.84 GHz.Analysis of the absorption mechanism of FNC/RGO/MDCF revealed that its excellent absorption performance was primarily attributed to the combined effects of conduction loss,multiple reflection,scattering,in-terface polarization,and dipole polarization. 展开更多
关键词 carbon foam reduced graphene oxide flake-like nickel cobaltate microwave absorbing materials
在线阅读 下载PDF
Preparation of hierarchical MoS_(2)microsphere/BN composites for microwave absorption and thermal management 被引量:1
15
作者 Haoliang Wen Weidong Zhang 《International Journal of Minerals,Metallurgy and Materials》 2025年第3期718-727,共10页
The increase in the utilization of infrared heat detection technology in military applications necessitates research on composites with improved thermal transmission performance and microwave absorption capabilities.T... The increase in the utilization of infrared heat detection technology in military applications necessitates research on composites with improved thermal transmission performance and microwave absorption capabilities.This study satisfactorily fabricated a series of MoS_(2)/BN-xyz composites(which were characterized by the weight ratio of MoS_(2)to BN,denoted by xy:z)through chemical vapor depos-ition,which resulted in their improved thermal stability and thermal transmission performance.The results show that the remaining mass of MoS_(2)/BN-101 was as high as 69.25wt%at 800℃under air atmosphere,and a temperature difference of 31.7℃was maintained between the surface temperature and the heating source at a heating temperature of 200℃.Furthermore,MoS_(2)/BN-301 exhibited an im-pressive minimum reflection loss value of-32.21 dB at 4.0 mm and a wide effective attenuation bandwidth ranging from 9.32 to 18.00 GHz(8.68 GHz).Therefore,these simplified synthesized MoS_(2)/BN-xyz composites demonstrate great potential as highly efficient con-tenders for the enhancement of microwave absorption performance and thermal conductance. 展开更多
关键词 microwave absorbers thermal transmission hierarchical molybdenum disulfide microsphere boron nitride nanosheets
在线阅读 下载PDF
MXene Hybridized Polymer with Enhanced Electromagnetic Energy Harvest for Sensitized Microwave Actuation and Self‑Powered Motion Sensing
16
作者 Yu‑Ze Wang Yu‑Chang Wang +3 位作者 Ting‑Ting Liu Quan‑Liang Zhao Chen‑Sha Li Mao‑Sheng Cao 《Nano-Micro Letters》 SCIE EI CAS 2025年第3期265-279,共15页
Polymeric microwave actuators combining tissue-like softness with programmablemicrowave-responsive deformation hold great promise for mobile intelligentdevices and bionic soft robots. However, their application is cha... Polymeric microwave actuators combining tissue-like softness with programmablemicrowave-responsive deformation hold great promise for mobile intelligentdevices and bionic soft robots. However, their application is challenged by restricted electromagneticsensitivity and intricate sensing coupling. In this study, a sensitized polymericmicrowave actuator is fabricated by hybridizing a liquid crystal polymer with Ti3C2Tx(MXene). Compared to the initial counterpart, the hybrid polymer exhibits unique spacechargepolarization and interfacial polarization, resulting in significant improvements of230% in the dielectric loss factor and 830% in the apparent efficiency of electromagneticenergy harvest. The sensitized microwave actuation demonstrates as the shortenedresponse time of nearly 10 s, which is merely 13% of that for the initial shape memory polymer. Moreover, the ultra-low content of MXene (upto 0.15 wt%) benefits for maintaining the actuation potential of the hybrid polymer. An innovative self-powered sensing prototype that combinesdriving and piezoelectric polymers is developed, which generates real-time electric potential feedback (open-circuit potential of ~ 3 mV) duringactuation. The polarization-dominant energy conversion mechanism observed in the MXene-polymer hybrid structure furnishes a new approachfor developing efficient electromagnetic dissipative structures and shows potential for advancing polymeric electromagnetic intelligent devices. 展开更多
关键词 microwave absorption Electromagnetic response Energy harvest SELF-SENSING Soft actuator
在线阅读 下载PDF
Structural and microwave absorption properties of CoFe_(2)O_(4)/residual carbon composites
17
作者 Yuanchun Zhang Shengtao Gao +3 位作者 Xingzhao Zhang Dacheng Ma Chuanlei Zhu Jun He 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS 2025年第1期221-232,共12页
Electromagnetic interference,which necessitates the rapid advancement of substances with exceptional capabilities for bsorbing electromagnetic waves,is of urgent concern in contemporary society.In this work,CoFe_(2)O_... Electromagnetic interference,which necessitates the rapid advancement of substances with exceptional capabilities for bsorbing electromagnetic waves,is of urgent concern in contemporary society.In this work,CoFe_(2)O_(4)/residual carbon from coal gasification fine slag(CFO/RC)composites were created using a novel hydrothermal method.Various mechanisms for microwave absorption,including conductive loss,natural resonance,interfacial dipole polarization,and magnetic flux loss,are involved in these composites.Consequently,compared with pure residual carbon materials,this composite offers superior capabilities in microwave absorption.At 7.76GHz,the CFO/RC-2 composite achieves an impressive minimum reflection loss(RL_(min))of-43.99 dB with a thickness of 2.44 mm.Moreover,CFO/RC-3 demonstrates an effective absorption bandwidth(EAB)of up to 4.16 GHz,accompanied by a thickness of 1.18mm.This study revealed the remarkable capability of the composite to diminish electromagnetic waves,providing a new generation method for microwave absorbing materials of superior quality. 展开更多
关键词 coal gasification slag residual carbon hydrothermal method microwave absorption CoFe_(2)O_(4)
在线阅读 下载PDF
TRIPLET combined with microwave ablation:A novel treatment for advanced hepatocellular carcinoma
18
作者 Fei-Yu Zhao Guo-Wei Si Nian-Song Qian 《World Journal of Gastrointestinal Oncology》 SCIE 2025年第1期10-12,共3页
This editorial comments on a study by Zuo et al.The focus is on the efficacy of he-patic arterial infusion chemotherapy combined with camrelizumab and apatinib(the TRIPLET regimen),alongside microwave ablation therapy... This editorial comments on a study by Zuo et al.The focus is on the efficacy of he-patic arterial infusion chemotherapy combined with camrelizumab and apatinib(the TRIPLET regimen),alongside microwave ablation therapy,in treating advanced hepatocellular carcinoma(HCC).The potential application of this combination therapy for patients with advanced HCC is evaluated. 展开更多
关键词 microwave ablation Hepatic arterial infusion chemotherapy Apatinib Camrelizumab Hepatocellular carcinoma
暂未订购
Microwave power transmission technologies for space solar power station
19
作者 YANG Bo SHINOHARA Naoki 《中国空间科学技术(中英文)》 北大核心 2025年第2期1-14,共14页
The microwave wireless power transmission technologies for space solar power station are a crucial field in the international space sector,where various countries are competing in its development.This paper surveys th... The microwave wireless power transmission technologies for space solar power station are a crucial field in the international space sector,where various countries are competing in its development.This paper surveys the research experiments and development efforts related to space solar power stations and microwave wireless power transmission technologies worldwide.The objective is to assess the progress and current state of this technological foundation,determine the necessary focus for developing high-power microwave wireless power transmission technology,and provide clarity on the direction of future technology development in these areas.Finally,a distributed space solar power station plan that is immediately feasible is proposed. 展开更多
关键词 microwave power transmission space solar power station wireless power transfer microwave transmitter phased array rectenna array
在线阅读 下载PDF
Robust microwave catalytic decomposition of H_(2)S into H_(2) and S at low temperature over Mo_(2)C@CeO_(2) catalysts
20
作者 SUN Hongyang CHEN Jun +2 位作者 TU Cong ZHOU Jicheng XU Wentao 《燃料化学学报(中英文)》 北大核心 2025年第9期1399-1415,I0027,I0028,共19页
The new technology of direct decomposition of H_(2)S into high value-added H_(2) and S,as an alternative to the Claus process in industry,is an ideal route that can not only deal with toxic and abundant H_(2)S waste g... The new technology of direct decomposition of H_(2)S into high value-added H_(2) and S,as an alternative to the Claus process in industry,is an ideal route that can not only deal with toxic and abundant H_(2)S waste gas but also recover clean energy H_(2),which has significant socio-economic and ecological advantages.However,the highly effective decomposition of H_(2)S at low temperatures is still a great challenge,because of the stringent thermodynamic equilibrium constraints(only 20% even at high temperature of 1010℃).Conventional microwave catalysts exhibit unsatisfactory performance at low temperatures(below 600℃).Herein,Mo_(2)C@CeO_(2) catalysts with a core-shell structure were successfully developed for robust microwave catalytic decomposition of H_(2)S at low temperatures.Two carbon precursors,para-phenylenediamine(Mo_(2)C-p)and meta-phenylenediamine(Mo_(2)C-m),were employed to tailor Mo_(2)C configurations.Remarkably,the H_(2)S conversion of Mo_(2)C-p@CeO_(2) catalyst at a low temperature of 550℃ is as high as 92.1%,which is much higher than the H_(2)S equilibrium conversion under the conventional thermal conditions(2.6% at 550℃).To our knowledge,this represents the most active catalyst for microwave catalytic decomposition of H_(2)S at low temperature of 550℃.Notably,Mo_(2)C-p demonstrated superior intrinsic activity(84%)compared to Mo_(2)C-m(6.4%),with XPS analysis revealing that its enhanced performance stems from a higher concentration of Mo_(2+)active sites.This work presents a substitute approach for the efficient utilization of H_(2)S waste gas and opens up a novel avenue for the rational design of microwave catalysts for microwave catalytic reaction at low-temperature. 展开更多
关键词 direct decomposition of H_(2)S microwave catalysis low temperature microwave selective catalytic effect Mo_(x)C@CeO_(2) H_(2)production
在线阅读 下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部