期刊文献+
共找到59篇文章
< 1 2 3 >
每页显示 20 50 100
Spatio-temporal Variation of Freeze-thaw Cycles in the Qinghai-Xizang Plateau from 1981 to 2020 Based on Microwave Remote Sensing
1
作者 ZHAO Shangmin ZHANG Shifang YU Bohan 《Journal of Geodesy and Geoinformation Science》 2025年第1期1-11,共11页
Strong sensitivity of satellite microwave remote sensing to the change of surface dielectric properties,as well as the insensitivity to air pollution and solar illumination effects,makes it very suitable for monitorin... Strong sensitivity of satellite microwave remote sensing to the change of surface dielectric properties,as well as the insensitivity to air pollution and solar illumination effects,makes it very suitable for monitoring freeze-thaw conditions.The freeze-thaw cycle changes in the Qinghai-Xizang Plateau have an important impact on the ecological environment and infrastructure.Based on the Scanning Multi-channel Microwave Radiometer(SMMR)and other sensors of microwave satellite,the freeze-thaw cycle data of permafrost in the Qinghai-Xizang Plateau in the past 40 years from 1981 to 2020 was obtained.The changes of soil freeze-thaw conditions in different seasons of 2020 and in the same season of 1990,2000,2010 and 2020 were compared,and the annual variation trend of soil freeze-thaw area in the four years was analyzed.Further,the linear regression analysis was carried out on the duration of soil freezing/thawing/transition and the interannual variation trend under different area conditions from 1981 to 2020.The results show that the freeze-thaw changes in different years are similar.In winter,it is mainly frozen for about 110 days.Spring and autumn are transitional periods,lasting for 170 days.In summer,it is mainly thawed for about 80 days.From 1981 to 2020,the freezing period and the average freezing area of the Qinghai-Xizang Plateau decreased at a rate of 0.22 days and 1986 km^(2) per year,respectively,while the thawing period and the average thawing area increased at a rate of 0.07 days and 3187 km^(2) per year,respectively.The research results provide important theoretical support for the ecological environment and permafrost protection of the Qinghai-Xizang Plateau. 展开更多
关键词 freeze-thaw cycle PERMAFROST microwave remote sensing spatio-temporal variation linear regression analysis Qinghai-Xizang Plateau
在线阅读 下载PDF
Advances in Research on Soil Moisture by Microwave Remote Sensing in China 被引量:9
2
作者 SONG Dongsheng ZHAO Kai GUAN Zhi 《Chinese Geographical Science》 SCIE CSCD 2007年第2期186-191,共6页
Soil moisture is an important factor in global hydrologic circulation and plays a significant role in the research of hydrology, climatology, and agriculture. Microwave remote sensing is less limited by climate and ti... Soil moisture is an important factor in global hydrologic circulation and plays a significant role in the research of hydrology, climatology, and agriculture. Microwave remote sensing is less limited by climate and time, and can measure in large scale. With these characteristics, this technique becomes an effective tool to measure soil moisture. Since the 1980s, Chinese researchers have investigated the soil moisture using microwave instruments. The active re- mote sensors are characteristic of high spatial resolution, thus with launch of a series of satellites, active microwave remote sensing of soil moisture will be emphasized. The passive microwave remote sensing of soil moisture has a long research history, and its retrieval algorithms were developed well, so it is an important tool to retrieve large scale moisture information from satellite data in the future. 展开更多
关键词 microwave remote sensing soil moisture active microwave remote sensing passive microwave remote sensing
在线阅读 下载PDF
Microwave biosensors utilizing metamaterial enhancement: Design and application
3
作者 Jiaxu Wang Rongheng Wang +3 位作者 Zhou Shen Bohua Liu Chongling Sun Qiannan Xue 《Nanotechnology and Precision Engineering》 2025年第1期101-131,共31页
Microwave sensing technology has become increasingly widely applied in the biomedical field,playing a significant role in medical diagnosis,biological monitoring,and environmental warning.In recent years,the introduct... Microwave sensing technology has become increasingly widely applied in the biomedical field,playing a significant role in medical diagnosis,biological monitoring,and environmental warning.In recent years,the introduction of metamaterials has brought new possibilities and opportunities to microwave biosensors.This paper aims to explore the applications of microwave sensors in biosensing,with a particular emphasis on analyzing the crucial role of metamaterials in enhancing sensor performance and sensitivity.It provides a thorough examination of the fundamental principles,design strategies,fabrication techniques,and applications of microwave biosensors leveraging metamaterial enhancement.Moreover,it meticulously explores the latest applications spanning biomedical diagnostics,environmental monitoring,and food safety,shedding light on their transformative potential in healthcare,environmental sustainability,and food quality assurance.By delving into future research directions and confronting present challenges such as standardization and validation protocols,cost-effectiveness and scalability considerations and exploration of emerging applications,the paper provides a roadmap for advancing microwave biosensors with metamaterial enhancement,promising breakthroughs in multifaceted bioanalytical realms. 展开更多
关键词 microwave sensing METAMATERIAL Bioanalytical research Biomedical diagnostics Micro-biosensor MICRO/NANOSTRUCTURE
在线阅读 下载PDF
Polarization impact on sensitivity of Rydberg atom-based microwave sensors
4
作者 Minghao Cai Aomao Wei +1 位作者 Shanshan Chen Yuming Huang 《Chinese Physics B》 2025年第8期561-566,共6页
We investigate the sensitivity of a Rydberg atom-based microwave sensor under two polarization configurations as a function of local oscillator(LO)microwave field strength.By employing parallel and perpendicular align... We investigate the sensitivity of a Rydberg atom-based microwave sensor under two polarization configurations as a function of local oscillator(LO)microwave field strength.By employing parallel and perpendicular alignments of laser and microwave polarizations in our experimental setup,we study the Autler-Townes(AT)splitting spectrum and optical response of probe transmission,and analyze their sensing effects.The results show that the parallel polarization configuration offers higher gain and better sensitivity than the perpendicular configuration.We achieve a sensitivity of 4.150(69)nV·cm^(-1)·Hz^(-1/2)at an LO microwave field strength of 1.74 mV/cm.This work demonstrates the significant role of polarization alignment on the performance of Rydberg atom-based microwave sensors. 展开更多
关键词 Rydberg atom microwave sensing polarization configuration sensitivity
原文传递
Comparisons of passive microwave remote sensing sea ice concentrations with ship-based visual observations during the CHINARE Arctic summer cruises of 2010–2018 被引量:6
5
作者 Yuanren Xiu Zhijun Li +3 位作者 Ruibo Lei Qingkai Wang Peng Lu Matti Leppäranta 《Acta Oceanologica Sinica》 SCIE CAS CSCD 2020年第9期38-49,共12页
In order to apply satellite data to guiding navigation in the Arctic more effectively,the sea ice concentrations(SIC)derived from passive microwave(PM)products were compared with ship-based visual observations(OBS)col... In order to apply satellite data to guiding navigation in the Arctic more effectively,the sea ice concentrations(SIC)derived from passive microwave(PM)products were compared with ship-based visual observations(OBS)collected during the Chinese National Arctic Research Expeditions(CHINARE).A total of 3667 observations were collected in the Arctic summers of 2010,2012,2014,2016,and 2018.PM SIC were derived from the NASA-Team(NT),Bootstrap(BT)and Climate Data Record(CDR)algorithms based on the SSMIS sensor,as well as the BT,enhanced NASA-Team(NT2)and ARTIST Sea Ice(ASI)algorithms based on AMSR-E/AMSR-2 sensors.The daily arithmetic average of PM SIC values and the daily weighted average of OBS SIC values were used for the comparisons.The correlation coefficients(CC),biases and root mean square deviations(RMSD)between PM SIC and OBS SIC were compared in terms of the overall trend,and under mild/normal/severe ice conditions.Using the OBS data,the influences of floe size and ice thickness on the SIC retrieval of different PM products were evaluated by calculating the daily weighted average of floe size code and ice thickness.Our results show that CC values range from 0.89(AMSR-E/AMSR-2 NT2)to 0.95(SSMIS NT),biases range from−3.96%(SSMIS NT)to 12.05%(AMSR-E/AMSR-2 NT2),and RMSD values range from 10.81%(SSMIS NT)to 20.15%(AMSR-E/AMSR-2 NT2).Floe size has a significant influence on the SIC retrievals of the PM products,and most of the PM products tend to underestimate SIC under smaller floe size conditions and overestimate SIC under larger floe size conditions.Ice thickness thicker than 30 cm does not have a significant influence on the SIC retrieval of PM products.Overall,the best(worst)agreement occurs between OBS SIC and SSMIS NT(AMSR-E/AMSR-2 NT2)SIC in the Arctic summer. 展开更多
关键词 sea ice concentration passive microwave remote sensing ship-based visual observations Arctic navigation SUMMER
在线阅读 下载PDF
A Method for Surface Roughness Parameter Estimation in Passive Microwave Remote Sensing 被引量:4
6
作者 ZHENG Xingming ZHAO Kai 《Chinese Geographical Science》 SCIE CSCD 2010年第4期345-352,共8页
Surface roughness parameter is an important factor and obstacle for retrieving soil moisture in passive microwave remote sensing.Two statistical parameters,root mean square (RMS) height (s) and correlation length (l),... Surface roughness parameter is an important factor and obstacle for retrieving soil moisture in passive microwave remote sensing.Two statistical parameters,root mean square (RMS) height (s) and correlation length (l),are designed for describing the roughness of a randomly rough surface.The roughness parameter measured by traditional way is independence of frequency,soil moisture and soil heterogeneity and just the ″geometric″ roughness of random surface.This ″geometric″ roughness can not fully explain the scattered thermal radiation by the earth's surface.The relationship between ″geometric″ roughness and integrated roughness (contain both ″geometric″ roughness and ″dielectric″ roughness) is linked by empirical coefficient.In view of this problem,this paper presents a method for estimating integrated surface roughness from radiometer sampling data at different frequencies,which mainly based on the flourier relationship between power spectral density distribution and spatial autocorrelation function.We can obtain integrated surface roughness at different frequencies by this method.Besides "geometric" roughness,this integrated surface roughness not only contains "dielectric" roughness but also includes frequency dependence.Combined with Q/H model the polarization coupling coefficient can also be obtained for both H and V polarization.Meanwhile,the simulated numerical results show that radiometer with a sensitivity of 0.1 K can distinguish the different surface roughness and the change of roughness with frequency for the same rough surface.This confirms the feasibility of radiometer sampling method for estimating the surface roughness theoretically.This method overcomes the problem of ″dielectric″ roughness measurement to some extent and can achieve the integrated surface roughness within a microwave pixel which can serve soil moisture inversion better than the ″geometric″ roughness. 展开更多
关键词 surface roughness passive microwave remote sensing statistical parameter estimation soil moisture RADIOMETER
在线阅读 下载PDF
STUDY AND APPLICATION OF THE AERIAL PASSIVE MICROWAVE REMOTE SENSING 被引量:2
7
作者 Zhao Renyu, Zhang Junrong, Guo Fenglian, Zhao Kai, Hu Xuewei, Liu Baojiang (Changchun Institute of Geography, Academia Sinica) 《遥感信息》 CSCD 1990年第A02期34-36,共3页
Ⅰ. Introduction Over the past two decades, microwave remote sensing has evolved into a focal point in the remote sensing area. This is due to the fact that in microwave band, we can acquire physical parameters about ... Ⅰ. Introduction Over the past two decades, microwave remote sensing has evolved into a focal point in the remote sensing area. This is due to the fact that in microwave band, we can acquire physical parameters about ocean, terrain and atmosphere on all weather condition. Research and application work about the aerial passive micro wave remote sensors has been done at Changchun Institute of Geography since 1973, under the unitary planning of Academia Sinica. Microwave radiometers of six freqency bands have been developed. Numerous remote sensing experiments were carried out, and large amount of scientific data were accumulated. Recently, theoretical models have 展开更多
关键词 STUDY AND APPLICATION OF THE AERIAL PASSIVE microwave REMOTE sensing BAY
在线阅读 下载PDF
Study on Microwave Remote Sensing of Atmosphere,Cloud and Rain
8
作者 赵柏林 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 1990年第4期475-490,共16页
In this paper, recent research of microwave remote sensing of atmosphere, cloud and rain in China is presented. It includes the following aspects:(1) Progress in the development of multifrequency radiometer and its ch... In this paper, recent research of microwave remote sensing of atmosphere, cloud and rain in China is presented. It includes the following aspects:(1) Progress in the development of multifrequency radiometer and its characteristics and parameters;(2) Application of microwave remote sensing in prediction of atmospheric boundary layer. The atmospheric temperature profiles are derived with 5 mm (54.5 GHz) radiometer angle-scanning observations. Due to the fact that microwave radiometer could monitor the atmospheric temperature profile continuously and make the initialization of numerical model any time, it is helpful for improving the accuracy in prediction of the evolution of atmospheric boundary layer;(3) Theory and application of microwave radiometers in monitoring atmospheric temperature, humidity and water content in cloud. The field experiment of International Satellite Cloud Climatology Project (ISCCP) at Shionomisaki and Amami Oshima of Japan for studies of cloud and weather has been described;(4) Satellite remote sensing of atmosphere and colud. The TIROS-N TOYS satellite data are used to obtain atmospheric temperature profile. The results are compared with those of radiosonde, with rms deviation smaller than that of the current operational TOVS processing;(5) Microwave remote sensing and communication. The atmospheric attenuations are derived with microwave remote sensing methods such as solar radiation method etc., in order to obtain the local value instantaneously. The characteristics of Beijing's rainfall have been analysed and the probability of microwave attenuation of rain is predicted;(6) For improvement of the accuracy of rainfall measurement, a radiometer-radar system (λ= 3.2 cm) has been developed The variation of rainfall distribution and area-rainfall may be obtained by its measurements, which mav be helpful for hydrological prediction.The prospect of microwave remote sensing in meteorology is also discussed. 展开更多
关键词 Study on microwave Remote sensing of Atmosphere Cloud and Rain
在线阅读 下载PDF
NUMERICAL MODELING OF RADIATIVE TRANSFER FOR MICROWAVE REMOTE SENSING
9
作者 Jin Yaqiu, Zhang Jurong, Zhao Renyu (Department of Electronic Engineering, Fudan University) (Changchun Institute of Geography, Academia Sinica) 《遥感信息》 CSCD 1990年第A02期30-31,共2页
An overall vector radiative transfer theory was developed for numerical modeling, in both active and passive microwave remote sensing. The Theory and approaches are briefly summerized.To quantitatively understand scat... An overall vector radiative transfer theory was developed for numerical modeling, in both active and passive microwave remote sensing. The Theory and approaches are briefly summerized.To quantitatively understand scattering and thermal emission from targets in active and passive remote sensing, we have developed an overall vector radiative transfer theory for a set of theoretical models of discrete scatterer and continuous random media for the earth terrain (wet soil, vegetation, snow, sea-ice, etc.) and atmosphere, and numerical approaches for simulation, data analysis, and parameter sensitivity test. Our numerical results favorably agreed with experimental data in microwave re mote sensing of various earth surfaces. Main approaches are briefly summerized herewith. 展开更多
关键词 VRT NUMERICAL MODELING OF RADIATIVE TRANSFER FOR microwave REMOTE sensing
在线阅读 下载PDF
A study on remote sensing models of sea ice thickness by microwave radiometry
10
作者 Zheng Quan’an, Zhang Dong and Pan Jiayi The First Institute of Oceanography, State Oceanic Administration, P. O. Box 98, Qingdao 266003, China 《Acta Oceanologica Sinica》 SCIE CAS CSCD 1993年第2期197-206,共10页
Extrapolating from the propagation theories of electromagnetic waves in a layered medium, a three-layer medium model is deduced in this paper by using microwave radiometric remote sensing technology which is suitable ... Extrapolating from the propagation theories of electromagnetic waves in a layered medium, a three-layer medium model is deduced in this paper by using microwave radiometric remote sensing technology which is suitable to first-year sea ice condition of the northern part of China seas. Comparison with in situ data indicates that for microwave wavelength of 10 cm, the coherent model gives a quite good fit result for the thickness of sea ice less than 20 cm, and the incoherent model also works well for thickness within 20 to 40 cm. Based on three theoretical models, the inversion soft ware from microwave remote sensing data for calculating the thickness of sea ice can be set up. The relative complex dielectrical constants of different types of sea ice in the Liaodong Gulf calculated by using these theoretical models and measurement data are given in this paper. The extent of their values is (0. 5-4. 0)-j(0. 07~0. 19). 展开更多
关键词 A study on remote sensing models of sea ice thickness by microwave radiometry
在线阅读 下载PDF
Sea ice classification in the Arctic transition zone using Haiyang-2B microwave scatterometer and radiometer data
11
作者 Shiyu Wu Tingting Liu +3 位作者 Mohammed Shokr Ruibo Lei Fan Yang Yachao Li 《Acta Oceanologica Sinica》 2025年第3期84-101,共18页
Loss of multiyear ice(MYI)is of great importance for Arctic climate and marine systems and can be monitored using active and passive microwave satellite data.In this paper,we describe an upgraded classification algori... Loss of multiyear ice(MYI)is of great importance for Arctic climate and marine systems and can be monitored using active and passive microwave satellite data.In this paper,we describe an upgraded classification algorithm using the data from the scatterometer and radiometer sensors onboard the Chinese Haiyang-2B(HY-2B)satellite to identify MYI and first-year ice(FYI).The proposed method was established based on K-means and fuzzy clustering(K-means+FC)and was used to focus on the transition zone where the ice condition is complex due to the highly commixing of MYI and FYI,leading to the high challenge for accurate classification of sea ice.The K-means algorithm was applied to preliminarily classify MYI using the combination of scatterometer and radiometer data,followed by applying fuzzy clustering to reclassify MYI in the transition zone.The HY-2B K-means+FC results were compared with the ice type products[including the Ocean and Sea Ice Satellite Application Facility(OSI SAF)sea ice type product and the Equal-Area Scalable Earth-Grid sea ice age dataset],and showed agreement in the time series of MYI extent.Intercomparisons in the transition zone indicated that the HY-2B K-means+FC results can identify more old ice than the OSI SAF product,but with an underestimation in identifying second-year ice.Comparisons between K-means and Kmeans+FC results were performed using regional ice charts and Sentinel-1 synthetic aperture radar(SAR)data.By adding fuzzy clustering,the MYI is more consistent with the ice charts,with the overall accuracy(OA)increasing by 0.9%–6.5%.Comparing against SAR images,it is suggested that more scattered MYI floes can be identified by fuzzy clustering,and the OA is increased by about 3%in middle freezing season and 7%–20%in early and late freezing season. 展开更多
关键词 sea ice classification Arctic multiyear ice Haiyang-2B transition zone microwave remote sensing fuzzy clustering
在线阅读 下载PDF
Cavity-Enhanced Rydberg Atom Microwave Receiver
12
作者 Bang Liu Li-Hua Zhang +11 位作者 Qi-Feng Wang Yu Ma Tian-Yu Han Zong-Kai Liu Zheng-Yuan Zhang Shi-Yao Shao Jun Zhang Qing Li Han-Chao Chen Yu-Long Han Dong-Sheng Ding Bao-Sen Shi 《Chinese Physics Letters》 2025年第5期7-11,共5页
Developing microwave electric field sensing based on Rydberg atoms has received significant attention due to its unique advantages. However, achieving effective coupling between Rydberg atoms and the microwave electri... Developing microwave electric field sensing based on Rydberg atoms has received significant attention due to its unique advantages. However, achieving effective coupling between Rydberg atoms and the microwave electric field in the sensing process is a challenging problem that greatly impacts the sensitivity. To address this, we propose using a microwave resonant cavity to enhance the effective coupling between the Rydberg atoms and the microwave electric field. In our experiment, Rydberg atoms are prepared via a three-photon excitation scheme, and the electric fields are measured without and with a microwave cavity in which the vapor cell is placed inside, respectively. As a result, we achieved an 18 dB enhancement of power sensitivity by adding the cavity,which is an effective enhancement in electric field pulse signal detection. This experimental testing provides a promising direction for enhancing the sensitivity of Rydberg atomic electric field sensors and paves the way for their application in precision electric field measurements. 展开更多
关键词 rydberg atoms enhance effective coupling microwave electric field cavity enhanced microwave electric field sensing sensing process microwave resonant cavity Rydberg atoms
原文传递
New Sensing Technologies for Monitoring Machinery,Structures,and Manufacturing Processes 被引量:3
13
作者 JDMD Editorial Office Zhaoyan Fan +7 位作者 Robert X.Gao Qingbo He Yi Huang Tianxi Jiang Zhike Peng Luc Thévenaz Yuyong Xiong Shuncong Zhong 《Journal of Dynamics, Monitoring and Diagnostics》 2023年第2期69-88,共20页
Sensing is the fundamental technique for sensor data acquisition in monitoring the operation condition of the machinery,structures,and manufacturing processes.In this paper,we briefly discuss the general idea and adva... Sensing is the fundamental technique for sensor data acquisition in monitoring the operation condition of the machinery,structures,and manufacturing processes.In this paper,we briefly discuss the general idea and advances of various new sensing technologies,including multiphysics sensing,smart materials and metamaterials sensing,microwave sensing,fiber optic sensors,and terahertz sensing,for measuring vibration,deformation,strain,acoustics,temperature,spectroscopic,etc.Based on the observations from the state of the art,we provide comprehensive discussions on the possible opportunities and challenges of these new sensing technologies so as to steer future development. 展开更多
关键词 fiber optic sensor metamaterials sensing microwave sensing multiphysics sensing terahertz sensing
在线阅读 下载PDF
Performance of a Microwave Cotton Bale Moisture Content Meter
14
作者 C. D. Delhom R. K. Byler 《Journal of Agricultural Science and Technology》 2011年第2期181-187,共7页
Measuring the moisture content of cotton bales is an important step in controlling the quality of cotton produced and sold around the world. A non-contact microwave-based bale moisture meter, the Vomax 851-B (Vomax I... Measuring the moisture content of cotton bales is an important step in controlling the quality of cotton produced and sold around the world. A non-contact microwave-based bale moisture meter, the Vomax 851-B (Vomax Instrumentation through Samuel Jackson, Lubbock, TX) has been commercially available but independent verification of these measurements has not been available. This new commercial meter was examined at a commercial facility using both laboratory produced bales and actual commercially produced bales. In the laboratory phase, bales were prepared by the Cotton Ginning Research Unit for measurement on the commercial instrument as well as by the oven reference method; the potential effects of bale orientation and bale packaging were also studied with these samples. The commercial phase involved collecting lint samples from 50 bales, over 5 days, during the 2007 ginning season. The collected bale samples were tested by the oven reference method for moisture content and those readings were compared to the microwave-based meter readings for moisture content. Moisture content, as measured, covered a wide range from 4.2% to 7.2 %, wet basis. The Vomax measurements tracked variation in bale moisture content and correlated well with the reference method; however the measurements showed higher moisture content than determined by the oven method. The Vomax 851-B shows potential to provide a reliable cotton bale moisture content for use in controlling the moisture content for commercial ginning of cotton. 展开更多
关键词 COTTON cotton ginning MOISTURE moisture content moisture meter microwave sensing.
在线阅读 下载PDF
Insights into the Microwave Instruments Onboard the Fengyun 3D Satellite:Data Quality and Assimilation in the Met Office NWP System 被引量:6
15
作者 Fabien CARMINATI Nigel ATKINSON +1 位作者 Brett CANDY Qifeng LU 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2021年第8期1379-1396,共18页
This paper evaluates the microwave instruments onboard the latest Chinese polar-orbiting satellite, Fengyun 3D (FY- 3D). Comparing three months of observations from the Microwave Temperature Sounder 2 (MWTS-2), the Mi... This paper evaluates the microwave instruments onboard the latest Chinese polar-orbiting satellite, Fengyun 3D (FY- 3D). Comparing three months of observations from the Microwave Temperature Sounder 2 (MWTS-2), the Microwave Humidity Sounder 2 (MWHS-2), and the Microwave Radiation Imager (MWRI) to Met Office short-range forecasts, we characterize the instrumental biases, show how those biases have changed with respect to their predecessors onboard FY- 3C, and how they compare to the Advanced Technology Microwave Sounder (ATMS) onboard NOAA-20 and the Global Precipitation Measurement Microwave Imager (GMI). The MWTS-2 global bias is much reduced with respect to its predecessor and compares well to ATMS at equivalent channel frequencies, differing only by 0.36 ± 0.28 K (1σ) on average. A suboptimal averaging of raw digital counts is found to cause an increase in striping noise and an ascending- descending bias. MWHS-2 benefits from a new calibration method improving the 183-GHz humidity channels with respect to its predecessor and biases for these channels are within ± 1.9 K to ATMS. MWRI presents the largest improvements, with reduced global bias and standard deviation with respect to FY-3C;although, spurious, seemingly transient, brightness temperatures have been detected in the observations at 36.5 GHz (vertical polarization). The strong solar-dependent bias that affects the instrument on FY-3C has been reduced to less than 0.2 K on average for FY-3D MWRI. Experiments where radiances from these instruments were assimilated on top of a full global system demonstrated a neutral to positive impact on the forecasts, as well as on the fit to the background of independent instruments. 展开更多
关键词 microwave remote sensing numerical weather prediction data assimilation
在线阅读 下载PDF
Improved Microwave Ocean Emissivity and Reflectivity Models Derived from Two-Scale Roughness Theory 被引量:3
16
作者 Lingli HE Fuzhong WENG 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2023年第10期1923-1938,共16页
The Geometrical Optics(GO)approach and the FAST Emissivity Model(FASTEM)are widely used to estimate the surface radiative components in atmospheric radiative transfer simulations,but their applications are limited in ... The Geometrical Optics(GO)approach and the FAST Emissivity Model(FASTEM)are widely used to estimate the surface radiative components in atmospheric radiative transfer simulations,but their applications are limited in specific conditions.In this study,a two-scale reflectivity model(TSRM)and a two-scale emissivity model(TSEM)are developed from the two-scale roughness theory.Unlike GO which only computes six non-zero elements in the reflectivity matrix,The TSRM includes 16 elements of Stokes reflectivity matrix which are important for improving radiative transfer simulation accuracy in a scattering atmosphere.It covers the frequency range from L-to W-bands.The dependences of all TSRM elements on zenith angle,wind speed,and frequency are derived and analyzed in details.For a set of downwelling radiances in microwave frequencies,the reflected upwelling brightness temperature(BTs)are calculated from both TSRM and GO and compared for analyzing their discrepancies.The TSRM not only includes the effects of GO but also accounts for the small-scale Bragg scattering effect in an order of several degrees in Kelvins in brightness temperature.Also,the third and fourth components of the Stokes vector can only be produced from the TSRM.For the emitted radiation,BT differences in vertical polarization between a TSEM and FASTEM are generally less than 5 K when the satellite zenith angle is less than 40°,whereas those for the horizontal component can be quite significant,greater than 20 K. 展开更多
关键词 EMISSIVITY microwave remote sensing reflectivity matrix two-scale roughness theory
在线阅读 下载PDF
Preliminary Study on Direct Assimilation of Cloud-affected Satellite Microwave Brightness Temperatures 被引量:1
17
作者 Sibo ZHANG Li GUAN 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2017年第2期199-208,共10页
Direct assimilation of cloud-affected microwave brightness temperatures from AMSU-A into the GSI three-dimensional variational (3D-Var) assimilation system is preliminarily studied in this paper. A combination of cl... Direct assimilation of cloud-affected microwave brightness temperatures from AMSU-A into the GSI three-dimensional variational (3D-Var) assimilation system is preliminarily studied in this paper. A combination of cloud microphysics param- eters retrieved by the 1D-Var algorithm (including vertical profiles of cloud liquid water content, ice water content, and rain water content) and atmospheric state parameters from objective analysis fields of an NWP model are used as background fields. Three cloud microphysics parameters (cloud liquid water content, ice water content, and rain water content) are ap- plied to the control variable. Typhoon Halong (2014) is selected as an example. The results show that direct assimilation of cloud-affected AMSU-A observations can effectively adjust the structure of large-scale temperature, humidity and wind anal- ysis fields due to the assimilation of more AMSU-A observations in typhoon cloudy areas, especially typhoon spiral cloud belts. These adjustments, with temperatures increasing and humidities decreasing in the movement direction of the typhoon, bring the forecasted typhoon moving direction closer to its real path. The assimilation of cloud-affected satellite microwave brightness temperatures can provide better analysis fields that are more similar to the actual situation. Furthermore, typhoon prediction accuracy is improved using these assimilation analysis fields as the initial forecast fields in NWP models. 展开更多
关键词 atmospheric sounding microwave remote sensing data assimilation cloudy radiances GSI
在线阅读 下载PDF
Review on retrieval of lunar regolith thickness by active and passive microwave measurements 被引量:3
18
作者 Zhiguo MENG Shengbo CHEN Cai LIU Xiaojuan DU Tao MENG Zijun WANG Hang LU 《Global Geology》 2008年第2期102-109,共8页
It is one of the important methods to retrieve lunar regolith thickness using active and passive microwave techniques.The retrieval of lunar regolith thickness is based on microwave radiation transfer process simulati... It is one of the important methods to retrieve lunar regolith thickness using active and passive microwave techniques.The retrieval of lunar regolith thickness is based on microwave radiation transfer process simulation in the regolith media.The lunar regolith model is first introduced,and the features of the involved physical parameters are indicated thereafter,such as dielectric constants,surface roughness,particle size and thermal grads of the lunar regolith.The time delay and the migration of the radar echoes from the different interfaces is the key problem for active microwave measurement.And the simulation of the microwave radiative transfer in the regolith media is the important technique for the passive microwave measurement.The important parameters and the physical mechanism for the two measurements are also presented. 展开更多
关键词 passive microwave remote sensing lunar regolith layer thickness radiative transfer equation layered lunar regolith model
在线阅读 下载PDF
Soil-Vegetation-Atmosphere Radiative Transfer Model in Microwave Region
19
作者 JIA Yuanyuan LI Zhaoliang 《Chinese Geographical Science》 SCIE CSCD 2008年第2期171-177,共7页
The radiative transfer is one of the significant theories that describe the processes of scattering, emission, and absorption of electromagnetic radiant intensity through scattering medium. It is the basis of the stud... The radiative transfer is one of the significant theories that describe the processes of scattering, emission, and absorption of electromagnetic radiant intensity through scattering medium. It is the basis of the study on the quan-titative remote sensing. In this paper, the radiative characteristics of soil, vegetation, and atmosphere were described respectively. The numerical solution of radiative transfer was accomplished by Successive Orders of Scattering (SOS). A radiative transfer model for simulating microwave brightness temperature over land surfaces was constructed, de-signed, and implemented. Analyzing the database generated from soil-vegetation-atmosphere radiative transfer model under Advanced Microwave Scanning Radiometer-Earth Observing System (AMSR-E) configuration showed that the atmospheric effects on microwave brightness temperature should not be neglected, particularly for higher frequency, and can be parameterized. At the same time, the relationship between the emissivities of the different channels was developed. The study results will promote the development of algorithm to retrieve geophysical parameters from mi-crowave remotely sensed data. 展开更多
关键词 soil-vegetation-atmosphere system radiative transfer model microwave remote sensing
在线阅读 下载PDF
Research Progress on Remote Sensing Inversion of Soil Moisture
20
作者 LIU Yunhao FEI Long 《外文科技期刊数据库(文摘版)自然科学》 2021年第1期143-149,共7页
In recent years, environmental and climate issues have been discussed more and more. Inversion monitoring of soil moisture in environmental remote sensing has gradually become a research hotspot and frontier. Soil moi... In recent years, environmental and climate issues have been discussed more and more. Inversion monitoring of soil moisture in environmental remote sensing has gradually become a research hotspot and frontier. Soil moisture is an important part of the surface process. Timely and accurate retrieval of soil moisture information has guiding significance for global climate problems, regional hydrological models and drought detection, and can also provide basic environmental information for regional vegetation growth, crop growth and yield estimation, climate change, etc. In this paper, the differences and advantages and disadvantages of current soil moisture retrieval methods are summarized, and the main methods of current soil moisture research are summarized from four aspects of thermal infrared remote sensing, visible-near infrared remote sensing and active/passive microwave remote sensing. The characteristics of each model and method are analyzed, and finally the application effect of each method model is discussed. 展开更多
关键词 soil moisture optical remote sensing microwave remote sensing
原文传递
上一页 1 2 3 下一页 到第
使用帮助 返回顶部