Designing materials with both structural load-bearing capacity and broadband electromagnetic(EM)wave absorption properties remains a significant challenge.In this work,SiOC/SiC/SiO_(2)composite with gyroid structures ...Designing materials with both structural load-bearing capacity and broadband electromagnetic(EM)wave absorption properties remains a significant challenge.In this work,SiOC/SiC/SiO_(2)composite with gyroid structures were prepared through digital light processing(DLP)3D printing,polymer-derived ceramics(PDCs),chemical vapor infiltration(CVI),and oxidation technologies.The incorporation of the CVISiC phase effectively increases the dissipation capability,while the synergistic interaction between the gyroid structure and SiO_(2)phase significantly improves impedance matching performance.The SiOC/SiC/SiO_(2)composite achieved a minimum reflection loss(RL min)of-62.2 d B at 4.3 mm,and the effective absorption bandwidth(EAB)covered the X-band,with a thickness range of 4.1 mm-4.65 mm.The CST simulation results explain the broadband and low-frequency absorption characteristics,with an EAB of 8.4 GHz(9.6-18 GHz)and an RL min of-21.5 dB at 5 GHz.The excellent EM wave attenuation performance is associated primarily with polarization loss,conduction loss,the gyroid structure's enhancement of multiple reflections and scattering of EM waves,and the resonance effect between the structural units.The SiOC/SiC/SiO_(2)composite also demonstrated strong mechanical properties,with a maximum compressive failure strength of 31.6 MPa in the height direction.This work opens novel prospects for the development of multifunctional structural wave-absorbing materials suitable for broadband microwave absorption and load-bearing properties.展开更多
Developing advanced stealth devices to cope with radar-infrared(IR)fusion detection and diverse application scenarios is increasingly demanded,which faces significant challenges due to conflicting microwave and IR clo...Developing advanced stealth devices to cope with radar-infrared(IR)fusion detection and diverse application scenarios is increasingly demanded,which faces significant challenges due to conflicting microwave and IR cloaking mechanisms and functional integration limitations.Here,we propose a multiscale hierarchical structure design,integrating wrinkled MXene IR shielding layer and flexible Fe_(3)O_(4)@C/PDMS microwave absorption layer.The top wrinkled MXene layer induces the intensive diffuse reflection effect,shielding IR radiation signals while allowing microwave to pass through.Meanwhile,the permeable microwaves are assimilated into the bottom Fe_(3)O_(4)@C/PDMS layer via strong magneto-electric synergy.Through theoretical and experimental optimization,the assembled stealth devices realize a near-perfect stealth capability in both X-band(8–12 GHz)and long-wave infrared(8–14μm)wavelength ranges.Specifically,it delivers a radar cross-section reduction of−20 dB m^(2),a large apparent temperature modulation range(ΔT=70℃),and a low average IR emissivity of 0.35.Additionally,the optimal device demonstrates exceptional curved surface conformability,self-cleaning capability(contact angle≈129°),and abrasion resistance(recovery time≈5 s).This design strategy promotes the development of multispectral stealth technology and reinforces its applicability and durability in complex and hostile environments.展开更多
Exploring high-efficiency and broadband microwave absorption(MA)materials with corrosion resistance and low cost is ur-gently needed for wide practical applications.Herein,the natural porous attapulgite(ATP)nanorods e...Exploring high-efficiency and broadband microwave absorption(MA)materials with corrosion resistance and low cost is ur-gently needed for wide practical applications.Herein,the natural porous attapulgite(ATP)nanorods embedded with TiO_(2)and polyaniline(PANI)nanoparticles are synthesized via heterogeneous precipitation and in-situ polymerization.The obtained PANI-TiO_(2)-ATP one-di-mensional(1D)nanostructures can intertwine into three-dimensional(3D)conductive network,which favors energy dissipation.The min-imum reflection loss(RL_(min))of the PANI-TiO_(2)-ATP coating(20wt%)reaches-49.36 dB at 9.53 GHz,and the effective absorption band-width(EAB)can reach 6.53 GHz with a thickness of 2.1 mm.The excellent MA properties are attributed to interfacial polarization,mul-tiple loss mechanisms,and good impedance matching induced by the synergistic effect of PANI-TiO_(2)nanoparticle shells and ATP nanor-ods.In addition,salt spray and Tafel polarization curve tests reveal that the PANI-TiO_(2)-ATP coating shows outstanding corrosion resist-ance performance.This study provides a low-cost and high-efficiency strategy for constructing 1D nanonetwork composites for MA and corrosion resistance applications using natural porous ATP nanorods as carriers.展开更多
Exploring efficient microwave absorbing materials(MAMs)has gradually become a hot topic in recent years because it is crucial in both civil and military fields.Metal-organic framework(MOF)has great potential due to it...Exploring efficient microwave absorbing materials(MAMs)has gradually become a hot topic in recent years because it is crucial in both civil and military fields.Metal-organic framework(MOF)has great potential due to its unique composition and bonding mode,which has advantages such as large specific surface area,high porosity,adjustable structure,and designable composition.Herein,MOF-derived MAMs are highlighted based on morphology and structure.The synthesis strategies of MOF-derived MAMs of different dimensions are discussed.On this basis,the structure-activity relationships can be deeply explored through the precise control of material structure and property by atomic engineering.Finally,perspectives are given for the existing problems of MOF-derived MAMs,which will open a new horizon and promote the development of MAMs.展开更多
There is an urgent need for the application of broadband Microwave Absorption(MA)structures on the leading edges of aircraft wings,which requires the MA structures to possess both the broadband MA performance and grea...There is an urgent need for the application of broadband Microwave Absorption(MA)structures on the leading edges of aircraft wings,which requires the MA structures to possess both the broadband MA performance and great surface conformability.To meet these requirements,we designed and fabricated a flexible bioinspired meta-structure with ultra-broadband MA,thin thickness and excellent surface conformality.The carbonyl iron powder-carbon nanotubes-polydimethylsiloxane composite was synthesized by physical blending method for fabricating the MA meta-structure.Through geometry-electromagnetic optimal design by heuristic optimization algorithm,the meta-structure mimicking to the nipple photonic nanostructures on the eyes of moth can achieve ultra-broadband MA performance of 35.14 GHz MA bandwidth(reflection loss≤–10 dB),covering 4.86–40.00 GHz,with thickness of only 4.3 mm.Through simple fabrication processes,the meta-structure has been successfully fabricated and bonded on wings’leading edges,exhibiting excellent surface conformability.Furthermore,the designed flexible MA meta-structure possesses significant Radar Cross-Section(RCS)reduction capability,as demonstrated by the RCS analysis of an unmanned aerial vehicle.This flexible ultra-broadband MA meta-structure provides an outstanding candidate to meet the radar stealth requirement of variable curvature structures on aircraft.展开更多
Highly developed electronic information technology has undoubtedly resulted in numerous benefits to the military and public life.However,the resulting electromagnetic wave(EW)pollution cannot be ignored.Therefore,the ...Highly developed electronic information technology has undoubtedly resulted in numerous benefits to the military and public life.However,the resulting electromagnetic wave(EW)pollution cannot be ignored.Therefore,the application of highly efficient EW materials is becoming an important requirement.In this study,magnetic-dielectric heterointerface strategy was applied to construct absorbers with desirable electromagnetic wave properties.A novel CoO/Co nanoparticle anchored to N-doped mesoporous carbon(CoO/Co/N-CMK-3)composites was fabricated by facile precipitation reaction and the electromagnetic characteristics have been well optimized by adjusting pyrolysis temperature.The CoO/Co/N-CMK-3 yielded its highest performance at an annealing temperature of 800℃,with an extended effective absorption bandwidth of 5.83 GHz and unusually low minimum reflection loss of−63.82 dB,even at a thickness of just 1.8 mm and low filler loading(10%).For the excellent microwave absorption property,the advantages of the CoO/Co/N-CMK-3 can be summed up as follows.Firstly,the incorporation of heterointerfaces among N-CMK-3,CoO,and Co introduces abundant polarization centers,triggering various polarization effects and increasing dielectric losses.Secondly,the CoO/Co magnetic component introduced the strong magnetic loss and improved the impedance matching capability of CoO/Co/N-CMK-3.Thirdly,the extraordinary magnetic-dielectric behavior is supported by multiple magnetic coupling networks and enriched air-material heterointerfaces,boosted the magnetoelectric cooperative loss for further optimizing the electromagnetic dissipation and broadening the effective absorption frequency band.Moreover,the CST simulation results validate the impressive operational bandwidth and reflection loss characteristics of the obtained absorbers.This study demonstrates a novel heterointerface engineering strategy for designing lightweight,wide-band,and high-performance EW absorbers.展开更多
Inspired by the remarkable electromagnetic response capabilities of the complex morphologies and subtle microstructures evolved by natural organisms,this paper delves into the research advancements and future applicat...Inspired by the remarkable electromagnetic response capabilities of the complex morphologies and subtle microstructures evolved by natural organisms,this paper delves into the research advancements and future application potential of bionic microwave-absorbing materials(BMAMs).It outlines the significance of achieving high-performance microwave-absorbing materials through ingenious microstructural design and judicious composition selection,while emphasizing the innovative strategies offered by bionic manufacturing.Furthermore,this work meticulously analyzes how inspiration can be drawn from the intricate structures of marine organisms,plants,animals,and nonmetallic minerals in nature to devise and develop BMAMs with superior electromagnetic wave absorption properties.Additionally,the paper provides an in-depth exploration of the theoretical underpinnings of BMAMs,particularly the latest breakthroughs in broadband absorption.By incorporating advanced methodologies such as simulation modeling and bionic gradient design,we unravel the scientific principles governing the microwave absorption mechanisms of BMAMs,thereby furnishing a solid theoretical foundation for understanding and optimizing their performance.Ultimately,this review aims to offer valuable insights and inspiration to researchers in related fields,fostering the collective advancement of research on BMAMs.展开更多
Electromagnetic interference,which necessitates the rapid advancement of substances with exceptional capabilities for bsorbing electromagnetic waves,is of urgent concern in contemporary society.In this work,CoFe_(2)O_...Electromagnetic interference,which necessitates the rapid advancement of substances with exceptional capabilities for bsorbing electromagnetic waves,is of urgent concern in contemporary society.In this work,CoFe_(2)O_(4)/residual carbon from coal gasification fine slag(CFO/RC)composites were created using a novel hydrothermal method.Various mechanisms for microwave absorption,including conductive loss,natural resonance,interfacial dipole polarization,and magnetic flux loss,are involved in these composites.Consequently,compared with pure residual carbon materials,this composite offers superior capabilities in microwave absorption.At 7.76GHz,the CFO/RC-2 composite achieves an impressive minimum reflection loss(RL_(min))of-43.99 dB with a thickness of 2.44 mm.Moreover,CFO/RC-3 demonstrates an effective absorption bandwidth(EAB)of up to 4.16 GHz,accompanied by a thickness of 1.18mm.This study revealed the remarkable capability of the composite to diminish electromagnetic waves,providing a new generation method for microwave absorbing materials of superior quality.展开更多
The previous studies mainly focused on improving microwave absorbing(MA)performances of MA materials.Even so,these designed MA materials were very difficult to be employed in complex and changing environments owing to...The previous studies mainly focused on improving microwave absorbing(MA)performances of MA materials.Even so,these designed MA materials were very difficult to be employed in complex and changing environments owing to their single-functionalities.Herein,a combined Prussian blue analogues derived and catalytical chemical vapor deposition strategy was proposed to produce hierarchical cubic sea urchin-like yolk–shell CoNi@Ndoped carbon(NC)-CoNi@carbon nanotubes(CNTs)mixed-dimensional multicomponent nanocomposites(MCNCs),which were composed of zerodimensional CoNi nanoparticles,three-dimensional NC nanocubes and onedimensional CNTs.Because of good impedance matching and attenuation characteristics,the designed CoNi@NC-CoNi@CNTs mixed-dimensional MCNCs exhibited excellent MA performances,which achieved a minimum reflection loss(RL_(min))of−71.70 dB at 2.78 mm and Radar Cross section value of−53.23 dB m^(2).More importantly,the acquired results demonstrated that CoNi@NC-CoNi@CNTs MCNCs presented excellent photothermal,antimicrobial and anti-corrosion properties owing to their hierarchical cubic sea urchin-like yolk–shell structure,highlighting their potential multifunctional applications.It could be seen that this finding not only presented a generalizable route to produce hierarchical cubic sea urchin-like yolk–shell magnetic NC-CNTs-based mixed-dimensional MCNCs,but also provided an effective strategy to develop multifunctional MCNCs and improve their environmental adaptabilities.展开更多
Lightweight materials with wide absorption capabilities,particularly in the C-band,have remained a challenge thus far.Recent research has indicated that effective absorption networks built by microfiber polarization l...Lightweight materials with wide absorption capabilities,particularly in the C-band,have remained a challenge thus far.Recent research has indicated that effective absorption networks built by microfiber polarization loss can be a significant factor in increasing the effective absorption bandwidth(EAB).In this study,leaf vein-like carbon(LVC)was synthesized using an in situ blowing strategy.Taking inspiration from photosynthesis energy conversion mechanisms,a leaf veins-like hierarchical structure was created to establish an effective impedance-matching network and generate a high-density polarization region through leaf vein microfibers.This enhanced polarization relaxation effectively broadens the EAB of the LVC.At a low filling ratio of 6.3 wt%,the EAB of the LVC covers 80%of the C-band,as well as100%of the X-band and Ku-band.Achieving such a wide EAB in the C-band,especially in the multi-band context,relies on impedance matching and optimized polarization relaxation.This work demonstrates the crucial role of leaf vein micronetwork engineering in enhancing the C-band absorption properties of carbon-based materials,thus providing a viable reference for the development of lightweight,broadband,and highly absorptive materials for electromagnetic applications.展开更多
Heterojunction and morphology control assume a significant part in adjusting the intrinsic electromagnetic properties of absorbers to acquire outstanding microwave absorption(MA)performance,but this still faces huge c...Heterojunction and morphology control assume a significant part in adjusting the intrinsic electromagnetic properties of absorbers to acquire outstanding microwave absorption(MA)performance,but this still faces huge challenges.Herein,FeS_(2)/C/MoS_(2)composite with core–shell structure was successfully designed and prepared via a multi-interface engineering.MoS_(2)nanosheets with 1T and 2H phases are coated on the outside of FeS_(2)/C to form a porous interconnected structure that can optimize the impedance matching characteristics and strengthen the interfacial polarization loss capacity.Remarkably,as-fabricated FCM-3 harvests a broad effective absorption bandwidth(EAB)of 5.12 GHz and a minimum reflection loss(RL_(min))value of-45.1 d B.Meanwhile,FCM-3 can accomplish a greatest radar cross section(RCS)reduction value of 18.52 d B m^(2)when the detection angle is 0°.Thus,the convenient computer simulation technology(CST)simulations and encouraging accomplishments provide a novel avenue for the further development of efficient and lightweight MA materials.展开更多
Multiscale shell structure design is a rational and promising way to regulate the performance of hollow spheres in terms of both functionality and structural robustness,but it remains a big challenge to realize micro-...Multiscale shell structure design is a rational and promising way to regulate the performance of hollow spheres in terms of both functionality and structural robustness,but it remains a big challenge to realize micro-nano engineering of the thin shell while maintaining the low density.In this work,the divisional shell design strategy was adopted to obtain the glass-cobalt-cobalt sulfide composite hollow microspheres(CSH),and an unprecedented stepwise high-temperature chemical reaction-induced aggregation and sub-sequent volume expansion strategy was developed to achieve rational regulation of core-shell structured cobalt-cobalt sulfide building units(BU)assembled on hollow glass microspheres.Special attention has been paid to the sulfidation degree-induced volume control with the underlying mechanism of volume expansion during chemical conversion from metallic cobalt to cobalt sulfide.The electromagnetic prop-erty was found to depend largely on the sulfidation degree due to the volume expansion-induced inter-connecting status regulation among the BU.When evaluated as microwave absorbent,an optimized broad bandwidth of 5.12 GHz and a minimum reflection loss(RLmin)of-45.58 dB of our CSH can be achieved at a thin matching thickness of 1.67 mm and a low filling ratio of 20.04 wt%.In addition to functionality,the divisional shell design also brings the CSH high structural strength(92.36%survival rate at a high hydrostatic pressure of 20 MPa)at low density(0.73 g cm^(-3)).展开更多
Although lightweight aramid paper honeycombs are highly desirable for microwave absorption owing to their dual functions of both load-bearing and microwave-absorbing,unsatisfactory microwave absorption,inferior mechan...Although lightweight aramid paper honeycombs are highly desirable for microwave absorption owing to their dual functions of both load-bearing and microwave-absorbing,unsatisfactory microwave absorption,inferior mechanical and inadequate thermal properties present significant challenges for practical applications in diverse complex scenarios.Herein,lightweight,high-strength and flame-retardant aramid nanofibers-based honeycombs(MANHs)for integrated microwave absorption and thermal insulation are successfully fabricated via the hydrogen bonding assembly,mold forming and aerogel filling strategy using aramid waste as raw material.The dense network structure formed by the interwoven aramid nanofibers(ANFs)in the honeycomb body acts as a framework endows the MANH with impressive mechanical performance,and the specific strength and toughness of MANH reach 153.6 MPa g^(−1) cm^(−3) and 13.9 MJ m^(−3),respectively,which are 3.5 and 19 times higher than those of commercial microwave absorption honeycombs(CMAH).The ultralight MXene/ANFs aerogels(a density of 25 mg cm^(−3))with multiscale pore structure filled in the honeycomb apertures give the honeycomb outstanding microwave absorption performance,with a minimum reflection loss of−62.5 dB,and can cover the entire X-band with a thickness of only 3.5 mm.Meanwhile,compared with CMAH,the thermal insulation and flame-retardant performance of MANH are also significantly improved.Notably,MANH also demonstrates favorable sound absorption performance at high-frequency bands.The MANH is considered to be a promising candidate for aerospace and military stealth applications as a result of its lightweight,high strength,exceptional microwave absorption,and remarkable thermal insulation performance.展开更多
The wave-absorbing materials are kinds of special electromagnetic functional materials and have been widely used in electromagnetic pollution control and military fields.In-situ integrated hierarchical structure const...The wave-absorbing materials are kinds of special electromagnetic functional materials and have been widely used in electromagnetic pollution control and military fields.In-situ integrated hierarchical structure construction is thought as a promising route to improve the microwave absorption performance of the materials.In the present work,layer-structured Co-metal-organic frameworks(Co-MOFs)precursors were grown in-situ on the surface of carbon fibers with the hydrothermal method.After annealed at 500℃ under Ar atmosphere,a novel multiscale hierarchical composite(Co@C/CF)was obtained with the support of carbon fibers,keeping the flower-like structure.Scanning electron microscope,transmission electron microscope,X-ray diffraction,Raman,and X-ray photoelectron spectroscopy were performed to analyze the microstructure and composition of the hierarchical structure,and the microwave absorption performance of the Co@C/CF composites were investigated.The results showed that the growth of the flower-like structure on the surface of carbon fiber was closely related to the metal-to-ligand ratio.The optimized Co@C/CF flower-like composites achieved the best reflection loss of−55.7 dB in the low frequency band of 6–8 GHz at the thickness of 2.8 mm,with the corresponding effective absorption bandwidth(EAB)of 2.1 GHz.The EAB of 3.24 GHz was achieved in the high frequency range of 12–16 GHz when the thickness was 1.5 mm.The excellent microwave absorption performance was ascribed to the introduction of magnetic components and the construction of the unique structure.The flower-like structure not only balanced the impedance of the fibers themselves,but also extended the propagation path of the microwave and then increased the multiple reflection losses.This work provides a convenient method for the design and development of wave-absorbing composites with in-situ integrated structure.展开更多
Direct utilization of co-existed ferrous oxide(FeO)dust in CO_(2)flue gas from the steel industry to product value-added materials is yet to be established.Inspired by the form of CaO-CaCO_(3)as natural carbon cycle a...Direct utilization of co-existed ferrous oxide(FeO)dust in CO_(2)flue gas from the steel industry to product value-added materials is yet to be established.Inspired by the form of CaO-CaCO_(3)as natural carbon cycle and the high oxide dissolution capacity of molten salts,CaO is herein introduced into the affordable molten NaCl-CaCl_(2)-FeO salt to generate CO_(3)^(2-)through an efficient capture of CO_(2).The subsequent coelectrolysis of FeO and CO_(3)^(2-)successfully produces cathodic Fe-encapsulated carbon nanotubes(Fe@CNT)with enhanced energy efficiency(current efficiency of 83.1%for CO_(2)reduction and energy consumption of 22.49 kWh kg^(1)for Fe@CNT generation).The in-situ capture of CO_(2)by O^(2)generated from the electro-deoxidation of FeO bridges the electrolysis of CO_(2)and FeO,rendering the enhanced current efficiency of the co-electrolysis and template-free generation of Fe@CNT.When evaluated as functional materials for electromagnetic wave absorption,the Fe@CNT integrates dielectric loss of CNT and electromagnetic loss from Fe.The Fe well-defined in CNT induces the synergistic loss and further improves the impedance matching,resulting in excellent electromagnetic wave absorption performance.The coelectrolysis establishes a promising strategy for converting CO_(2)into highly functional materials directly from CO_(2)-containing flue gas from steel industrial without dust removal.展开更多
The construction of carbon nanocoil(CNC)-based chiral-dielectric-magnetic trinity composites is considered as a promising approach to achieve excellent low-frequency microwave absorption.However,it is still challengin...The construction of carbon nanocoil(CNC)-based chiral-dielectric-magnetic trinity composites is considered as a promising approach to achieve excellent low-frequency microwave absorption.However,it is still challenging to further enhance the low frequency microwave absorption and elucidate the related loss mechanisms.Herein,the chiral CNCs are first synthesized on a threedimensional(3D)carbon foam and then combined with the FeNi/NiFe_(2)O_(4) nanoparticles to form a novel chiral-dielectric-magnetic trinity foam.The 3D porous CNC-carbon foam network provides excellent impedance matching and strong conduction loss.The formation of the FeNi-carbon interfaces induces interfacial polarization loss,which is confirmed by the density functional theory calculations.Further permeability analysis and the micromagnetic simulation indicate that the nanoscale chiral magnetic heterostructures achieve magnetic pinning and coupling effects,which enhance the magnetic anisotropy and magnetic loss capability.Owing to the synergistic effect between dielectricity,chirality,and magnetism,the trinity composite foam exhibits excellent microwave absorption performance with an ultrabroad effective absorption bandwidth(EAB)of 14 GHz and a minimum reflection of loss less than-50 dB.More importantly,the C-band EAB of the foam is extended to 4 GHz,achieving the full C-band coverage.This study provides further guidelines for the microstructure design of the chiral-dielectric-magnetic trinity composites to achieve broadband microwave absorption.展开更多
The intrinsic high magnetocrystalline anisotropy equivalent field can help the hexaferrites break through Snoek’s limit and increase the resonance frequency.This is advantageous for microwave absorption applications ...The intrinsic high magnetocrystalline anisotropy equivalent field can help the hexaferrites break through Snoek’s limit and increase the resonance frequency.This is advantageous for microwave absorption applications in the mid to low-frequency range of gigahertz.In this study,we prepared Z-type Ba_(3)Co_(1.6−x)Zn_(x)Cu_(0.4)Fe_(24)O_(41)hexaferrites using the sol-gel auto-combustion method.By changing the ratio of Co and Zn ions,the magnetocrystalline anisotropy of ferrite is further ma-nipulated,resulting in significant changes in their magnetic resonance frequency and intensity.Ba_(3)Zn_(1.6)Cu_(0.4)Fe_(24)O_(41)with high-frequency resonance achieved the lowest reflectivity of−72.18 dB at 15.56 GHz,while Ba_(3)Co_(1.5)Zn_(0.1)Cu_(0.4)Fe_(24)O_(41)with stronger loss obtained the widest bandwidth of 4.93 GHz(6.14-11.07).Additionally,we investigated surface wave suppression properties previously overlooked.Ba_(3)Co_(1.5)Zn_(0.1)Cu_(0.4)Fe_(24)O_(41)can achieve a larger attenuation at low frequency under low thickness,which has an excellent effect on reducing backscattering.This work provides a useful reference for the preparation and application of high-performance magnetic-loss materials.展开更多
Developing bifunctional materials with smart discoloration and microwave absorption properties has attracted widespread interest in microwave absorption/shielding,yet it is challenging for reversible discoloration per...Developing bifunctional materials with smart discoloration and microwave absorption properties has attracted widespread interest in microwave absorption/shielding,yet it is challenging for reversible discoloration performance in humid(such as forest)and dry(desert)environments.Herein,we combined catalytic chemical vapor deposition(CCVD)technology and a hydrothermal synthesis method to develop a FeSiB@C@NiBr_(2) atomic-scale double-shell gradient structure with rich interfaces.These nanosheet arrays favor interface polarization,impedance matching,and dipole polarization of the material,thereby optimizing the microwave absorption performance.The optimal reflection loss(RL)value of FeSiB@C@NiBr_(2) reached-59.6 dB at 9.2 GHz,and the effective absorption bandwidth(EAB)reached 7.0 GHz at a thickness of 2.5 mm.Compared with pure FeSiB(RL_(min) of-13.5 dB),the RLmin value of the absorber designed by this method increased by~3 times.The color of NiBr_(2) in the outermost nanosheet arrays changes between yellow and green in the case of water molecule harvesting and loss,respectively.This novel FeSiB@C@NiBr_(2) composite structure material is expected to provide a promising platform for wave-absorbing and smart discoloring materials.展开更多
Plastic waste recycling is a focal point in today's sustainable development efforts.Improper disposal can lead to secondary pollution,posing threats to the environment and human health.In this study,we aim to recy...Plastic waste recycling is a focal point in today's sustainable development efforts.Improper disposal can lead to secondary pollution,posing threats to the environment and human health.In this study,we aim to recycle waste epoxy resin and glass fiber-reinforced epoxy resin composites via an electroless plating and a carbonization process,to design high-value-added carbon materials for microwave absorption.By pulverizing solid waste and introducing magnetic metal nanoparticles onto its surface,a composite carbon material capable of excellent microwave absorption performance was successfully developed.Specifically,doping nickel particles into carbon materials derived from glass fiber/epoxy resin achieved a wide effective absorption bandwidth(EAB)of 5.9 GHz with a matching thickness of 1.9 mm,covering nearly the entire Ku band,and achieving a minimum reflection loss(RLmin)of−36 dB simultaneously.The superior absorption performance is attributed to multiple reflections or scattering of electromagnetic waves within the material,as well as conduction and magnetic losses,dipole and interfacial polarization effects.These results demonstrate that through rational design and optimization,waste epoxy and waste glass fiber-reinforced epoxy resin-based composite materials can be effectively recycled into high-performance microwave absorbing materials,offering a straightforward and efficient pathway for waste resource utilization.展开更多
Currently,carbon materials derived from biomass are widely sought after as electromagnetic absorbing(EMWA)materials owing to the unique structure,as well as the wide range of natural acquisition pathways,economic viab...Currently,carbon materials derived from biomass are widely sought after as electromagnetic absorbing(EMWA)materials owing to the unique structure,as well as the wide range of natural acquisition pathways,economic viability,and simple processing.However,due to the high dielectric properties,mismatched impedance and single attenuation mechanism,they cannot achieve efficient EMWA performance.Herein,the biomass carbon/Co/porous carbon magnetic composites with a layered gradient structure were fabricated by in-situ deposition of ZIF-67 on the lotus leaf base and then pyrolysis at high temperature.By adjusting the pyrolysis temperature,the sample obtained at 650℃ achieved a minimum reflection value(RLmin)of-34.2dB at a matching thickness of 2.6mm,and a maximum effective absorption bandwidth(EAB)of 7.12GHz.The results indicate that this magnetic composite with a multi-sized layered gradient porous structure has a good electron transport network,a large number of heterogeneous interfaces,and dipole polarization centers,which are conducive to multiple reflection and scattering of microwaves,conduction loss,interface loss,magnetic loss,and impedance matching of materials.Therefore,this work provided a reference for optimizing the EMWA performance of carbon materials and designing a layered gradient porous magnetic composite with multi-sized structure.展开更多
基金financially supported by National Natural Science Foundation of China(Grant Nos.12141203,52202083,W2421013)the Natural Science Foundation Project of Shaanxi Province(Grant No.2024JC-YBMS-450)+1 种基金the Sichuan Science and Technology Program(Grant No.2024YFHZ0265)the Open Project of High-end Equipment Advanced Materials and Manufacturing Technology Laboratory(Grant No.2023KFKT0005)。
文摘Designing materials with both structural load-bearing capacity and broadband electromagnetic(EM)wave absorption properties remains a significant challenge.In this work,SiOC/SiC/SiO_(2)composite with gyroid structures were prepared through digital light processing(DLP)3D printing,polymer-derived ceramics(PDCs),chemical vapor infiltration(CVI),and oxidation technologies.The incorporation of the CVISiC phase effectively increases the dissipation capability,while the synergistic interaction between the gyroid structure and SiO_(2)phase significantly improves impedance matching performance.The SiOC/SiC/SiO_(2)composite achieved a minimum reflection loss(RL min)of-62.2 d B at 4.3 mm,and the effective absorption bandwidth(EAB)covered the X-band,with a thickness range of 4.1 mm-4.65 mm.The CST simulation results explain the broadband and low-frequency absorption characteristics,with an EAB of 8.4 GHz(9.6-18 GHz)and an RL min of-21.5 dB at 5 GHz.The excellent EM wave attenuation performance is associated primarily with polarization loss,conduction loss,the gyroid structure's enhancement of multiple reflections and scattering of EM waves,and the resonance effect between the structural units.The SiOC/SiC/SiO_(2)composite also demonstrated strong mechanical properties,with a maximum compressive failure strength of 31.6 MPa in the height direction.This work opens novel prospects for the development of multifunctional structural wave-absorbing materials suitable for broadband microwave absorption and load-bearing properties.
基金financial support from the National Nature Science Foundation of China(No.52273247)the National Science and Technology Major Project of China(J2019-VI-0017-0132).
文摘Developing advanced stealth devices to cope with radar-infrared(IR)fusion detection and diverse application scenarios is increasingly demanded,which faces significant challenges due to conflicting microwave and IR cloaking mechanisms and functional integration limitations.Here,we propose a multiscale hierarchical structure design,integrating wrinkled MXene IR shielding layer and flexible Fe_(3)O_(4)@C/PDMS microwave absorption layer.The top wrinkled MXene layer induces the intensive diffuse reflection effect,shielding IR radiation signals while allowing microwave to pass through.Meanwhile,the permeable microwaves are assimilated into the bottom Fe_(3)O_(4)@C/PDMS layer via strong magneto-electric synergy.Through theoretical and experimental optimization,the assembled stealth devices realize a near-perfect stealth capability in both X-band(8–12 GHz)and long-wave infrared(8–14μm)wavelength ranges.Specifically,it delivers a radar cross-section reduction of−20 dB m^(2),a large apparent temperature modulation range(ΔT=70℃),and a low average IR emissivity of 0.35.Additionally,the optimal device demonstrates exceptional curved surface conformability,self-cleaning capability(contact angle≈129°),and abrasion resistance(recovery time≈5 s).This design strategy promotes the development of multispectral stealth technology and reinforces its applicability and durability in complex and hostile environments.
基金support from the National Key Research and Development Program of China(No.2021YFB3701503)the Key Research and Development Program of Ningbo,China(No.2023Z107)+1 种基金the Jiangsu Key R&D program,China(No.BE2019072)the special project of Gansu regional science and technology cooperation,China(No.20JR10 QA579).
文摘Exploring high-efficiency and broadband microwave absorption(MA)materials with corrosion resistance and low cost is ur-gently needed for wide practical applications.Herein,the natural porous attapulgite(ATP)nanorods embedded with TiO_(2)and polyaniline(PANI)nanoparticles are synthesized via heterogeneous precipitation and in-situ polymerization.The obtained PANI-TiO_(2)-ATP one-di-mensional(1D)nanostructures can intertwine into three-dimensional(3D)conductive network,which favors energy dissipation.The min-imum reflection loss(RL_(min))of the PANI-TiO_(2)-ATP coating(20wt%)reaches-49.36 dB at 9.53 GHz,and the effective absorption band-width(EAB)can reach 6.53 GHz with a thickness of 2.1 mm.The excellent MA properties are attributed to interfacial polarization,mul-tiple loss mechanisms,and good impedance matching induced by the synergistic effect of PANI-TiO_(2)nanoparticle shells and ATP nanor-ods.In addition,salt spray and Tafel polarization curve tests reveal that the PANI-TiO_(2)-ATP coating shows outstanding corrosion resist-ance performance.This study provides a low-cost and high-efficiency strategy for constructing 1D nanonetwork composites for MA and corrosion resistance applications using natural porous ATP nanorods as carriers.
基金supported by the National Natural Science Foundation of China(Nos.52373280,52177014 and 52273257).
文摘Exploring efficient microwave absorbing materials(MAMs)has gradually become a hot topic in recent years because it is crucial in both civil and military fields.Metal-organic framework(MOF)has great potential due to its unique composition and bonding mode,which has advantages such as large specific surface area,high porosity,adjustable structure,and designable composition.Herein,MOF-derived MAMs are highlighted based on morphology and structure.The synthesis strategies of MOF-derived MAMs of different dimensions are discussed.On this basis,the structure-activity relationships can be deeply explored through the precise control of material structure and property by atomic engineering.Finally,perspectives are given for the existing problems of MOF-derived MAMs,which will open a new horizon and promote the development of MAMs.
基金supported by the Basic Research Development Program of China(No.JCKY2021607B036)the National Natural Science Foundation of China(No.52275512).
文摘There is an urgent need for the application of broadband Microwave Absorption(MA)structures on the leading edges of aircraft wings,which requires the MA structures to possess both the broadband MA performance and great surface conformability.To meet these requirements,we designed and fabricated a flexible bioinspired meta-structure with ultra-broadband MA,thin thickness and excellent surface conformality.The carbonyl iron powder-carbon nanotubes-polydimethylsiloxane composite was synthesized by physical blending method for fabricating the MA meta-structure.Through geometry-electromagnetic optimal design by heuristic optimization algorithm,the meta-structure mimicking to the nipple photonic nanostructures on the eyes of moth can achieve ultra-broadband MA performance of 35.14 GHz MA bandwidth(reflection loss≤–10 dB),covering 4.86–40.00 GHz,with thickness of only 4.3 mm.Through simple fabrication processes,the meta-structure has been successfully fabricated and bonded on wings’leading edges,exhibiting excellent surface conformability.Furthermore,the designed flexible MA meta-structure possesses significant Radar Cross-Section(RCS)reduction capability,as demonstrated by the RCS analysis of an unmanned aerial vehicle.This flexible ultra-broadband MA meta-structure provides an outstanding candidate to meet the radar stealth requirement of variable curvature structures on aircraft.
基金financially supported by National Key Research and Development Program of China(Nos.2022YFB3807100 and 2022YFB3807101)National Science Fund for Distinguished Young Scholars(No.52025034)+3 种基金National Natural Science Foundation of China(No.22205182)Guangdong Basic and Applied Basic Re-search Foundation(No.2024A1515011516)China Postdoctoral Science Foundation(Nos.2022M722594 and 2024T171710)financially supported by Innovation Team of Shaanxi Sanqin Scholars.
文摘Highly developed electronic information technology has undoubtedly resulted in numerous benefits to the military and public life.However,the resulting electromagnetic wave(EW)pollution cannot be ignored.Therefore,the application of highly efficient EW materials is becoming an important requirement.In this study,magnetic-dielectric heterointerface strategy was applied to construct absorbers with desirable electromagnetic wave properties.A novel CoO/Co nanoparticle anchored to N-doped mesoporous carbon(CoO/Co/N-CMK-3)composites was fabricated by facile precipitation reaction and the electromagnetic characteristics have been well optimized by adjusting pyrolysis temperature.The CoO/Co/N-CMK-3 yielded its highest performance at an annealing temperature of 800℃,with an extended effective absorption bandwidth of 5.83 GHz and unusually low minimum reflection loss of−63.82 dB,even at a thickness of just 1.8 mm and low filler loading(10%).For the excellent microwave absorption property,the advantages of the CoO/Co/N-CMK-3 can be summed up as follows.Firstly,the incorporation of heterointerfaces among N-CMK-3,CoO,and Co introduces abundant polarization centers,triggering various polarization effects and increasing dielectric losses.Secondly,the CoO/Co magnetic component introduced the strong magnetic loss and improved the impedance matching capability of CoO/Co/N-CMK-3.Thirdly,the extraordinary magnetic-dielectric behavior is supported by multiple magnetic coupling networks and enriched air-material heterointerfaces,boosted the magnetoelectric cooperative loss for further optimizing the electromagnetic dissipation and broadening the effective absorption frequency band.Moreover,the CST simulation results validate the impressive operational bandwidth and reflection loss characteristics of the obtained absorbers.This study demonstrates a novel heterointerface engineering strategy for designing lightweight,wide-band,and high-performance EW absorbers.
基金the financial support provided by Graduate Scientific Research and Innovation Foundation of Chongqing,China(CYB22007,CYS22005)Projects(No.2020CDJXZ001)supported by the Fundamental Research Funds for the Central Universities+2 种基金the Technology Innovation and Application Development Special Project of Chongqing(Z20211350 and Z20211351)Scientific Research Project of Chongqing Ecological Environment Bureau(No.CQEE2022STHBZZ118)Fundamental Research Funds for the Central Universities(Grant No.2024IAIS-QN008)。
文摘Inspired by the remarkable electromagnetic response capabilities of the complex morphologies and subtle microstructures evolved by natural organisms,this paper delves into the research advancements and future application potential of bionic microwave-absorbing materials(BMAMs).It outlines the significance of achieving high-performance microwave-absorbing materials through ingenious microstructural design and judicious composition selection,while emphasizing the innovative strategies offered by bionic manufacturing.Furthermore,this work meticulously analyzes how inspiration can be drawn from the intricate structures of marine organisms,plants,animals,and nonmetallic minerals in nature to devise and develop BMAMs with superior electromagnetic wave absorption properties.Additionally,the paper provides an in-depth exploration of the theoretical underpinnings of BMAMs,particularly the latest breakthroughs in broadband absorption.By incorporating advanced methodologies such as simulation modeling and bionic gradient design,we unravel the scientific principles governing the microwave absorption mechanisms of BMAMs,thereby furnishing a solid theoretical foundation for understanding and optimizing their performance.Ultimately,this review aims to offer valuable insights and inspiration to researchers in related fields,fostering the collective advancement of research on BMAMs.
基金financially supported by the Key Project of Natural Science Research in Colleges and Universities of Anhui Province,China(No.2022AH050816)the Open Research Grant of Joint National-Local Engineering Research Centre for Safe and Precise Coal Mining(Nos.EC2023013 and EC2022018)+1 种基金the National Natural Science Foundation of China(No.52200139)the Introduction of Talent in Anhui University of Science and Technology,China(Nos.2021yjrc18 and 2023yjrc79)。
文摘Electromagnetic interference,which necessitates the rapid advancement of substances with exceptional capabilities for bsorbing electromagnetic waves,is of urgent concern in contemporary society.In this work,CoFe_(2)O_(4)/residual carbon from coal gasification fine slag(CFO/RC)composites were created using a novel hydrothermal method.Various mechanisms for microwave absorption,including conductive loss,natural resonance,interfacial dipole polarization,and magnetic flux loss,are involved in these composites.Consequently,compared with pure residual carbon materials,this composite offers superior capabilities in microwave absorption.At 7.76GHz,the CFO/RC-2 composite achieves an impressive minimum reflection loss(RL_(min))of-43.99 dB with a thickness of 2.44 mm.Moreover,CFO/RC-3 demonstrates an effective absorption bandwidth(EAB)of up to 4.16 GHz,accompanied by a thickness of 1.18mm.This study revealed the remarkable capability of the composite to diminish electromagnetic waves,providing a new generation method for microwave absorbing materials of superior quality.
基金support from the National Natural Science Foundation of China(U21A2093)Shaanxi Province Key Research and Development Plan Project(2023-YBGY-461)+4 种基金Platform of Science and Technology and Talent Team Plan of Guizhou province(GCC[2023]007)Guizhou Provincial Basic Research Program(Natural Science)(No.ZK[2025]Key 086)Fok Ying Tung Education Foundation(171095)financial support,Innovation Capability Support Program of Shaanxi(2024RS-CXTD-57)Innovation Foundation for Doctor Dissertation of Northwestern Polytechnical University(CX2024094)。
文摘The previous studies mainly focused on improving microwave absorbing(MA)performances of MA materials.Even so,these designed MA materials were very difficult to be employed in complex and changing environments owing to their single-functionalities.Herein,a combined Prussian blue analogues derived and catalytical chemical vapor deposition strategy was proposed to produce hierarchical cubic sea urchin-like yolk–shell CoNi@Ndoped carbon(NC)-CoNi@carbon nanotubes(CNTs)mixed-dimensional multicomponent nanocomposites(MCNCs),which were composed of zerodimensional CoNi nanoparticles,three-dimensional NC nanocubes and onedimensional CNTs.Because of good impedance matching and attenuation characteristics,the designed CoNi@NC-CoNi@CNTs mixed-dimensional MCNCs exhibited excellent MA performances,which achieved a minimum reflection loss(RL_(min))of−71.70 dB at 2.78 mm and Radar Cross section value of−53.23 dB m^(2).More importantly,the acquired results demonstrated that CoNi@NC-CoNi@CNTs MCNCs presented excellent photothermal,antimicrobial and anti-corrosion properties owing to their hierarchical cubic sea urchin-like yolk–shell structure,highlighting their potential multifunctional applications.It could be seen that this finding not only presented a generalizable route to produce hierarchical cubic sea urchin-like yolk–shell magnetic NC-CNTs-based mixed-dimensional MCNCs,but also provided an effective strategy to develop multifunctional MCNCs and improve their environmental adaptabilities.
基金financially supported by the National Natural Science Youth Foundation of China(No.52402086)Natural Science Foundation of Shandong Province(No.ZR2023QE002)+6 种基金Youth Innovation Team Program in Colleges of Shandong Province(No.2023KJ144)Shandong Province Science and Technology Small and Medium-sized Enterprises Innovation Capability Improvement Project(No.2022TSGC1158)China Postdoctoral Science Foundation(No.2021M691963)Key Research and Development Program of Shandong Province of China(No.2020JMRH0503)the Fundamental Research Funds for the Central Universities(No.HIT.OCEF.2021003)National Natural Science Foundation of China(No.52272067)Doctoral Scientific Research Start-up Foundation from Shandong University of Technology(No.4041/419008)
文摘Lightweight materials with wide absorption capabilities,particularly in the C-band,have remained a challenge thus far.Recent research has indicated that effective absorption networks built by microfiber polarization loss can be a significant factor in increasing the effective absorption bandwidth(EAB).In this study,leaf vein-like carbon(LVC)was synthesized using an in situ blowing strategy.Taking inspiration from photosynthesis energy conversion mechanisms,a leaf veins-like hierarchical structure was created to establish an effective impedance-matching network and generate a high-density polarization region through leaf vein microfibers.This enhanced polarization relaxation effectively broadens the EAB of the LVC.At a low filling ratio of 6.3 wt%,the EAB of the LVC covers 80%of the C-band,as well as100%of the X-band and Ku-band.Achieving such a wide EAB in the C-band,especially in the multi-band context,relies on impedance matching and optimized polarization relaxation.This work demonstrates the crucial role of leaf vein micronetwork engineering in enhancing the C-band absorption properties of carbon-based materials,thus providing a viable reference for the development of lightweight,broadband,and highly absorptive materials for electromagnetic applications.
基金financially supported by the National Natural Science Foundation of China(Nos.52402354,62174016 and 12374394)China Postdoctoral Science Foundation(Nos.2023M740471)the Natural Science Foundation of Jiangsu Higher Education Institutions(Nos.24KJB430002)。
文摘Heterojunction and morphology control assume a significant part in adjusting the intrinsic electromagnetic properties of absorbers to acquire outstanding microwave absorption(MA)performance,but this still faces huge challenges.Herein,FeS_(2)/C/MoS_(2)composite with core–shell structure was successfully designed and prepared via a multi-interface engineering.MoS_(2)nanosheets with 1T and 2H phases are coated on the outside of FeS_(2)/C to form a porous interconnected structure that can optimize the impedance matching characteristics and strengthen the interfacial polarization loss capacity.Remarkably,as-fabricated FCM-3 harvests a broad effective absorption bandwidth(EAB)of 5.12 GHz and a minimum reflection loss(RL_(min))value of-45.1 d B.Meanwhile,FCM-3 can accomplish a greatest radar cross section(RCS)reduction value of 18.52 d B m^(2)when the detection angle is 0°.Thus,the convenient computer simulation technology(CST)simulations and encouraging accomplishments provide a novel avenue for the further development of efficient and lightweight MA materials.
基金supported by the National Natural Science Foundation of China(project No 51872298)the fund of the State Key Laboratory of Technologies in Space Cryogenic Pro-pellants(project No SKLTSCP202202)the Strategic Priority Research Program of the Chinese Academy of Science(project No XDA22010202).
文摘Multiscale shell structure design is a rational and promising way to regulate the performance of hollow spheres in terms of both functionality and structural robustness,but it remains a big challenge to realize micro-nano engineering of the thin shell while maintaining the low density.In this work,the divisional shell design strategy was adopted to obtain the glass-cobalt-cobalt sulfide composite hollow microspheres(CSH),and an unprecedented stepwise high-temperature chemical reaction-induced aggregation and sub-sequent volume expansion strategy was developed to achieve rational regulation of core-shell structured cobalt-cobalt sulfide building units(BU)assembled on hollow glass microspheres.Special attention has been paid to the sulfidation degree-induced volume control with the underlying mechanism of volume expansion during chemical conversion from metallic cobalt to cobalt sulfide.The electromagnetic prop-erty was found to depend largely on the sulfidation degree due to the volume expansion-induced inter-connecting status regulation among the BU.When evaluated as microwave absorbent,an optimized broad bandwidth of 5.12 GHz and a minimum reflection loss(RLmin)of-45.58 dB of our CSH can be achieved at a thin matching thickness of 1.67 mm and a low filling ratio of 20.04 wt%.In addition to functionality,the divisional shell design also brings the CSH high structural strength(92.36%survival rate at a high hydrostatic pressure of 20 MPa)at low density(0.73 g cm^(-3)).
基金supported by the Key Research and Development Project of Shaanxi Province(No.2024GX-YBXM-331)the Scientific Research Plan Projects of Shaanxi Education Department(Program No.24JC009)the National Natural Science Foundation of China(No.22278260).
文摘Although lightweight aramid paper honeycombs are highly desirable for microwave absorption owing to their dual functions of both load-bearing and microwave-absorbing,unsatisfactory microwave absorption,inferior mechanical and inadequate thermal properties present significant challenges for practical applications in diverse complex scenarios.Herein,lightweight,high-strength and flame-retardant aramid nanofibers-based honeycombs(MANHs)for integrated microwave absorption and thermal insulation are successfully fabricated via the hydrogen bonding assembly,mold forming and aerogel filling strategy using aramid waste as raw material.The dense network structure formed by the interwoven aramid nanofibers(ANFs)in the honeycomb body acts as a framework endows the MANH with impressive mechanical performance,and the specific strength and toughness of MANH reach 153.6 MPa g^(−1) cm^(−3) and 13.9 MJ m^(−3),respectively,which are 3.5 and 19 times higher than those of commercial microwave absorption honeycombs(CMAH).The ultralight MXene/ANFs aerogels(a density of 25 mg cm^(−3))with multiscale pore structure filled in the honeycomb apertures give the honeycomb outstanding microwave absorption performance,with a minimum reflection loss of−62.5 dB,and can cover the entire X-band with a thickness of only 3.5 mm.Meanwhile,compared with CMAH,the thermal insulation and flame-retardant performance of MANH are also significantly improved.Notably,MANH also demonstrates favorable sound absorption performance at high-frequency bands.The MANH is considered to be a promising candidate for aerospace and military stealth applications as a result of its lightweight,high strength,exceptional microwave absorption,and remarkable thermal insulation performance.
基金financially supported by the National Natural Science of Foundation of China(No.52371097)the Shenyang Unveiling and Leading Project,China(No.22-301-1-01)。
文摘The wave-absorbing materials are kinds of special electromagnetic functional materials and have been widely used in electromagnetic pollution control and military fields.In-situ integrated hierarchical structure construction is thought as a promising route to improve the microwave absorption performance of the materials.In the present work,layer-structured Co-metal-organic frameworks(Co-MOFs)precursors were grown in-situ on the surface of carbon fibers with the hydrothermal method.After annealed at 500℃ under Ar atmosphere,a novel multiscale hierarchical composite(Co@C/CF)was obtained with the support of carbon fibers,keeping the flower-like structure.Scanning electron microscope,transmission electron microscope,X-ray diffraction,Raman,and X-ray photoelectron spectroscopy were performed to analyze the microstructure and composition of the hierarchical structure,and the microwave absorption performance of the Co@C/CF composites were investigated.The results showed that the growth of the flower-like structure on the surface of carbon fiber was closely related to the metal-to-ligand ratio.The optimized Co@C/CF flower-like composites achieved the best reflection loss of−55.7 dB in the low frequency band of 6–8 GHz at the thickness of 2.8 mm,with the corresponding effective absorption bandwidth(EAB)of 2.1 GHz.The EAB of 3.24 GHz was achieved in the high frequency range of 12–16 GHz when the thickness was 1.5 mm.The excellent microwave absorption performance was ascribed to the introduction of magnetic components and the construction of the unique structure.The flower-like structure not only balanced the impedance of the fibers themselves,but also extended the propagation path of the microwave and then increased the multiple reflection losses.This work provides a convenient method for the design and development of wave-absorbing composites with in-situ integrated structure.
基金supported by the National Key R&D Program of China(2023YFA1508001)the National Natural Science Foundation of China(22272120 and U2202251)+2 种基金the Fundamental Research Funds for the Central Universities(2042022kf1174)the Hainan Province Science and Technology Special Fund(ZDYF2023SHFZ120 and ZDYF2021SHFZ058)the Research Foundation of Marine Science and Technology Collaborative Innovation Center of Hainan University(XTCX2022HYB01)。
文摘Direct utilization of co-existed ferrous oxide(FeO)dust in CO_(2)flue gas from the steel industry to product value-added materials is yet to be established.Inspired by the form of CaO-CaCO_(3)as natural carbon cycle and the high oxide dissolution capacity of molten salts,CaO is herein introduced into the affordable molten NaCl-CaCl_(2)-FeO salt to generate CO_(3)^(2-)through an efficient capture of CO_(2).The subsequent coelectrolysis of FeO and CO_(3)^(2-)successfully produces cathodic Fe-encapsulated carbon nanotubes(Fe@CNT)with enhanced energy efficiency(current efficiency of 83.1%for CO_(2)reduction and energy consumption of 22.49 kWh kg^(1)for Fe@CNT generation).The in-situ capture of CO_(2)by O^(2)generated from the electro-deoxidation of FeO bridges the electrolysis of CO_(2)and FeO,rendering the enhanced current efficiency of the co-electrolysis and template-free generation of Fe@CNT.When evaluated as functional materials for electromagnetic wave absorption,the Fe@CNT integrates dielectric loss of CNT and electromagnetic loss from Fe.The Fe well-defined in CNT induces the synergistic loss and further improves the impedance matching,resulting in excellent electromagnetic wave absorption performance.The coelectrolysis establishes a promising strategy for converting CO_(2)into highly functional materials directly from CO_(2)-containing flue gas from steel industrial without dust removal.
基金supported by the National Natural Science Foundation of China[Grant Nos.52272288 and 51972039]the China Postdoctoral Science Foundation[No.2021M700658].
文摘The construction of carbon nanocoil(CNC)-based chiral-dielectric-magnetic trinity composites is considered as a promising approach to achieve excellent low-frequency microwave absorption.However,it is still challenging to further enhance the low frequency microwave absorption and elucidate the related loss mechanisms.Herein,the chiral CNCs are first synthesized on a threedimensional(3D)carbon foam and then combined with the FeNi/NiFe_(2)O_(4) nanoparticles to form a novel chiral-dielectric-magnetic trinity foam.The 3D porous CNC-carbon foam network provides excellent impedance matching and strong conduction loss.The formation of the FeNi-carbon interfaces induces interfacial polarization loss,which is confirmed by the density functional theory calculations.Further permeability analysis and the micromagnetic simulation indicate that the nanoscale chiral magnetic heterostructures achieve magnetic pinning and coupling effects,which enhance the magnetic anisotropy and magnetic loss capability.Owing to the synergistic effect between dielectricity,chirality,and magnetism,the trinity composite foam exhibits excellent microwave absorption performance with an ultrabroad effective absorption bandwidth(EAB)of 14 GHz and a minimum reflection of loss less than-50 dB.More importantly,the C-band EAB of the foam is extended to 4 GHz,achieving the full C-band coverage.This study provides further guidelines for the microstructure design of the chiral-dielectric-magnetic trinity composites to achieve broadband microwave absorption.
基金supported by the National Natural Science Foundation of China(No.62371222)the Defense Industrial Technology Development Program(No.JCKY2023605C002)thePriority Academic Program Development of Jiangsu Higher Education Institutions(PAPD)and the Opening Project of Science and Technology on Reliability Physics and Application Technology of Electronic Component Laboratory(No.ZHD202305).
文摘The intrinsic high magnetocrystalline anisotropy equivalent field can help the hexaferrites break through Snoek’s limit and increase the resonance frequency.This is advantageous for microwave absorption applications in the mid to low-frequency range of gigahertz.In this study,we prepared Z-type Ba_(3)Co_(1.6−x)Zn_(x)Cu_(0.4)Fe_(24)O_(41)hexaferrites using the sol-gel auto-combustion method.By changing the ratio of Co and Zn ions,the magnetocrystalline anisotropy of ferrite is further ma-nipulated,resulting in significant changes in their magnetic resonance frequency and intensity.Ba_(3)Zn_(1.6)Cu_(0.4)Fe_(24)O_(41)with high-frequency resonance achieved the lowest reflectivity of−72.18 dB at 15.56 GHz,while Ba_(3)Co_(1.5)Zn_(0.1)Cu_(0.4)Fe_(24)O_(41)with stronger loss obtained the widest bandwidth of 4.93 GHz(6.14-11.07).Additionally,we investigated surface wave suppression properties previously overlooked.Ba_(3)Co_(1.5)Zn_(0.1)Cu_(0.4)Fe_(24)O_(41)can achieve a larger attenuation at low frequency under low thickness,which has an excellent effect on reducing backscattering.This work provides a useful reference for the preparation and application of high-performance magnetic-loss materials.
基金supported by the National Natural Science Foundation of China(Nos.51972045 and 52202368)the Fundamental Research Funds for the Chinese Central Universities,China(No.ZYGX2019J025)Sichuan Science and Technology Program(No.2021YFG0373).
文摘Developing bifunctional materials with smart discoloration and microwave absorption properties has attracted widespread interest in microwave absorption/shielding,yet it is challenging for reversible discoloration performance in humid(such as forest)and dry(desert)environments.Herein,we combined catalytic chemical vapor deposition(CCVD)technology and a hydrothermal synthesis method to develop a FeSiB@C@NiBr_(2) atomic-scale double-shell gradient structure with rich interfaces.These nanosheet arrays favor interface polarization,impedance matching,and dipole polarization of the material,thereby optimizing the microwave absorption performance.The optimal reflection loss(RL)value of FeSiB@C@NiBr_(2) reached-59.6 dB at 9.2 GHz,and the effective absorption bandwidth(EAB)reached 7.0 GHz at a thickness of 2.5 mm.Compared with pure FeSiB(RL_(min) of-13.5 dB),the RLmin value of the absorber designed by this method increased by~3 times.The color of NiBr_(2) in the outermost nanosheet arrays changes between yellow and green in the case of water molecule harvesting and loss,respectively.This novel FeSiB@C@NiBr_(2) composite structure material is expected to provide a promising platform for wave-absorbing and smart discoloring materials.
基金supported by the National Natural Science Foundation of China(No.52173264)the Natural Science Foundation Project of Chongqing(No.cstc2024ycjh-bgzxm0005)+1 种基金the Fundamental Research Funds for the Central Universities(No.SWU-XDJH202314)The authors thanks Dr.Xi Tang in Southwest University for the technical support in the use of the vector network analyzer.
文摘Plastic waste recycling is a focal point in today's sustainable development efforts.Improper disposal can lead to secondary pollution,posing threats to the environment and human health.In this study,we aim to recycle waste epoxy resin and glass fiber-reinforced epoxy resin composites via an electroless plating and a carbonization process,to design high-value-added carbon materials for microwave absorption.By pulverizing solid waste and introducing magnetic metal nanoparticles onto its surface,a composite carbon material capable of excellent microwave absorption performance was successfully developed.Specifically,doping nickel particles into carbon materials derived from glass fiber/epoxy resin achieved a wide effective absorption bandwidth(EAB)of 5.9 GHz with a matching thickness of 1.9 mm,covering nearly the entire Ku band,and achieving a minimum reflection loss(RLmin)of−36 dB simultaneously.The superior absorption performance is attributed to multiple reflections or scattering of electromagnetic waves within the material,as well as conduction and magnetic losses,dipole and interfacial polarization effects.These results demonstrate that through rational design and optimization,waste epoxy and waste glass fiber-reinforced epoxy resin-based composite materials can be effectively recycled into high-performance microwave absorbing materials,offering a straightforward and efficient pathway for waste resource utilization.
基金supported by the National Natural Science Foundation of China(Nos.21667019,22066017,and 52173267)the Aviation Science Foundation of China(No.2017ZF56020).
文摘Currently,carbon materials derived from biomass are widely sought after as electromagnetic absorbing(EMWA)materials owing to the unique structure,as well as the wide range of natural acquisition pathways,economic viability,and simple processing.However,due to the high dielectric properties,mismatched impedance and single attenuation mechanism,they cannot achieve efficient EMWA performance.Herein,the biomass carbon/Co/porous carbon magnetic composites with a layered gradient structure were fabricated by in-situ deposition of ZIF-67 on the lotus leaf base and then pyrolysis at high temperature.By adjusting the pyrolysis temperature,the sample obtained at 650℃ achieved a minimum reflection value(RLmin)of-34.2dB at a matching thickness of 2.6mm,and a maximum effective absorption bandwidth(EAB)of 7.12GHz.The results indicate that this magnetic composite with a multi-sized layered gradient porous structure has a good electron transport network,a large number of heterogeneous interfaces,and dipole polarization centers,which are conducive to multiple reflection and scattering of microwaves,conduction loss,interface loss,magnetic loss,and impedance matching of materials.Therefore,this work provided a reference for optimizing the EMWA performance of carbon materials and designing a layered gradient porous magnetic composite with multi-sized structure.