MXene is a promising energy storage material for miniaturized microbatteries and microsupercapacitors(MSCs).Despite its superior electrochemical performance,only a few studies have reported MXene-based ultrahigh-rate(...MXene is a promising energy storage material for miniaturized microbatteries and microsupercapacitors(MSCs).Despite its superior electrochemical performance,only a few studies have reported MXene-based ultrahigh-rate(>1000 mV s^(−1))on-paper MSCs,mainly due to the reduced electrical conductance of MXene films deposited on paper.Herein,ultrahigh-rate metal-free on-paper MSCs based on heterogeneous MXene/poly(3,4-ethylenedioxythiophene)-poly(styrenesulfonate)(PEDOT:PSS)-stack electrodes are fabricated through the combination of direct ink writing and femtosecond laser scribing.With a footprint area of only 20 mm^(2),the on-paper MSCs exhibit excellent high-rate capacitive behavior with an areal capacitance of 5.7 mF cm^(−2)and long cycle life(>95%capacitance retention after 10,000 cycles)at a high scan rate of 1000 mV s^(−1),outperforming most of the present on-paper MSCs.Furthermore,the heterogeneous MXene/PEDOT:PSS electrodes can interconnect individual MSCs into metal-free on-paper MSC arrays,which can also be simultaneously charged/discharged at 1000 mV s^(−1),showing scalable capacitive performance.The heterogeneous MXene/PEDOT:PSS stacks are a promising electrode structure for on-paper MSCs to serve as ultrafast miniaturized energy storage components for emerging paper electronics.展开更多
The electrochemical performance of microsupercapacitors with graphene electrodes is reduced by the issue of graphene sheets aggregation,which limits electrolyte ions penetration into electrode.Increasing the space bet...The electrochemical performance of microsupercapacitors with graphene electrodes is reduced by the issue of graphene sheets aggregation,which limits electrolyte ions penetration into electrode.Increasing the space between graphene sheets in electrodes facilitates the electrolyte ions penetration,but sacrifices its electronic conductivity which also influences the charge storage ability.The challenging task is to improve the electrodes’electronic conductivity and ionic diffusion simultaneously,boosting the device’s electrochemical performance.Herein,we experimentally realize the enhancement of both electronic conductivity and ionic diffusion from 2D graphene nanoribbons assisted graphene electrode with porous layer-uponlayer structure,which is tailored by graphene nanoribbons and self-sacrificial templates ethyl cellulose.The designed electrode-based device delivers a high areal capacitance of 71 mF cm^(-2)and areal energy density of 9.83μWh cm^(-2),promising rate performance,outstanding cycling stability with 97%capacitance retention after 20000 cycles,and good mechanical properties.The strategy paves the way for fabricating high-performance graphene-based MSCs.展开更多
Owing to sluggish ionic mobility at low temperatures, supercapacitors, as well as other energy-storage devices, always suffer from severe capacity decay and even failure under extreme low-temperature circumstances. So...Owing to sluggish ionic mobility at low temperatures, supercapacitors, as well as other energy-storage devices, always suffer from severe capacity decay and even failure under extreme low-temperature circumstances. Solar-thermal-enabled self-heating promises an attractive approach to overcome this issue.Here, we report a unique H-bonding charge-transfer complex with a high photothermal conversion efficiency of 79.5% at 405 nm based on chloranilic acid and albendazole. Integrated with a microsupercapacitor, the chloranilic acid-albendazole complex(CAC) film prompts an apparent temperature increase of 22.7 °C under 1 sun illumination at-32.6 °C, effectively elevating the working temperature of devices.As a result, the rate capability of the microsupercapacitor has been significantly improved with a 17-fold increase in capacitance at a current density of 60 μA cm^(-2), leading to outstanding low-temperature performances. Importantly, the integrated device is capable of working at a low temperature of-30 °C in the open air, which demonstrates the potential of CAC in practical applications for low-temperature ultracapacitive energy-storage devices.展开更多
The rapid development of portable electronic devices has accelerated the advancement of energy storage devices. On-chip microsupercapacitors(MSCs), as a group of high performance energy storage devices,have remarkab...The rapid development of portable electronic devices has accelerated the advancement of energy storage devices. On-chip microsupercapacitors(MSCs), as a group of high performance energy storage devices,have remarkable features of miniaturization, high security, and easy integration to build an all-in-one integrated system to meet the request of micro-portable electronic equipments. With the characteristics of high capacities, environmentally friendly and low cost, metal oxides are thought to be ideal candidates for on-chip MSCs. This paper summarizes the recent progress of metal oxides based on-chip MSCs. It starts with the introduction of several common methods for the synthesis of metal oxides nanostructures. The recent developments on the fabrication and electrochemical performance of metal oxides based on-chip MSCs are then highlighted in detail. Finally, the existing challenges and future perspectives of the on-chip MSCs are discussed.展开更多
The advance of microelectronics requires the micropower of microsupercapacitors(MSCs) to possess wide temperature-and damage-tolerance beyond high areal energy density.The properties of electrolyte are crucial for MSC...The advance of microelectronics requires the micropower of microsupercapacitors(MSCs) to possess wide temperature-and damage-tolerance beyond high areal energy density.The properties of electrolyte are crucial for MSCs to meet the above requirements.Here,an organohydrogel electrolyte,featured with high salt tolerance,ultralow freezing point,and strong self-healing ability,is experimentally realized via modulating its inner dynamic bonds.Spectroscopic and theoretical analysis reveal that dimethyl sulfoxide has the ability to reconstruct Li^(+)solvation structure,and interact with free water and polyvinyl alcohol chains via forming hydrogen bonds.The organohydrogel electrolyte is employed to build MSCs,which show a boosted energy density,promising wide temperature range-and damage-tolerant ability.These attractive features make the designed organohydrogel electrolyte have great potential to advance MSCs.展开更多
The graphene-based microsupercapacitors(MSCs)suffer from graphene aggregation issue in electrodes.It reduces the electrolyte ions transportation in the electrodes to degrade the charge storage ability of MSCs,hamperin...The graphene-based microsupercapacitors(MSCs)suffer from graphene aggregation issue in electrodes.It reduces the electrolyte ions transportation in the electrodes to degrade the charge storage ability of MSCs,hampering their practical application.Increasing the electrolyte ions transportation in the electrodes can boost the charge storage ability of MSCs.Herein,we design and experimentally realize pillar array structure of graphene electrodes for MSCs by direct ink writing technology.The graphene electrodes with pillar array structure increase the contact area with electrolyte and short the electrolyte ions transport path,facilitating electrolyte ions transport in electrodes.The MSCs exhibit high areal capacitance of 25.67 mF·cm^(−2),high areal energy density of 20.54μWh·cm^(−2),and high power density of 1.45 mW·cm^(−2).One single MSCs can power timer for 10 min and pressure sensor more than 160 min,showing high practical application possibility.This work provides a new avenue for developing high performance MSCs.展开更多
With the boom of portable,wearable,and implantable smart electronics in the last decade,the demand for multifunctional microscale electrochemical energy storage devices has increased.Owing to their excellent rate perf...With the boom of portable,wearable,and implantable smart electronics in the last decade,the demand for multifunctional microscale electrochemical energy storage devices has increased.Owing to their excellent rate performance,high power density,long cycling lifetime,easy fabrication,and integration,multifunctional planar microsupercapacitors(PMSCs)are deemed as one of the ideal micropower sources for next-generation flexible on-chip electronics.Therefore,we offer a comprehensive overview of the recent progress regarding multifunctional devices based on PMSCs,including stretchable,self-healing,stimulus-responsive,thermosensitive,biodegradable,and temperaturetolerant microdevices.We also emphasize the unique applications of multifunctionally integrated PMSCs in the construction of self-powered and sensor-integrated systems in terms of multifunctional operation modes.Finally,the key challenges and future prospects related to these multifunctional devices are discussed to stimulate further research in this flourishing field.展开更多
For microelectronic devices,the on-chip microsupercapacitors with facile construction and high performance,are attracting researchers'prior consideration due to their high compatibility with modern microsystems.He...For microelectronic devices,the on-chip microsupercapacitors with facile construction and high performance,are attracting researchers'prior consideration due to their high compatibility with modern microsystems.Herein,we proposed interchanging interdigital Au-/MnO_(2)/polyethylene dioxythiophene stacked microsupercapacitor based on a microfabrication process followed by successive electrochemical deposition.The stacked configuration of two pseudocapacitive active microelectrodes meritoriously leads to an enhanced contact area between MnO_(2)and the conductive and electroactive layer of polyethylene dioxythiophene,hence providing excellent electron transport and diffusion pathways of electrolyte ions,resulting in increased pseudocapacitance of MnO_(2)and polyethylene dioxythiophene.The stacked quasi-solid-state microsupercapacitors delivered the maximum specific capacitance of 43 mF cm^(-2)(211.9 F cm^(-3)),an energy density of 3.8μWh cm^(-2)(at a voltage window of 0.8 V)and 5.1μWh cm^(-2)(at a voltage window of 1.0 V)with excellent rate capability(96.6%at 2 mA cm^(-2))and cycling performance of 85.3%retention of initial capacitance after 10000 consecutive cycles at a current density of 5 mA cm^(-2),higher than those of ever reported polyethylene dioxythiophene and MnO_(2)-based planar microsupercapacitors.Benefiting from the favorable morphology,bilayer microsupercapacitor is utilized as a flexible humidity sensor with a response/relaxation time superior to those of some commercially available integrated microsensors.This strategy will be of significance in developing high-performance on-chip integrated microsupercapacitors/microsensors at low cost and environment-friendly routes.展开更多
The rapid development of wearable and portable electronics has dramatically increased the application for miniaturized energy storage components.Stamping micro-supercapacitors(MSCs)with planar interdigital configurati...The rapid development of wearable and portable electronics has dramatically increased the application for miniaturized energy storage components.Stamping micro-supercapacitors(MSCs)with planar interdigital configurations are considered as a promising candidate to meet the requirements.In this review,recent progress of the different stamping materials and various stamping technologies are first discussed.The merits of each material,manufacturing process of each stamping method and the properties of stamping MSCs are scrutinized,respectively.Further insights on technical difficulties and scientific challenges are finally demonstrated,including the limited thickness of printed electrodes,poor overlay accuracy and printing resolution.展开更多
The rapid progress of micro/nanoelectronic systems and miniaturized portable devices has tremendously increased the urgent demands for miniaturized and integrated power supplies.Miniaturized energy storage devices(MES...The rapid progress of micro/nanoelectronic systems and miniaturized portable devices has tremendously increased the urgent demands for miniaturized and integrated power supplies.Miniaturized energy storage devices(MESDs),with their excellent properties and additional intelligent functions,are considered to be the preferable energy supplies for uninterrupted powering of microsystems.In this review,we aim to provide a comprehensive overview of the background,fundamentals,device configurations,manufacturing processes,and typical applications of MESDs,including their recent advances.Particular attention is paid to advanced device configurations,such as two-dimensional(2D)stacked,2D planar interdigital,2D arbitrary-shaped,three-dimensional planar,and wire-shaped structures,and their corresponding manufacturing strategies,such as printing,scribing,and masking techniques.Additionally,recent developments in MESDs,including microbatteries and microsupercapacitors,as well as microhybrid metal ion capacitors,are systematically summarized.A series of on-chip microsystems,created by integrating functional MESDs,are also highlighted.Finally,the remaining challenges and future research scope on MESDs are discussed.展开更多
High-performance anode is hurdle for on-chip planar microsupercapacitor(MSC).Polypyrrole(PPy)is a highly attractive pseudocapacitive material,but its low cycling stability,and low adhesion with current collector hinde...High-performance anode is hurdle for on-chip planar microsupercapacitor(MSC).Polypyrrole(PPy)is a highly attractive pseudocapacitive material,but its low cycling stability,and low adhesion with current collector hinder its practicability.Herein we propose one-prong generic strategy to boost the cycling stability of PPy.For our strategy,the electrochemical deposition of multilayered reduced graphene oxide(rGO)on micropatterned Au is utilized,and the resultant rGO@Au pattern is then used for growing highly porous PPy nanostructures by facile electrochemical polymerization.The fabricated PPy anode on rGO@Au has quasi rectangular cyclic voltammetry curves up to-0.7 V and exceptional cycling stability,retaining82%of capacitance after 10,000 charge/discharge cycles in 2 M KCl electrolyte.The outstanding reliability of PPy on rGO@Au is due to the flexibility of rGO,accommodating structural pulverization and providing a promising background for the nucleation of highly porous nanostructure.Further,an all-polymer based asymmetric aqueous MSC(AMSC)is constructed with PPy anode and PEDOT cathode,which exhibited excellent electrochemical performance compared with conventional symmetric MSCs based on conducting polymers.The constructed AMSC delivered a maximum areal capacitance of 15.9 m F cm^-2(99.3 F cm^-3),high specific energy and power densities of 4.3μWh cm^-2(27.03 mWh cm^-3)and 0.36 W cm^-2(0.68 W cm^-3)at 1.4 V,respectively.The enhanced electrochemical performances can be illustrated by nucleation mechanism,in which surface topology of r GO generates a promising background for nucleation and electrochemical growth of nanoporous pseudocapacitive conducting polymers with superior interfacial contact and improved surface area.展开更多
In plane micro-supercapacitors that are miniaturized energy storage components have attracted significant attention due to their high power densities for various ubiquitous and sustainable device systems as well as th...In plane micro-supercapacitors that are miniaturized energy storage components have attracted significant attention due to their high power densities for various ubiquitous and sustainable device systems as well as their facile integration on various flexible/wearable platform.To implement the micro-supercapacitors in various practical applications that can accompany solid state or gel electrolyte and flexible substrates,ions must be readily transported to electrodes for achieving high power densities.Herein,we show large enhancement in electrochemical properties of flexible,inplane micro-supercapacitor using sharp-edged interdigitated electrode design,which was simply fabricated through direct laser scribing method.The sharp-edged electrodes allowed strong electric field to be induced at the corners of the electrode fingers which led to the greater accumulation of ions near the surface of electrode,significantly enhancing the energy storage performance of micro-supercapacitors.The electric field-enhanced in-plane micro-supercapacitor showed the volumetric energy density of 1.52 Wh L^(−1)and the excellent cyclability with capacitive retention of 95.4%after 20000 cycles.We further showed various practicability of our sharp-edged design in micro-supercapacitors by showing circuit applicability,mechanical stability,and air stability.These results present an important pathway for designing electrodes in various energy storage devices.展开更多
Conducting polymers have achieved remarkable attentions owing to their exclusive characteristics,for instance,electrical conductivity,high ionic conductivity,visual transparency,and mechanical tractability.Surface and...Conducting polymers have achieved remarkable attentions owing to their exclusive characteristics,for instance,electrical conductivity,high ionic conductivity,visual transparency,and mechanical tractability.Surface and nanostructure engineering of conjugated conducting polymers offers an exceptional pathway to facilitate their implementation in a variety of scientific claims,comprising energy storage and production devices,flexible and wearable optoelectronic devices.A two-step tactic to assemble high-performance polypyrrole(PPy)-based microsupercapacitor(MSC)is utilized by transforming the current collectors to suppress structural pulverization and increase the adhesion of PPy,and then electrochemical co-deposition of PPy-CNT nanostructures on rGO@Au current collectors is performed.The resulting fine patterned MSC conveyed a high areal capacitance of 65.9 mF cm^(−2)(at a current density of 0.1 mA cm^(−2)),an exceptional cycling performance of retaining 79%capacitance after 10,000 charge/discharge cycles at 5 mA cm^(−2).Benefiting from the intermediate graphene,current collector free PPy-CNT@rGO flexible MSC is produced by a facile transfer method on a flexible substrate,which delivered an areal capacitance of 70.25 mF cm^(−2) at 0.1 mA cm^(−2) and retained 46%of the initial capacitance at a current density of 1.0 mA cm^(−2).The flexible MSC is utilized as a skin compatible capacitive micro-strain sensor with excellent electromechanochemical characteristics.展开更多
Quasi-two-dimensional(q2 D)conducting polymer thin film synergizes the advantageous features of longrange molecular ordering and high intrinsic conductivity,which are promising for flexible thin film-based micro-super...Quasi-two-dimensional(q2 D)conducting polymer thin film synergizes the advantageous features of longrange molecular ordering and high intrinsic conductivity,which are promising for flexible thin film-based micro-supercapacitors(MSCs).Herein,we present the high-performance flexible MSCs based on highly ordered quasi-two-dimensional polyaniline(q2 D-PANI)thin film using surfactant monolayer assisted interfacial synthesis(SMAIS).Owing to high electrical conductivity,rich redox chemistry,and thin-film morphology,the q2 D-PANI MSCs show high volumetric specific capacitance(ca.360 F/cm^(3))and energy density(17.9 m Wh/cm^(3)),which outperform the state-of-art PANI thin-film based MSCs and promise for future flexible electronics.展开更多
Eco-friendly next-generation energy storage devices with high energy density are required to meet the increasing demand for sustainable and green electronics.However,their manufacturing requires a lot of chemical prec...Eco-friendly next-generation energy storage devices with high energy density are required to meet the increasing demand for sustainable and green electronics.However,their manufacturing requires a lot of chemical precursors and is usually accompanied by chemical waste;it also involves laborious and time-consuming processes such as mixing,heat treating,casting,and drying.Here,we proposed that mass production of microsupercapacitors(MSCs)for green electronics can be achieved by embedding manganese monoxide(MnO)on wood-derived laser-induced-graphene(LIG)via femtosecond laser direct writing(FsLDW)technique.The direct synthesis of MnO/LIG hetero-nanostructures on wood was realized by drop-casting a small amount of precursor between the first and second FsLDW.The preceding FsLDW thermochemically converted wood into LIG while the following FsLDW converted the precursor into MnO,resulting in MnO/LIG hetero-nanostructures.As-fabricated MnO/LIG MSC exhibited enhanced areal capacitance(35.54 mF cm^(−2)at 10 mV s^(−1))and capacitance retention(approximately 82.31%after 10,000 cycles)with only a small inclusion of Mn sources(0.66 mg cm^(−2))and short production time(10 min cm^(−2)),which attributes to operate light-emitting diodes,digital clocks,and electronic paper as well.This approach enables the green,facile,fast,and cost-effective fabrication of future sustainable energy storage devices from biomass for next-generation green electronics.展开更多
The increasing popularity of the Internet of Things and the growing microelectronics market have led to a heightened demand for microscale energy storage devices,such as microbatteries and microsupercapacitors.Althoug...The increasing popularity of the Internet of Things and the growing microelectronics market have led to a heightened demand for microscale energy storage devices,such as microbatteries and microsupercapacitors.Although lithium microbatteries have dominated the market,safety concerns arising from incidents like self-ignition and explosions have prompted a shift towards new microscale energy storage devices prioritizing high safety.Zinc-based micro-energy storage devices(ZMSDs),known for their high safety,low cost,and favorable electrochemical performance,are emerging as promising alternatives to lithium microbatteries.However,challenges persist in the fabrication of microelectrodes,electrolyte infusion,device packaging,and integration with microelectronics.Despite these challenges,significant progress has been made over the last decade.This review focuses on the challenges and recent advancements in zinc-based micro-energy storage,offering unique insights into their applications and paving the way for the commercial deployment of high-performance ZMSDs.展开更多
Supercapacitors are expected to bridge the gap between conventional electrostatic capacitors and batteries, but have not found significant application in primary energy devices, partly due to some unsolved problems in...Supercapacitors are expected to bridge the gap between conventional electrostatic capacitors and batteries, but have not found significant application in primary energy devices, partly due to some unsolved problems in the elec- trode materials. A wide range of novel materials such as novel carbons have been investigated to increase the energy den- sity of the electrodes and the volumetric merits of the materi- als need to be specifically considered and evaluated, towards the practical application of these novel materials. In obser- vation of the intense research activity to improve the volu- metric performance of carbon electrodes, the density or mass loading is particularly important and shall be further opti- mized, both for commercially applied activated carbons and in novel carbon electrode materials such as graphene. In this review, we presented a brief overview of the recent progress in improving the volumetric performance of carbon-based su- percapacitor electrodes, particularly highlighting the devel- opment of densified electrodes by various technical strategies including the controlled assembly of carbon building blocks, developing carbon based hybrid composites and constructing micro- supercapacitors.展开更多
On-chip microsupercapacitors (MSCs) compatible with on-chip geometries of integrated circuits can be used either as a separate power supply in microelectronic devices or as an energy storage or energy receptor acces...On-chip microsupercapacitors (MSCs) compatible with on-chip geometries of integrated circuits can be used either as a separate power supply in microelectronic devices or as an energy storage or energy receptor accessory unit. In this work, we report the fabrication of flexible two-dimensional Ni(OH)2 nanoplates-based MSCs, which achieved a specific capacitance of 8.80 F/cm^3 at the scan rates of 100 mV/s, losing only 0.20% of its original value after 10,000 charge/discharge cycles. Besides, the MSCs reached an energy density of 0.59 mWh/cm^3 and a power density up to 1.80 W/cm^3, which is comparable to traditional carbon-based devices. The flexible MSCs exhibited good electrochemical stability when subjected to bending at various conditions, illustrating the promising application as electrodes for wearable energy storage.展开更多
Micro-supercapacitors (MSCs) as important on-chip micropower sources have attracted considerable attention because of their unique and advantageous design for optimized maximum functionality within a minimized sized...Micro-supercapacitors (MSCs) as important on-chip micropower sources have attracted considerable attention because of their unique and advantageous design for optimized maximum functionality within a minimized sized chip and excellent mechanical flexibility/stability in miniaturized portable electronic device applications. In this work, we report a novel, high-performance flexible integrated on-chip MSC based on hybrid nanostructures of reduced graphene oxide/Fe2O3 hollow nanospheres using a microelectronic photo-lithography technology combined with plasma etching technique. The unique structural design for on-chip MSCs enables high-performance enhancements compared with graphene-only devices, exhibiting high specific capacitances of 11.57 F·cm^-3 at a scan rate of 200 mV·s^-1 and excellent rate capability and robust cycling stability with capacitance retention of 92.08% after 32,000 charge/discharge cycles. Moreover, the on-chip MSCs exhibit superior flexibility and outstanding stability even after repetition of charge/discharge cycles under different bending states. As-fabricated highly flexible on-chip MSCs can be easily integrated with CdS nanowire-based photodetectors to form a highly compacted photodetecting system, exhibiting comparable performance to devices driven by conventional external energy storage units.展开更多
MXenes,a class of two-dimensional materials,have garnered significant attention due to their unique properties and versatile applications in various fields.This review provides a comprehensive overview of MXene synthe...MXenes,a class of two-dimensional materials,have garnered significant attention due to their unique properties and versatile applications in various fields.This review provides a comprehensive overview of MXene synthesis methods,highlighting their distinctive layered structure and tunable properties through surface functionalization.The focus then shifts to their remarkable role in supercapacitor technology.MXenes exhibit high electrical conductivity,large surface areas,and tailored surface chemistry,making them promising candidates for energy storage in supercapacitors.The paper discusses the interplay of electric double-layer capacitance and pseudocapacitance mechanisms within MXenebased electrodes,detailing recent research efforts aimed at optimizing their energy storage performance.Through a combination of theoretical insights and experimental findings,the potential of MXenes to revolutionize supercapacitor technology emerges,offering prospects for high-energy-density and long-lasting energy storage solutions.Additionally,this review highlights recent advances in MXenebased supercapacitors,including novel electrode designs,electrolyte engineering,and hybrid materials,showcasing the dynamic evolution of MXene-based supercapacitor research.This comprehensive overview aims to provide a thorough understanding of MXenes'synthesis,properties,and their pivotal role in advancing supercapacitor technology,while also encompassing the latest breakthroughs in this rapidly evolving field.展开更多
基金China Scholarship Council,Grant/Award Number:201906230359Vetenskapsrådet,Grant/Award Number:2019-04731+4 种基金HORIZON EUROPE Digital,Industry and Space,Grant/Award Number:101070255Stiftelsen Olle Engkvist Byggmästare,Grant/Award Number:2014/799Swedish National Infrastructure in Advanced Electron Microscopy,Grant/Award Numbers:2021-00171,RIF21-0026KTH Energy Platform,Grant/Award Number:HT2021Swedish Foundation for Strategic Research,Grant/Award Number:STP19-0014。
文摘MXene is a promising energy storage material for miniaturized microbatteries and microsupercapacitors(MSCs).Despite its superior electrochemical performance,only a few studies have reported MXene-based ultrahigh-rate(>1000 mV s^(−1))on-paper MSCs,mainly due to the reduced electrical conductance of MXene films deposited on paper.Herein,ultrahigh-rate metal-free on-paper MSCs based on heterogeneous MXene/poly(3,4-ethylenedioxythiophene)-poly(styrenesulfonate)(PEDOT:PSS)-stack electrodes are fabricated through the combination of direct ink writing and femtosecond laser scribing.With a footprint area of only 20 mm^(2),the on-paper MSCs exhibit excellent high-rate capacitive behavior with an areal capacitance of 5.7 mF cm^(−2)and long cycle life(>95%capacitance retention after 10,000 cycles)at a high scan rate of 1000 mV s^(−1),outperforming most of the present on-paper MSCs.Furthermore,the heterogeneous MXene/PEDOT:PSS electrodes can interconnect individual MSCs into metal-free on-paper MSC arrays,which can also be simultaneously charged/discharged at 1000 mV s^(−1),showing scalable capacitive performance.The heterogeneous MXene/PEDOT:PSS stacks are a promising electrode structure for on-paper MSCs to serve as ultrafast miniaturized energy storage components for emerging paper electronics.
基金financially supported by National Natural Science Foundation of China(No.52072297)Key R&D Plan of Shaanxi Province(No.2021GXLH-Z-068)Young Talent Support Plan of Xi'an Jiaotong University
文摘The electrochemical performance of microsupercapacitors with graphene electrodes is reduced by the issue of graphene sheets aggregation,which limits electrolyte ions penetration into electrode.Increasing the space between graphene sheets in electrodes facilitates the electrolyte ions penetration,but sacrifices its electronic conductivity which also influences the charge storage ability.The challenging task is to improve the electrodes’electronic conductivity and ionic diffusion simultaneously,boosting the device’s electrochemical performance.Herein,we experimentally realize the enhancement of both electronic conductivity and ionic diffusion from 2D graphene nanoribbons assisted graphene electrode with porous layer-uponlayer structure,which is tailored by graphene nanoribbons and self-sacrificial templates ethyl cellulose.The designed electrode-based device delivers a high areal capacitance of 71 mF cm^(-2)and areal energy density of 9.83μWh cm^(-2),promising rate performance,outstanding cycling stability with 97%capacitance retention after 20000 cycles,and good mechanical properties.The strategy paves the way for fabricating high-performance graphene-based MSCs.
基金supported by the National Natural Science Foundation of China (Nos. 51772116 and 51972132)Program for HUST Academic Frontier Youth Team (2016QYTD04)。
文摘Owing to sluggish ionic mobility at low temperatures, supercapacitors, as well as other energy-storage devices, always suffer from severe capacity decay and even failure under extreme low-temperature circumstances. Solar-thermal-enabled self-heating promises an attractive approach to overcome this issue.Here, we report a unique H-bonding charge-transfer complex with a high photothermal conversion efficiency of 79.5% at 405 nm based on chloranilic acid and albendazole. Integrated with a microsupercapacitor, the chloranilic acid-albendazole complex(CAC) film prompts an apparent temperature increase of 22.7 °C under 1 sun illumination at-32.6 °C, effectively elevating the working temperature of devices.As a result, the rate capability of the microsupercapacitor has been significantly improved with a 17-fold increase in capacitance at a current density of 60 μA cm^(-2), leading to outstanding low-temperature performances. Importantly, the integrated device is capable of working at a low temperature of-30 °C in the open air, which demonstrates the potential of CAC in practical applications for low-temperature ultracapacitive energy-storage devices.
基金supported by the National Natural Science Foundation of China(Nos.51672308,61625404)the Beijing Natural Science Foundation(No.4162062)+1 种基金Beijing Municipal Science and Technology Project(No.Z1711000220000)the Key Research Program of Frontiers Sciences,Chinese Academy of Sciences(No.QYZDY-SSW-JSC004)
文摘The rapid development of portable electronic devices has accelerated the advancement of energy storage devices. On-chip microsupercapacitors(MSCs), as a group of high performance energy storage devices,have remarkable features of miniaturization, high security, and easy integration to build an all-in-one integrated system to meet the request of micro-portable electronic equipments. With the characteristics of high capacities, environmentally friendly and low cost, metal oxides are thought to be ideal candidates for on-chip MSCs. This paper summarizes the recent progress of metal oxides based on-chip MSCs. It starts with the introduction of several common methods for the synthesis of metal oxides nanostructures. The recent developments on the fabrication and electrochemical performance of metal oxides based on-chip MSCs are then highlighted in detail. Finally, the existing challenges and future perspectives of the on-chip MSCs are discussed.
基金National Natural Science Foundation of China(52072297 and 51907149)Key R&D Plan of Shaanxi Province(2021GXLH-Z-068)+1 种基金China Postdoctoral Science Foundation(2019M653609)the Young Talent Support Plan of Xi’an Jiaotong University。
文摘The advance of microelectronics requires the micropower of microsupercapacitors(MSCs) to possess wide temperature-and damage-tolerance beyond high areal energy density.The properties of electrolyte are crucial for MSCs to meet the above requirements.Here,an organohydrogel electrolyte,featured with high salt tolerance,ultralow freezing point,and strong self-healing ability,is experimentally realized via modulating its inner dynamic bonds.Spectroscopic and theoretical analysis reveal that dimethyl sulfoxide has the ability to reconstruct Li^(+)solvation structure,and interact with free water and polyvinyl alcohol chains via forming hydrogen bonds.The organohydrogel electrolyte is employed to build MSCs,which show a boosted energy density,promising wide temperature range-and damage-tolerant ability.These attractive features make the designed organohydrogel electrolyte have great potential to advance MSCs.
基金financially supported by the National Natural Science Foundation of China(No.52072297)Key R&D Plan of Shaanxi Province(No.2021GXLH-Z-068)Young Talent Support Plan of Xi’an Jiaotong University.
文摘The graphene-based microsupercapacitors(MSCs)suffer from graphene aggregation issue in electrodes.It reduces the electrolyte ions transportation in the electrodes to degrade the charge storage ability of MSCs,hampering their practical application.Increasing the electrolyte ions transportation in the electrodes can boost the charge storage ability of MSCs.Herein,we design and experimentally realize pillar array structure of graphene electrodes for MSCs by direct ink writing technology.The graphene electrodes with pillar array structure increase the contact area with electrolyte and short the electrolyte ions transport path,facilitating electrolyte ions transport in electrodes.The MSCs exhibit high areal capacitance of 25.67 mF·cm^(−2),high areal energy density of 20.54μWh·cm^(−2),and high power density of 1.45 mW·cm^(−2).One single MSCs can power timer for 10 min and pressure sensor more than 160 min,showing high practical application possibility.This work provides a new avenue for developing high performance MSCs.
基金the National Natural Science Foundation of China(NSFC,22109009,21975027,22035005,and 52073159)China Postdoctoral Science Foundation(2020M680376)+1 种基金the National Key R&D Program of China(2017YFB1104300)the NSFCSTINT(21911530143).
文摘With the boom of portable,wearable,and implantable smart electronics in the last decade,the demand for multifunctional microscale electrochemical energy storage devices has increased.Owing to their excellent rate performance,high power density,long cycling lifetime,easy fabrication,and integration,multifunctional planar microsupercapacitors(PMSCs)are deemed as one of the ideal micropower sources for next-generation flexible on-chip electronics.Therefore,we offer a comprehensive overview of the recent progress regarding multifunctional devices based on PMSCs,including stretchable,self-healing,stimulus-responsive,thermosensitive,biodegradable,and temperaturetolerant microdevices.We also emphasize the unique applications of multifunctionally integrated PMSCs in the construction of self-powered and sensor-integrated systems in terms of multifunctional operation modes.Finally,the key challenges and future prospects related to these multifunctional devices are discussed to stimulate further research in this flourishing field.
基金the financial support of the National Key R&D Program of China(Grant Nos.2021YFB3200701 and 2018YFA0208501)the National Natural Science Foundation of China(Grant Nos.21875260,21671193,91963212,51773206,21731001,and 52272098)Beijing Natural Science Foundation(No.2202069)
文摘For microelectronic devices,the on-chip microsupercapacitors with facile construction and high performance,are attracting researchers'prior consideration due to their high compatibility with modern microsystems.Herein,we proposed interchanging interdigital Au-/MnO_(2)/polyethylene dioxythiophene stacked microsupercapacitor based on a microfabrication process followed by successive electrochemical deposition.The stacked configuration of two pseudocapacitive active microelectrodes meritoriously leads to an enhanced contact area between MnO_(2)and the conductive and electroactive layer of polyethylene dioxythiophene,hence providing excellent electron transport and diffusion pathways of electrolyte ions,resulting in increased pseudocapacitance of MnO_(2)and polyethylene dioxythiophene.The stacked quasi-solid-state microsupercapacitors delivered the maximum specific capacitance of 43 mF cm^(-2)(211.9 F cm^(-3)),an energy density of 3.8μWh cm^(-2)(at a voltage window of 0.8 V)and 5.1μWh cm^(-2)(at a voltage window of 1.0 V)with excellent rate capability(96.6%at 2 mA cm^(-2))and cycling performance of 85.3%retention of initial capacitance after 10000 consecutive cycles at a current density of 5 mA cm^(-2),higher than those of ever reported polyethylene dioxythiophene and MnO_(2)-based planar microsupercapacitors.Benefiting from the favorable morphology,bilayer microsupercapacitor is utilized as a flexible humidity sensor with a response/relaxation time superior to those of some commercially available integrated microsensors.This strategy will be of significance in developing high-performance on-chip integrated microsupercapacitors/microsensors at low cost and environment-friendly routes.
基金the support and funding from China Scholarship Council(CSC)support by the Leibniz Program of the German Research Foundation(SCHM 1298/26-1)。
文摘The rapid development of wearable and portable electronics has dramatically increased the application for miniaturized energy storage components.Stamping micro-supercapacitors(MSCs)with planar interdigital configurations are considered as a promising candidate to meet the requirements.In this review,recent progress of the different stamping materials and various stamping technologies are first discussed.The merits of each material,manufacturing process of each stamping method and the properties of stamping MSCs are scrutinized,respectively.Further insights on technical difficulties and scientific challenges are finally demonstrated,including the limited thickness of printed electrodes,poor overlay accuracy and printing resolution.
基金the financial support from the National Natural Science Foundation of China(Grant Nos.51702095,51722503,51975204)Natural Science Foundation of Hunan Province,China(Grant No.2018JJ3041)+1 种基金the Fundamental Research Funds for the Central Universities(531118010016)Science and Technology Bureau Foundation of Changsha City(kh1904005)。
文摘The rapid progress of micro/nanoelectronic systems and miniaturized portable devices has tremendously increased the urgent demands for miniaturized and integrated power supplies.Miniaturized energy storage devices(MESDs),with their excellent properties and additional intelligent functions,are considered to be the preferable energy supplies for uninterrupted powering of microsystems.In this review,we aim to provide a comprehensive overview of the background,fundamentals,device configurations,manufacturing processes,and typical applications of MESDs,including their recent advances.Particular attention is paid to advanced device configurations,such as two-dimensional(2D)stacked,2D planar interdigital,2D arbitrary-shaped,three-dimensional planar,and wire-shaped structures,and their corresponding manufacturing strategies,such as printing,scribing,and masking techniques.Additionally,recent developments in MESDs,including microbatteries and microsupercapacitors,as well as microhybrid metal ion capacitors,are systematically summarized.A series of on-chip microsystems,created by integrating functional MESDs,are also highlighted.Finally,the remaining challenges and future research scope on MESDs are discussed.
基金supported by the National Natural Science Fund for Distinguished Young Scholars(51425204)the National Natural Science Foundation of China(51521001)+2 种基金the National Key Research and Development Program of China(2016YFA0202603,2016YFA0202604)the Programme of Introducing Talents of Discipline to Universities(B17034)the Yellow Crane Talent(Science&Technology)Program of Wuhan City。
文摘High-performance anode is hurdle for on-chip planar microsupercapacitor(MSC).Polypyrrole(PPy)is a highly attractive pseudocapacitive material,but its low cycling stability,and low adhesion with current collector hinder its practicability.Herein we propose one-prong generic strategy to boost the cycling stability of PPy.For our strategy,the electrochemical deposition of multilayered reduced graphene oxide(rGO)on micropatterned Au is utilized,and the resultant rGO@Au pattern is then used for growing highly porous PPy nanostructures by facile electrochemical polymerization.The fabricated PPy anode on rGO@Au has quasi rectangular cyclic voltammetry curves up to-0.7 V and exceptional cycling stability,retaining82%of capacitance after 10,000 charge/discharge cycles in 2 M KCl electrolyte.The outstanding reliability of PPy on rGO@Au is due to the flexibility of rGO,accommodating structural pulverization and providing a promising background for the nucleation of highly porous nanostructure.Further,an all-polymer based asymmetric aqueous MSC(AMSC)is constructed with PPy anode and PEDOT cathode,which exhibited excellent electrochemical performance compared with conventional symmetric MSCs based on conducting polymers.The constructed AMSC delivered a maximum areal capacitance of 15.9 m F cm^-2(99.3 F cm^-3),high specific energy and power densities of 4.3μWh cm^-2(27.03 mWh cm^-3)and 0.36 W cm^-2(0.68 W cm^-3)at 1.4 V,respectively.The enhanced electrochemical performances can be illustrated by nucleation mechanism,in which surface topology of r GO generates a promising background for nucleation and electrochemical growth of nanoporous pseudocapacitive conducting polymers with superior interfacial contact and improved surface area.
基金supported by a National Research Foundation of Korea grant funded by the Korean government(MSIT)(2020R1A2C1101039)by Korea Institute of Energy Technology Evaluation and Planning(KETEP)and the Ministry of Trade,Industry,and Energy(MOTIE)of the Republic of Korea(20204030200060)supported by the Soonchunhyang University Research Fund
文摘In plane micro-supercapacitors that are miniaturized energy storage components have attracted significant attention due to their high power densities for various ubiquitous and sustainable device systems as well as their facile integration on various flexible/wearable platform.To implement the micro-supercapacitors in various practical applications that can accompany solid state or gel electrolyte and flexible substrates,ions must be readily transported to electrodes for achieving high power densities.Herein,we show large enhancement in electrochemical properties of flexible,inplane micro-supercapacitor using sharp-edged interdigitated electrode design,which was simply fabricated through direct laser scribing method.The sharp-edged electrodes allowed strong electric field to be induced at the corners of the electrode fingers which led to the greater accumulation of ions near the surface of electrode,significantly enhancing the energy storage performance of micro-supercapacitors.The electric field-enhanced in-plane micro-supercapacitor showed the volumetric energy density of 1.52 Wh L^(−1)and the excellent cyclability with capacitive retention of 95.4%after 20000 cycles.We further showed various practicability of our sharp-edged design in micro-supercapacitors by showing circuit applicability,mechanical stability,and air stability.These results present an important pathway for designing electrodes in various energy storage devices.
基金support of the National Key R&D Program of China(Grant No.2021YFB3200701,2018YFA0208501)the National Natural Science Foundation of China(Grant No.52272098,21875260,21671193,91963212,51773206,21731001,22272182)Beijing Natural Science Foundation(No.2202069).
文摘Conducting polymers have achieved remarkable attentions owing to their exclusive characteristics,for instance,electrical conductivity,high ionic conductivity,visual transparency,and mechanical tractability.Surface and nanostructure engineering of conjugated conducting polymers offers an exceptional pathway to facilitate their implementation in a variety of scientific claims,comprising energy storage and production devices,flexible and wearable optoelectronic devices.A two-step tactic to assemble high-performance polypyrrole(PPy)-based microsupercapacitor(MSC)is utilized by transforming the current collectors to suppress structural pulverization and increase the adhesion of PPy,and then electrochemical co-deposition of PPy-CNT nanostructures on rGO@Au current collectors is performed.The resulting fine patterned MSC conveyed a high areal capacitance of 65.9 mF cm^(−2)(at a current density of 0.1 mA cm^(−2)),an exceptional cycling performance of retaining 79%capacitance after 10,000 charge/discharge cycles at 5 mA cm^(−2).Benefiting from the intermediate graphene,current collector free PPy-CNT@rGO flexible MSC is produced by a facile transfer method on a flexible substrate,which delivered an areal capacitance of 70.25 mF cm^(−2) at 0.1 mA cm^(−2) and retained 46%of the initial capacitance at a current density of 1.0 mA cm^(−2).The flexible MSC is utilized as a skin compatible capacitive micro-strain sensor with excellent electromechanochemical characteristics.
基金financially supported by the ERC Grant2DMATERESF Young Researcher Group‘GRAPHD’+1 种基金the EC under the Graphene Flagship(No.CNECTICT-604391)the Excellent Youth Foundation of Zhejiang Province of China(No.LR21E030001)。
文摘Quasi-two-dimensional(q2 D)conducting polymer thin film synergizes the advantageous features of longrange molecular ordering and high intrinsic conductivity,which are promising for flexible thin film-based micro-supercapacitors(MSCs).Herein,we present the high-performance flexible MSCs based on highly ordered quasi-two-dimensional polyaniline(q2 D-PANI)thin film using surfactant monolayer assisted interfacial synthesis(SMAIS).Owing to high electrical conductivity,rich redox chemistry,and thin-film morphology,the q2 D-PANI MSCs show high volumetric specific capacitance(ca.360 F/cm^(3))and energy density(17.9 m Wh/cm^(3)),which outperform the state-of-art PANI thin-film based MSCs and promise for future flexible electronics.
基金supported by the National Research Foundation of the Republic of Korea(Project.No.2020R1A2C210233813,2021R1A4A1031660)Korea Forestry Promotion Institute(Project No.2023488B10-2325-AA01)+2 种基金the R&D Program for Forest Science Technology(Project No.2020229C10-2122-AC01)Korea Forest Service,Korea Institute of Planning and Evaluation for Technology in Food,Agriculture,and Forestry funded by Ministry of Agriculture,Food and Rural Affairs(321077-2),and KAIST G-core projectthe National Research Foundation of Korea(NRF)grant funded by the Korea government(MSIT)(No.RS-2023-00217581).
文摘Eco-friendly next-generation energy storage devices with high energy density are required to meet the increasing demand for sustainable and green electronics.However,their manufacturing requires a lot of chemical precursors and is usually accompanied by chemical waste;it also involves laborious and time-consuming processes such as mixing,heat treating,casting,and drying.Here,we proposed that mass production of microsupercapacitors(MSCs)for green electronics can be achieved by embedding manganese monoxide(MnO)on wood-derived laser-induced-graphene(LIG)via femtosecond laser direct writing(FsLDW)technique.The direct synthesis of MnO/LIG hetero-nanostructures on wood was realized by drop-casting a small amount of precursor between the first and second FsLDW.The preceding FsLDW thermochemically converted wood into LIG while the following FsLDW converted the precursor into MnO,resulting in MnO/LIG hetero-nanostructures.As-fabricated MnO/LIG MSC exhibited enhanced areal capacitance(35.54 mF cm^(−2)at 10 mV s^(−1))and capacitance retention(approximately 82.31%after 10,000 cycles)with only a small inclusion of Mn sources(0.66 mg cm^(−2))and short production time(10 min cm^(−2)),which attributes to operate light-emitting diodes,digital clocks,and electronic paper as well.This approach enables the green,facile,fast,and cost-effective fabrication of future sustainable energy storage devices from biomass for next-generation green electronics.
基金supported by the National Natural Science Foundation of China(52372213,52172219 and 52025028)the Priority Academic Program Development(PAPD)of Jiangsu Higher Education Institutions
文摘The increasing popularity of the Internet of Things and the growing microelectronics market have led to a heightened demand for microscale energy storage devices,such as microbatteries and microsupercapacitors.Although lithium microbatteries have dominated the market,safety concerns arising from incidents like self-ignition and explosions have prompted a shift towards new microscale energy storage devices prioritizing high safety.Zinc-based micro-energy storage devices(ZMSDs),known for their high safety,low cost,and favorable electrochemical performance,are emerging as promising alternatives to lithium microbatteries.However,challenges persist in the fabrication of microelectrodes,electrolyte infusion,device packaging,and integration with microelectronics.Despite these challenges,significant progress has been made over the last decade.This review focuses on the challenges and recent advancements in zinc-based micro-energy storage,offering unique insights into their applications and paving the way for the commercial deployment of high-performance ZMSDs.
基金supported by the Chinese Government 1000 Plan Talent Programthe Ministry of Education's Program for New Century Excellent Talents in the University+2 种基金the National Natural Science Foundation of China(51322204)the Fundamental Research Funds for Central Universities(WK2060140014 and WK2060140017)the funding from Hefei National Synchrotron Radiation Lab
文摘Supercapacitors are expected to bridge the gap between conventional electrostatic capacitors and batteries, but have not found significant application in primary energy devices, partly due to some unsolved problems in the elec- trode materials. A wide range of novel materials such as novel carbons have been investigated to increase the energy den- sity of the electrodes and the volumetric merits of the materi- als need to be specifically considered and evaluated, towards the practical application of these novel materials. In obser- vation of the intense research activity to improve the volu- metric performance of carbon electrodes, the density or mass loading is particularly important and shall be further opti- mized, both for commercially applied activated carbons and in novel carbon electrode materials such as graphene. In this review, we presented a brief overview of the recent progress in improving the volumetric performance of carbon-based su- percapacitor electrodes, particularly highlighting the devel- opment of densified electrodes by various technical strategies including the controlled assembly of carbon building blocks, developing carbon based hybrid composites and constructing micro- supercapacitors.
基金Acknowledgements This work was supported by the National Natural Science Foundation of China (No. 61377033).
文摘On-chip microsupercapacitors (MSCs) compatible with on-chip geometries of integrated circuits can be used either as a separate power supply in microelectronic devices or as an energy storage or energy receptor accessory unit. In this work, we report the fabrication of flexible two-dimensional Ni(OH)2 nanoplates-based MSCs, which achieved a specific capacitance of 8.80 F/cm^3 at the scan rates of 100 mV/s, losing only 0.20% of its original value after 10,000 charge/discharge cycles. Besides, the MSCs reached an energy density of 0.59 mWh/cm^3 and a power density up to 1.80 W/cm^3, which is comparable to traditional carbon-based devices. The flexible MSCs exhibited good electrochemical stability when subjected to bending at various conditions, illustrating the promising application as electrodes for wearable energy storage.
基金This work was supported by the National Natural Science Foundation (No. 61377033).
文摘Micro-supercapacitors (MSCs) as important on-chip micropower sources have attracted considerable attention because of their unique and advantageous design for optimized maximum functionality within a minimized sized chip and excellent mechanical flexibility/stability in miniaturized portable electronic device applications. In this work, we report a novel, high-performance flexible integrated on-chip MSC based on hybrid nanostructures of reduced graphene oxide/Fe2O3 hollow nanospheres using a microelectronic photo-lithography technology combined with plasma etching technique. The unique structural design for on-chip MSCs enables high-performance enhancements compared with graphene-only devices, exhibiting high specific capacitances of 11.57 F·cm^-3 at a scan rate of 200 mV·s^-1 and excellent rate capability and robust cycling stability with capacitance retention of 92.08% after 32,000 charge/discharge cycles. Moreover, the on-chip MSCs exhibit superior flexibility and outstanding stability even after repetition of charge/discharge cycles under different bending states. As-fabricated highly flexible on-chip MSCs can be easily integrated with CdS nanowire-based photodetectors to form a highly compacted photodetecting system, exhibiting comparable performance to devices driven by conventional external energy storage units.
文摘MXenes,a class of two-dimensional materials,have garnered significant attention due to their unique properties and versatile applications in various fields.This review provides a comprehensive overview of MXene synthesis methods,highlighting their distinctive layered structure and tunable properties through surface functionalization.The focus then shifts to their remarkable role in supercapacitor technology.MXenes exhibit high electrical conductivity,large surface areas,and tailored surface chemistry,making them promising candidates for energy storage in supercapacitors.The paper discusses the interplay of electric double-layer capacitance and pseudocapacitance mechanisms within MXenebased electrodes,detailing recent research efforts aimed at optimizing their energy storage performance.Through a combination of theoretical insights and experimental findings,the potential of MXenes to revolutionize supercapacitor technology emerges,offering prospects for high-energy-density and long-lasting energy storage solutions.Additionally,this review highlights recent advances in MXenebased supercapacitors,including novel electrode designs,electrolyte engineering,and hybrid materials,showcasing the dynamic evolution of MXene-based supercapacitor research.This comprehensive overview aims to provide a thorough understanding of MXenes'synthesis,properties,and their pivotal role in advancing supercapacitor technology,while also encompassing the latest breakthroughs in this rapidly evolving field.