期刊文献+
共找到61篇文章
< 1 2 4 >
每页显示 20 50 100
Process Optimization,Microstructure Characterization,and Mechanical Properties of Al-Mg-Sc-Zr alloys Prepared via Laser Powder Bed Fusion
1
作者 Yunfei Nie Haibin Wu +6 位作者 Qian Tang Hao Yi Changliang Qin Binsheng Wang Zhonghua Li Kun Li Quanquan Han 《Additive Manufacturing Frontiers》 2025年第1期136-146,共11页
Aluminum alloys manufactured using traditional processes are increasingly unable to meet the high flexibility and performance requirements of modern engineering.In this study,Al-Mg-Sc-Zr alloys were manufactured via l... Aluminum alloys manufactured using traditional processes are increasingly unable to meet the high flexibility and performance requirements of modern engineering.In this study,Al-Mg-Sc-Zr alloys were manufactured via laser powder bed fusion(LPBF)to obtain high-performance aluminum alloys.To this end,process parameter optimization and heat treatment were adopted.The optimal process parameters were determined by initially analyzing the relative density and defect distribution under varying energy densities.The sample obtained under the optimal process parameters exhibited a relative density of 99.84%.Subsequently,the corresponding phase compositions,microstructures,and mechanical performance of the as-fabricated specimens were determined using the optimal process parameters before and after heat treatment.The microstructures of the samples showed typical equiaxed columnar bimodal grain structures,with Al_(3)(Sc,Zr)precipitates detected.The samples exhibited no significant anisotropy before and after heat treatment,while the grain orientation differences were dominated by high-angle grain boundaries.The mechanical properties of all the samples were characterized using tensile and hardness tests.The yield strength,ultimate tensile strength,and elongation of the sample were 475.0 MPa,508.2 MPa,and 8.3%,respectively.Overall,samples with high density,low porosity,high strength,and high plasticity were obtained by process parameter optimization and appropriate heat treatment. 展开更多
关键词 Laser powder bed fusion Al-Mg-Sc-Zr alloy Processing optimization microstructure characterization Mechanical properties
在线阅读 下载PDF
Microstructure characterization in a sensitized Al-Mg-Mn-Zn alloy 被引量:7
2
作者 Chun-Yan Meng Di Zhang +2 位作者 Ping-Ping Liu Lin-Zhong Zhuang Ji-Shan Zhang 《Rare Metals》 SCIE EI CAS CSCD 2018年第2期129-135,共7页
Alloying elements, present in the aluminum solid solution or the precipitates, influence the corrosion resistance of A1-Mg-Mn-Zn alloys. In this study, sensi- tizing treatment was applied to an A1-Mg-Mn-Zn alloy to mo... Alloying elements, present in the aluminum solid solution or the precipitates, influence the corrosion resistance of A1-Mg-Mn-Zn alloys. In this study, sensi- tizing treatment was applied to an A1-Mg-Mn-Zn alloy to modify the precipitation at the grain boundaries or in the grains. Transmission electron microscopy (TEM) and scanning electron microscope (SEM) were used to characterize various second-phase particles and determine their orientation relationship with the A1 matrix. After sensitizing treatment, z-phase (Mg32(Al, Zn)49) is observed to precipitate along the grain boundaries in a coarser size, producing a discontinuous grain boundary precipitate structure. In addition, Mn-rich particles are found to form with various shapes, such as global, plate and rhombus. 展开更多
关键词 Al-Mg-Mn-Zn alloy Mg32(A1 Zn)49 phase A16(Mn Fe) phase microstructure characterization
原文传递
Microstructure Characterization and Fracture Toughness of Laves Phase-Based Cr–Nb–Ti Alloys
3
作者 Yun-Long Xue Shuang-Ming Li +2 位作者 Hong Zhong Lai-Ping Li Heng-Zhi Fu 《Acta Metallurgica Sinica(English Letters)》 SCIE EI CAS CSCD 2015年第4期514-520,共7页
Three Laves phase-based alloys with nominal compositions of Cr2Nb-xTi (x = 20, 30, 40, in at%) have been prepared through vacuum non-consumable arc melting. The results show that the microstructures of Cr2Nb-(20, 3... Three Laves phase-based alloys with nominal compositions of Cr2Nb-xTi (x = 20, 30, 40, in at%) have been prepared through vacuum non-consumable arc melting. The results show that the microstructures of Cr2Nb-(20, 30) Ti alloys are composed of the primary Laves phase C15-Cr2(Nb,Ti) and bcc solid solution phase, while the microstructure of Cr2Nb-40Ti alloy is developed with the eutectic phases C15-Cr2(Nb,Ti)/bcc solid solution. The measured fracture toughness of ternary Laves phase C15-Cr2(Nb,Ti) is about 3.0 MPa m1/2, much larger than 1.4 MPa m1/2 for binary Laves phase Cr2Nb. Meanwhile, the fracture toughness of Cr2Nb-xTi (x = 20, 30, 40) alloys increases with increasing Ti content and reaches 10.6 MPa m1/2 in Cr2Nb-40Ti alloy. The eutectic microstructure and addition of Ti in Cr2Nb are found to be effective in toughening Laves phase-based alloys. 展开更多
关键词 Laves phase-based alloys microstructure characterization Fracture toughness Crackpropagation FRACTURE
原文传递
Effect of direct quenching after hot rolling on hot formed microstructure and mechanical properties of 2.2 GPa grade steel
4
作者 Mai Wang Jiang Chang +3 位作者 Rong Zhu Zhen-li Mi Yan-xin Wu Lei Li 《Journal of Iron and Steel Research International》 2025年第8期2452-2462,共11页
A martensitic initial microstructure before hot forming was prepared by direct quenching after hot rolling of the hot formed steel and the effect of such initial microstructure on mechanical properties of steel was an... A martensitic initial microstructure before hot forming was prepared by direct quenching after hot rolling of the hot formed steel and the effect of such initial microstructure on mechanical properties of steel was analyzed. The process of direct quenching after hot rolling which replaced the steps of coiling and cold rolling was termed as compact process. As the temperature before direct quenching falls within the non-recrystallization range, the deformed austenite grains exhibit flattened morphology along the hot rolling direction, and the high-density dislocations and significant strain energy in deformed austenite are inherited by directly quenched martensite. Moreover, due to promotion of austenite nucleation and subsequent recrystallization during the reverse transformation process in hot forming, both reversed austenite grains and martensite laths are significantly refined. Compared to the conventional process with an initial microstructure consisting of fully recrystallized ferrite and cementite, the compact process reduces average prior austenite grain sizes from 12.5 to 5.5 μm and martensite lath widths from 202 to 123 nm. Additionally, the compact process results in a higher density of dislocations in test steel, leading to maximum yield strength (1294 MPa) and ultimate tensile strength (2266 MPa). Compared to conventional process, this compact process significantly improves the mechanical properties of the hot formed steels while simplifying the production. 展开更多
关键词 microstructure characterization Hot formed steel Direct quenching Austenite grain refinement Dislocation strengthening
原文传递
In-situ SEM characterization of fracture mechanism of TiB/Ti-2Al-6Sn titanium matrix composites after electroshocking treatment 被引量:1
5
作者 Ya-Ya Wu Jian Zhou +6 位作者 Guo-Lei Han Yan Wen Zhou Wang Li-Qiang Wang Wei-Jie Lv Le-Chun Xie Lin Hua 《Rare Metals》 SCIE EI CAS CSCD 2024年第6期2805-2818,共14页
In this article,in-situ scanning electron microscope characterization of the tensile properties of TiB/Ti-2Al-6Sn titanium matrix composite(TMC)was conducted before and after electroshocking treatment(EST).After EST,t... In this article,in-situ scanning electron microscope characterization of the tensile properties of TiB/Ti-2Al-6Sn titanium matrix composite(TMC)was conducted before and after electroshocking treatment(EST).After EST,the tensile strength increased by 113.2 MPa.The effect of EST on the tensile strength and fracture behavior of TiB was investigated using in-situ characterization of the fracture morphology and crack propagation path of the matrix and TiB.Before EST,TiB fracture introduced cracks that extended into the matrix,resulting in material failure.After EST,the refined TiB improved the bearing capacity of the matrix,thereby improving TMC strength.Moreover,after EST,the cracks were introduced into the matrix,and resulting the fracture of matrix first.With an increase in the external load,cracks in the matrix were observed to propagate to TiB,and the refined TiB was fractured,detached,and pulled out,resulting in the formation of pores.Analyzing the propagation path of the main crack after EST showed that the deflection angle of the main crack increased.The micro structure of the fracture surface indicated that the fracture of the matrix was plastic,whereas that of TiB was brittle.After EST,the size and area of the dimples increased,confirming the increase in plasticity.The results revealed that the comprehensive mechanical properties of TiB/Ti-2Al-6Sn improved after EST.Hence,EST is an efficient method for tailoring the micro structures and mechanical properties of TMCs. 展开更多
关键词 TiB/Ti-2Al-6Sn In-situ microstructure characterization Tensile properties REINFORCEMENT Electroshocking treatment(EST)
原文传递
Investigation of Microstructure, Microhardness and Thermal Properties of Ag-In Intermetallic Alloys Prepared by Vacuum Arc Meltings
6
作者 ÇELİK Erçevik ATA ESENER Pınar +1 位作者 ÖZTÜRK Esra AKSÖZ Sezen 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS CSCD 2024年第1期182-187,共6页
Ag-In intermetallic alloys were produced by using vacuum arc furnace. Differential Scanning Calorimetry(DSC) and Energy Dispersive X-Ray Spectrometry(EDX) were used to determine the thermal properties and chemical com... Ag-In intermetallic alloys were produced by using vacuum arc furnace. Differential Scanning Calorimetry(DSC) and Energy Dispersive X-Ray Spectrometry(EDX) were used to determine the thermal properties and chemical composition of the phases respectively. Microhardness values of Ag-In intermetallics were calculated with Vickers hardness measurement method. According to the experimental results, Ag-34 wt%In intermetallic system generated the best results of energy saving and storage compared to other intermetallic systems. Also from the microhardness results, it was observed that intermetallic alloys were harder than pure silver and Ag-26 wt%In system had the highest microhardness value with 143.45 kg/mm^(2). 展开更多
关键词 thermal properties microstructure characterization MICROHARDNESS ALLOYS material characterization
原文传递
Effect of tungsten carbide particles on microstructure and mechanical properties of Cu alloy composite bit matrix
7
作者 Ding-qian Dong Feng-yuan He +5 位作者 Xin-hui Chen Hui Li Kai-hua Shi Hui-wen Xiong Xin Xiang Li Zhang 《Journal of Iron and Steel Research International》 SCIE EI CAS CSCD 2024年第2期519-530,共12页
Copper alloy composite bit matrix was prepared by pressureless vacuum infiltration,using at least one of the three kinds of tungsten carbide particles,for example,irregular cast tungsten carbide,monocrystalline tungst... Copper alloy composite bit matrix was prepared by pressureless vacuum infiltration,using at least one of the three kinds of tungsten carbide particles,for example,irregular cast tungsten carbide,monocrystalline tungsten carbide and sintered reduced tungsten carbide particles.The effects of powder particle morphology,particle size and mass fraction of tungsten carbide on the microstructure and mechanical properties of copper alloy composite were investigated by means of scanning electron microscopy,X-ray diffraction and abrasive wear test in detail.The results show that tungsten carbide morphology and particle size have obvious effects on the mechanical properties of copper alloy composites.Cast tungsten carbide partially dissolved in the copper alloy binding phase,and layers of Cu_(0.3)W_(0.5)Ni_(0.1)Mn_(0.1)C phase with a thickness of around 8–15μm were formed on the edge of the cast tungsten carbide.When 45%irregular crushed fine cast tungsten carbide and 15%monocrystalline cast tungsten carbide were used as the skeleton,satisfactory comprehensive performance of the reinforced copper alloy composite bit matrix was obtained,with the bending strength,impact toughness and hardness reaching 1048 MPa,4.95 J/cm^(2) and 43.6 HRC,respectively.The main wear mechanism was that the tungsten carbide particles firstly protruded from the friction surface after the copper alloy matrix was worn,and then peeled off from the matrix when further wear occurred. 展开更多
关键词 Polycrystalline diamond compact Pressureless vacuum infiltration Copper alloy composite bit matrix microstructure characterization Abrasive wear behavior
原文传递
Characterization of Microstructure, Strength, and Toughness of Dissimilar Weldments of Inconel 625 and Duplex Stainless Steel SAF 2205 被引量:8
8
作者 R. Sridhar K. Devendranath Ramkumar N. Arivazhagan 《Acta Metallurgica Sinica(English Letters)》 SCIE EI CAS CSCD 2014年第6期1018-1030,共13页
The dissimilar combinations of Inconel 625 and duplex stainless steel SAF 2205 obtained from manual GTA welding process employing ER2209 and ERNi CrMo-3 filler metals have been investigated. Formation of secondary pha... The dissimilar combinations of Inconel 625 and duplex stainless steel SAF 2205 obtained from manual GTA welding process employing ER2209 and ERNi CrMo-3 filler metals have been investigated. Formation of secondary phases at the HAZ of Inconel 625 and grain coarsening at the HAZ of SAF 2205 were witnessed while using these filler wires. The average hardness of ER2209 weldments was found to be greater than ERNi CrMo-3 weld. Tensile fracture was observed at the weld zones for both the fillers. Impact test trials showed brittle mode of fracture on employing ER2209 filler and mixed(ductile–brittle) mode of fracture while using ERNi CrMo-3 filler. Further optical microscopy and SEM/EDS analysis were carried out across the weldments to investigate the structure–property relationships. 展开更多
关键词 Inconel 625 Duplex stainless steel SAF 2205 Dissimilar metal welding microstructure Mechanical characterization
原文传递
Characterization of Microstructure and Stability of Precipitation in SIMP Steel Irradiated with Energetic Fe Ions
9
作者 方雪松 申铁龙 +4 位作者 崔明焕 金鹏 李炳生 朱亚滨 王志光 《Chinese Physics Letters》 SCIE CAS CSCD 2017年第11期57-60,共4页
A type of home-made reduced activation martensitic steel, high silicon (SIMP) steel, is homogeneously irradiated with energetic Fe ions to the doses of 0.1, 0.25 and 1 displacement per atom (dpa), respectively, at... A type of home-made reduced activation martensitic steel, high silicon (SIMP) steel, is homogeneously irradiated with energetic Fe ions to the doses of 0.1, 0.25 and 1 displacement per atom (dpa), respectively, at 300℃ and i dpa, at 400℃. MicrostructurM changes are investigated in detail by transmission electron microscopy with cross-section technique. Interstitial defects and defect dusters induced by Fe-ion irradiation are observed in ali the specimens under different conditions. It is found that with increasing irradiation temperature, size of defect clusters increases while the density drops quickly. The results of element chemical mapping from the STEM images indicate that the Si element enrichment and Ta element depletion occur inside the precipitates in the matrix of SIMP steel irradiated to a dose of 1 dpa at 300℃. Correlations between the microstructure and irradiation conditions are briefly discussed. 展开更多
关键词 characterization of microstructure and Stability of Precipitation in SIMP Steel Irradiated with Energetic Fe Ions FE
原文传递
Geochemistry and Microstructure of Construction Materials from the Eastern Districts of N’Djamena Chad with a View to Their Stabilization in the Building and Pottery
10
作者 Warabi Bebbata Frédéric Pagore Djoda +2 位作者 Madjihingam Ndjolba Bertin Pagna Kagonbé Raïdandi Danwé 《Materials Sciences and Applications》 2024年第10期431-449,共19页
The early collapse of habitats in the spontaneous neighborhoods of the South-East of N’Djamena city pushed us to carry out investigations on the soil characteristics of the Ambatta 1 (Z1), Ambatta 2 (Z2), and Sigu... The early collapse of habitats in the spontaneous neighborhoods of the South-East of N’Djamena city pushed us to carry out investigations on the soil characteristics of the Ambatta 1 (Z1), Ambatta 2 (Z2), and Siguété (Z3) neighborhoods in this city. XRF (X-Ray Fluorescence), XRD (X-Ray Diffraction), FTIR (Fourier Transform InfraRed), SEM (Scanning Electron Microscopy), and ATG/DTA (Thermogravimetry Analysis/Differential Thermal Analysis) were conducted for microstructural and thermal identification. The geochemistry of the three soils studied revealed the presence of SiO2 (49.03% - 73.80%), Al2O3 (08.35% - 17.34%), and Fe2O3 (03.79% - 10.90%) as major elements. The alkalines and alkaline earth elements include potassium K2O (02.57% - 03.07%), magnesium MgO (0.47% - 01.21%), titanium TiO2 (0.81% - 01.41%), sodium Na2O (01.01% - 01.13%) and calcium CaO (01.28% - 03.28%). The fire loss of 09.90% on average remains low. XRD revealed the presence of quartz (~64.28%), feldspar (~07.14%), which are non-clay minerals, and clay minerals like kaolinite (~14.85%), illite (~07.14%) and some traces of smectite and amphibite on all three sites. These oxides were confirmed by FTIR analysis through peaks illustrating the vibrational movements specific to these oxides. SEM shows particles in the increasingly shaped, rounded, shiny sand grains. This is the presence of quartz. These quartz micro textures of abrasive surfaces and topography with conchoidal fractures predict promising mechanical results. Smectite appears in wavy clusters, kaolinite in the form of shiny crystals, and illite materializes by the irregularity of the crystalline shape. These constituents are represented by the presence of their oxides specified by geochemistry. Thermally, the three samples overall retain more than 94% of their constituent on average for a temperature range reaching 950˚C, which predestines them for specific applications. Thus, this study aims to stabilize constructions using local materials after having mastered their constituents. 展开更多
关键词 N’Djamena East Soils PHYSICOCHEMICAL Microstructural and Thermal characterization
在线阅读 下载PDF
Influence of Al Content on the Microstructure and Properties of the CrAlN Coatings Deposited by Arc Ion Plating 被引量:14
11
作者 Qi-Xiang Fan Jiao-Jiao Zhang +4 位作者 Zheng-Huan Wu Yan-Mei Liu Tao Zhang Bing Yan Tie-Gang Wang 《Acta Metallurgica Sinica(English Letters)》 SCIE EI CAS CSCD 2017年第12期1221-1230,共10页
Four CrAlN coatings with various Al content were prepared by arc ion plating technology under different target currents. The effect of the Al content on the microstructure, chemical compositions, element chemical bond... Four CrAlN coatings with various Al content were prepared by arc ion plating technology under different target currents. The effect of the Al content on the microstructure, chemical compositions, element chemical bonding states and mechanical properties of the CrAlN coatings was analyzed. X-ray diffraction results show that the primary phase of the CrAlN coating is fcc-(Al, Cr)N when the Al content is about 44.02 at.%. However, when the Al content increases to about 53.34 at.%, hcp-AlN phase emerges in the coating. And the hcp-AlN phase becomes the main phase in the CrAlN coating with Al content of about 69.55 at.%. Cross-sectional images show that all the four coatings possess dense structures and the deposition rate of Al atom is higher than that of Cr atom. The hardness of the CrAlN coating with Al content about 44.02 at.% is the largest (3149.72 HV) due to the solid solution hardening effect of the Al element. When the hcp-AlN phase is generated in the CrAlN coating, the hardness declines. The tribological experiment shows that the wear resistance of the CrAlN coating decreases gradually with increasing Al content when sliding against 100Cr6 steel ball. 展开更多
关键词 Arc ion plating microstructure characterization HARDNESS Al content
原文传递
Effect of Cu on microstructure,mechanical properties,and texture evolution of ZK60 alloy fabricated by hot extrusion−shearing process 被引量:6
12
作者 Shuai DAI Feng WANG +2 位作者 Zhi WANG Zheng LIU Ping-li MAO 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2020年第6期1511-1523,共13页
As-cast Mg-6Zn-xCu-0.6Zr(x=0,0.5,1.0,wt.%)alloys were fabricated by permanent mold casting;then,the alloys were subjected to homogenization heat treatment and extrusion-shearing(ES)process.The microstructure and mecha... As-cast Mg-6Zn-xCu-0.6Zr(x=0,0.5,1.0,wt.%)alloys were fabricated by permanent mold casting;then,the alloys were subjected to homogenization heat treatment and extrusion-shearing(ES)process.The microstructure and mechanical properties of the alloys were evaluated by OM,SEM/EDS,XRD,TEM,EBSD and tensile tests.The results show that the hard MgZnCu phase in Cu-added alloy can strengthen particle-stimulated nucleation(PSN)effect and hinder the migration of dynamic recrystallization(DRX)grain boundary at an elevated temperature during ES.The ZK60+0.5Cu alloy shows an optimal tensile strength–ductility combination(UTS of 396 MPa,YS of 313 MPa,andδ=20.3%)owing to strong grain boundary strengthening and improvement of Schmid factor for{0001}■basal slip.The aggregation of microvoids around the MgZnCu phase mainly accounts for the lower tensile elongation of ZK60+1.0Cu alloy compared with ZK60 alloy. 展开更多
关键词 Mg-Zn-Cu-Zr alloy extrusion-shearing process microstructure characterization mechanical properties texture evolution strengthening mechanism
在线阅读 下载PDF
Microstructure characteristics of Ti-43Al alloy during twin-roll strip casting and heat treatment 被引量:5
13
作者 Mang XU Guo-huai LIU +2 位作者 Tian-rui LI Bing-xing WANG Zhao-dong WANG 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2019年第5期1017-1025,共9页
To shorten the fabrication process of difficult-to-form TiAl sheets, twin-roll strip casting and microstructural control were investigated in Ti-43Al alloy. A crack-free sheet with dimensions of 1000 mm × 110 mm ... To shorten the fabrication process of difficult-to-form TiAl sheets, twin-roll strip casting and microstructural control were investigated in Ti-43Al alloy. A crack-free sheet with dimensions of 1000 mm × 110 mm × 2 mm was obtained. The microstructure of stip casting sheets and heat treatments was systematically studied. The macrostructure consisted of columnar crystals extending inward and centrally located equiaxed crystals with severe Al segregation were observed along the thickness direction, due to the symmetrical solidification process and decreasing cooling rates. The strip casting alloy was characterized by fine duplex microstructure with a grain spacing of 20-30 μm and a lamellar spacing of 10-20 nm. Furthermore, multiple microstructures of near gamma, nearly lamellar and fully lamellar were obtained through heat treatment process with significantly improved homogeneity of the microstructure. 展开更多
关键词 strip casting TiAl alloy sheet fabrication microstructure characterization heat treatment
在线阅读 下载PDF
Microstructures and mechanical properties of as-cast Mg-Sm-Zn-Zr alloys with varying Gd contents 被引量:5
14
作者 Kai Guan Daisuke Egusa +4 位作者 Eiji Abe Jinghuai Zhang Xin Qiu Qiang Yang Jian Meng 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2022年第5期1220-1234,共15页
The effect of Gd content on the microstructure and tensile properties of as-cast Mg-Sm-Zn-Zr alloy has been systematically investigated.In the Mg-3Sm-0.5Zn-0.5Zr alloy, the intermetallic compounds with multiple morpho... The effect of Gd content on the microstructure and tensile properties of as-cast Mg-Sm-Zn-Zr alloy has been systematically investigated.In the Mg-3Sm-0.5Zn-0.5Zr alloy, the intermetallic compounds with multiple morphologies are identified as Mg_(3)Sm phase. In addition to Mg_(3)RE phase, Mg_(5)RE phase originated from Gd addition is observed in Gd-modified alloys. It should be noted that the lattice parameters of all the observed intermetallic compounds are significantly reduced by Zn segregation. The segregation behavior of Zn in Mg_(3)Sm phase is inhibited to some extent by Gd addition due to the electronegativity difference between Sm/Gd and Zn elements. In addition, the increased Gd content effectively leads to much more accumulation of solute atoms in front of the liquid-solid interface during solidification, which can prominently promote nucleation in liquid region and then refine grains. The tensile yield stress of the present alloys is thus improved with increasing Gd addition. Finally, Gd-modified alloys exhibit significantly age-hardening effect, which can be mainly attributed to the high-volume fraction and high density nano-scale precipitates. 展开更多
关键词 Magnesium alloys microstructure characterization Mechanical properties Transmission electron microscopy(TEM)
在线阅读 下载PDF
Microstructure evolution and its effect on flow stress of TC17 alloy during deformation in α+β two-phase region 被引量:4
15
作者 Jiao LUO Peng YE +1 位作者 Wen-chao HAN Miao-quan LI 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2019年第7期1430-1438,共9页
The microstructure evolution and its effect on flow stress of TC17 alloy during deformation in the α+β two-phase region were investigated via microstructure characterization and isothermal compression tests. Results... The microstructure evolution and its effect on flow stress of TC17 alloy during deformation in the α+β two-phase region were investigated via microstructure characterization and isothermal compression tests. Results showed that the spheroidized rate of α phase at 820 and 850℃ slightly increased with increasing strain. With increasing deformation temperature, the spheroidized rate of α phase showed a slight increasing trend, but the volume fraction of α phase significantly decreased. The flow stress at 780 ℃ and 1 s^-1 decreased continuously and steady state condition was not achieved up to strain of 1.2 due to dislocation annihilation and α lamellae rotation. Under this condition, the dynamic spheroidization was retarded. At the deformation temperatures of 820 and 850℃, and a strain rate of 1 s^-1, a steady state flow stress was observed at strains above 0.8 due to the balance between work hardening and dynamic softening. The dynamic softening was attributed to the α lamellae rotation, dynamic recovery and a little spheroidization. 展开更多
关键词 TC17 alloy spheroidized rate microstructure evolution flow stress microstructure characterization
在线阅读 下载PDF
Study on crystallization and microstructure of Li_2O-Al_2O_3-SiO_2 glass ceramics 被引量:2
16
作者 Zhaoxia Hou Yongming Zhang +3 位作者 Huashan Zhang Hongbo Zhang Jing Shao Chunhui Su 《Journal of University of Science and Technology Beijing》 CSCD 2006年第6期564-569,共6页
Lithium aluminosilicate (LAS) glasses are generally difficult to prepare because of their high melting temperature. In this study, the preparation of LAS glasses was achieved at a relatively low melting temperature.... Lithium aluminosilicate (LAS) glasses are generally difficult to prepare because of their high melting temperature. In this study, the preparation of LAS glasses was achieved at a relatively low melting temperature. The batch containing MgO-ZnO-LiEO- Al2O3-SiO2 was melted in a platinum crucible at 1550℃ for 2 h and was then followed by two- or three-step heat treatment processes for nucleation and crystal growth. The characterizations were carried out by differential thermal analysis, X-ray diffraction, infrared spectroscopy, scanning electron microscopy, and UV-Vis-NIR scanning spectrophotometry. The hexagonal stuffed β-eucryptite solid solution crystallized at 840-960℃. Most of the hexagonal β-eucryptite solid solution transformed into the tetragonal β-spodumene solid solution at 1100℃. Almost all the aluminum atoms entered into the tetrahedral sites in the aluminosilicate network of the 6- eucryptite/β-quartz solid solution. All of the Al atoms did not belong to the aluminosilicate network of the β-spodumene solid solution. The glass ceramic with a mean grain size of 10-20 nm is transparent, the transmittance reaches -85% in the visible light wavelength. 展开更多
关键词 inorganic compounds glass ceramics crystallization behavior microstructure characterization
在线阅读 下载PDF
Microstructure Evolution and Mechanical Properties of a SMATed Mg Alloy under In Situ SEM Tensile Testing 被引量:6
17
作者 Xiaowei Liu Yong Liu +2 位作者 Bin Jin Yang Lu Jian Lu 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2017年第3期224-230,共7页
Surface mechanical attrition treatment(SMAT) has been recently applied to bulk polycrystalline magnesium(Mg) alloys with gradient grain size distribution from the impact surface to inside matrix, hence effectively... Surface mechanical attrition treatment(SMAT) has been recently applied to bulk polycrystalline magnesium(Mg) alloys with gradient grain size distribution from the impact surface to inside matrix, hence effectively improving the alloys' mechanical performances. However, in-depth understanding of their mechanical property enhancement and grain size-dependent fracture mechanism remains unclear. Here,we demonstrated the use of in situ micro-tensile testing inside a high resolution scanning electron microscope(SEM) to characterize the microstructure evolution, in real time, of SMATed Mg alloy AZ31 samples with different grain sizes of ~10 μm('coarse-grain sample') and ~5 μm('fine-grain sample'), respectively, and compared the results with those of a raw Mg alloy AZ31. The quantitative tensile tests with in situ SEM imaging clearly showed that fracture of ‘fine-grain sample' was dominated by intergranular cracks,while both trans-granular and intergranular cracks led to the final failure of the ‘coarse-grain samples'.It is expected that this in situ SEM characterization technique, coupled with quantitative tensile testing method, could be applicable for studying other grain-refined metals/alloys, allowing to optimize their mechanical performances by controlling the grain sizes and their gradient distribution. 展开更多
关键词 Surface mechanical attrition treatment(SMAT) Mg alloy Mechanical property In situ SEM microstructure characterization
原文传递
Effect of extrusion ratios on hardness,microstructure,and crystal texture anisotropy in pure niobium tubes subjected to hydrostatic extrusion 被引量:1
18
作者 Jongbeom LEE Haguk JEONG Sangyong PARK 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2021年第6期1689-1699,共11页
Nb tubes were fabricated through hydrostatic extrusion at extrusion ratios of 3.1 and 6.1 at ambient temperature,and then their microstructure,texture,and Vickers hardness were investigated based on electron back-scat... Nb tubes were fabricated through hydrostatic extrusion at extrusion ratios of 3.1 and 6.1 at ambient temperature,and then their microstructure,texture,and Vickers hardness were investigated based on electron back-scattered diffraction(EBSD)data.The fraction of low-angle boundaries(LABs)largely decreased with a sharp decrease in mean grain sizes after hydrostatic extrusion and was not proportional to extrusion ratios,assuming that mixed-asymmetrical junctions forming LABs dissociate at high extrusion ratios from the external stress(>981 MPa)with thermal activation by the generated heat.The correlation between grain size and Vickers hardness followed the Hall−Petch relationship despite the texture gradient of theá111ñcyclic fiber textural microstructure at low extrusion ratios and theá100ñtrue fiber textural microstructure at high extrusion ratios.The increase in hydrostatic pressure on the Nb tubes contributed to texture evolution in terms of extrusion ratios due to the difference between{110}<111>and{112}<111>components based on EBSD data. 展开更多
关键词 niobium tube hydrostatic extrusion microstructure characterization mechanical properties texture evolution
在线阅读 下载PDF
Microstructural Characterization of Pure Titanium Treated by Laser Surface Treatment Under Different Processing Parameters 被引量:1
19
作者 Can Huang Jian Tu +4 位作者 Yu-Ren Wen Zhi Hu Zhi-Ming Zhou An-Ping Dong Guo-Liang Zhu 《Acta Metallurgica Sinica(English Letters)》 SCIE EI CAS CSCD 2018年第3期321-328,共8页
Advanced characterization techniques are utilized to investigate the effect of laser surface treatment on microstructural evolution of pure titanium(Ti).The results show that there are three distinctly different typ... Advanced characterization techniques are utilized to investigate the effect of laser surface treatment on microstructural evolution of pure titanium(Ti).The results show that there are three distinctly different types of microstructure from surface to substrate in Ti samples,including phase transformation and solidification microstructure in zone I(melting zone);insufficient recrystallization grains with residual a martensitic plates in zone II(heat-affected zone,HAZ);fully recrystallization microstructure in zone III(base metal,BM).The hardness evolution profiles under different laser treatment parameters are similar.The highest hardness in MZ is ascribed to α plate,while the lowest hardness value in HAZ is due to the insufficiently recrystallized grains.The metallurgical process on the laser-modified Ti samples is systematically discussed in this work. 展开更多
关键词 Laser surface treatment microstructure characterization TITANIUM
原文传递
Microstructural homogeneity and properties of TC4 titanium alloy ingots produced via electron-beam cold hearth melting
20
作者 WANG Meichen CHU Shuangjie +2 位作者 LIANG Gaofei ZHANG Qifei MAO Bo 《Baosteel Technical Research》 2025年第3期41-48,共8页
TC4 titanium alloy(Ti-6Al-4V),known for its excellent specific strength,corrosion resistance,and weldability,is extensively applied in aerospace,marine engineering,and advanced manufacturing.This study focuses on the ... TC4 titanium alloy(Ti-6Al-4V),known for its excellent specific strength,corrosion resistance,and weldability,is extensively applied in aerospace,marine engineering,and advanced manufacturing.This study focuses on the microstructural uniformity and mechanical properties of TC4 ingots fabricated via the electron-beam cold hearth melting(EBCHM)process.A comprehensive analysis was performed using optical microscopy,scanning electron microscopy,electron backscatter diffraction,and energy-dispersive spectroscopy to investigate the ingot’s morphology,α-phase lamellar structure,and elemental distribution.Mechanical characterization included tensile testing,and microhardness and impact toughness assessments.Results reveal that EBCHM produces a well-defined and homogeneous microstructure,with the averageαlamellae thickness varying between 1.53 and 1.71μm and minimal fluctuations across the ingot regions,indicating high process consistency.Major alloying elements(Al and V)and impurity elements(O,N,H,C,and Fe)are evenly distributed,with no observable macrosegregation.The mechanical properties are stable and reliable,with a yield strength of 694.6-701.2 MPa,a tensile strength of 711.1-716.6 MPa,an elongation of 3.35%-3.84%,and an average impact toughness of 94.7 J/cm^(2).These results provide valuable data and technical references for the application of EBCHM in manufacturing premium-quality Ti-6Al-4V ingots. 展开更多
关键词 TC4 titanium alloy EBCHM microstructural characterization mechanical performance HOMOGENEITY
在线阅读 下载PDF
上一页 1 2 4 下一页 到第
使用帮助 返回顶部