期刊文献+
共找到77,026篇文章
< 1 2 250 >
每页显示 20 50 100
Revealing the solidification microstructure evolution and strengthening mechanisms of additive-manufactured W-FeCrCoNi alloy:Experiment and simulation 被引量:1
1
作者 Yuan Yuan Yong Han +6 位作者 Kai Xu Sisi Tang Yaohua Zhang Yaozha Lv Yihan Yang Xue Jiang Keke Chang 《Journal of Materials Science & Technology》 2025年第1期302-313,共12页
Tungsten heavy alloys(WHAs)prepared using laser additive manufacturing(AM)exhibit intricate ge-ometries,albeit with limited mechanical properties.Here we designed a high-strength WHA featuring a FeCrCoNi high entropy ... Tungsten heavy alloys(WHAs)prepared using laser additive manufacturing(AM)exhibit intricate ge-ometries,albeit with limited mechanical properties.Here we designed a high-strength WHA featuring a FeCrCoNi high entropy alloy(HEA)binder via the laser metal deposition(LMD)technique.Due to the distinctive thermal cycle and rapid cooling rate,the as-deposited alloys exhibit microstructures with hy-poeutectic,eutectic-like,and spot-like characteristics.To elucidate this phenomenon,the solidification paths were delineated and analyzed by combining microstructural characterization and phase equilib-rium simulation.Theμphase precipitated out from the supersaturated solid solution,thereby nucleating massive dislocations on the FeCrCoNi matrix to increase the work hardening rate.Furthermore,theμphase formed an ultrafine intermetallic compound(IMC)layer around the W grain,reducing the hole or crack between the W grain and FeCrCoNi matrix.Attributed to the precipitation strengthening,the solid solution of the FeCrCoNi binder,along with the load-bearing strength of W,the developed alloy achieved ultrahigh compressive stress and strain of 2047 MPa and 32%respectively at room temperature.These findings contribute valuable insights to the advancement of additive manufacturing for tungsten alloys,leveraging their excellent properties. 展开更多
关键词 Tungsten heavy alloy Laser metal deposition High entropy alloy binder Strength Solidification microstructure
原文传递
Microstructures,mechanical properties,and strengthening mechanisms of the(NbMoTa)_(100−x)C_(x) refractory medium-entropy alloys 被引量:1
2
作者 Xueqian Gou Ruqing Cao +2 位作者 Weihua Zhou Zheling Shen Yi Li 《Journal of Materials Science & Technology》 2025年第11期105-119,共15页
Refractory high/medium-entropy alloys(RH/MEAs)are known for their outstanding performance at el-evated temperatures;however,they usually exhibit poor room-temperature plasticity,which can be at-tributed to the non-uni... Refractory high/medium-entropy alloys(RH/MEAs)are known for their outstanding performance at el-evated temperatures;however,they usually exhibit poor room-temperature plasticity,which can be at-tributed to the non-uniform deformation that occurs at room temperature.Once cracks nucleate,they will rapidly propagate into vertical splitting cracks.Here,we introduce multiple phases including FCC and HCP phases into the NbMoTa RMEA via appropriate addition of carbon.The results show that multiple-phase synergy effectively suppresses non-uniform deformation,thereby delaying the onset of vertical splitting cracks.An optimal combination of compressive strength-plasticity is achieved by the(NbMoTa)_(92.5)C_(7.5) alloy.The significant improvement in room-temperature mechanical properties can be attributed to its hierarchical microstructure:in the mesoscale,the BCC matrix is divided by eutectic structures;while at the microscale,the BCC matrix is further refined by abundant lath-like FCC precipitates.The FCC precip-itates contain high-density stacking faults,acting as a dislocation source under compressive loading.The HCP phase in the eutectic microstructures,in turn,acts as a strong barrier to dislocation movement and simultaneously increases the dislocation storage capacity.These findings open a new route to tailor the microstructure and mechanical properties of RH/MEAs. 展开更多
关键词 Refractory medium-entropy alloys Carbon microstructureS Mechanical properties Strengthening mechanisms
原文传递
Effect of tantalum doping on the microstructure and photoelectrical properties of transparent conductive zinc oxide films
3
作者 Kai Yi Hongxu Jiang +3 位作者 Yanbo Cai Guangwei Wang Fei Liu Deliang Wang 《中国科学技术大学学报》 北大核心 2025年第4期49-57,48,I0002,共11页
ZnO thin films with varying Ta concentrations were fabricated through magnetron sputtering.The crystallinity and surface morphology of the ZnO films are significantly influenced by the incorporation of Ta,as evidenced... ZnO thin films with varying Ta concentrations were fabricated through magnetron sputtering.The crystallinity and surface morphology of the ZnO films are significantly influenced by the incorporation of Ta,as evidenced by the X-ray diffraction and scanning electron microscopy results.The lattice constants,as determined by X-ray diffraction,contradict the disparity in Ta and Zn ion radii,which is attributed to the impact of interstitial defects.This inconsistency introduces variations in carrier concentration in this experiment compared with prior studies.Subsequent exploration of the luminescent characteristics and emission mechanism of defect levels in Ta-doped ZnO films was conducted through photoluminescence.Furthermore,the factors influencing the bandgap are discussed. 展开更多
关键词 tantalum-doped zinc oxide RF magnetron sputtering microstructure PHOTOLUMINESCENCE
在线阅读 下载PDF
Fracture mechanisms of CGHAZ for Mg and Ca–Mg deoxidized HSLA steels after HHIW based on microstructures, crack behaviors and mechanical properties
4
作者 Liang Wang Jian Yang +3 位作者 Yin-hui Zhang Yan-li Chen Yu-qi Zhang Long-yun Xu 《Journal of Iron and Steel Research International》 2025年第10期3587-3606,共20页
The fracture mechanisms of coarse-grained heat-affected zone(CGHAZ)for Mg and Mg–Ca deoxidized high-strength low-alloy(HSLA)steels after high heat input welding(HHIW)were investigated based on the microstructures,cra... The fracture mechanisms of coarse-grained heat-affected zone(CGHAZ)for Mg and Mg–Ca deoxidized high-strength low-alloy(HSLA)steels after high heat input welding(HHIW)were investigated based on the microstructures,crack behaviors and mechanical properties.Compared to Mg–Ca steel,the proportion of intergranular acicular ferrites(IAFs)and polygonal ferrites(PFs)in Mg steel increases from 59.97%to 90.16%.The high-angle grain boundaries(HAGBs)and geometrically necessary dislocations density increase from 55.5%and 4.30×10^(14) m^(-2)to 70.4%and 5.48×10^(14) m^(–2),respectively,while effective grain size decreases from 9.46 to 8.12μm.The area fraction of radial zone in Mg steel decreases from 80.8%to 37.7%and cleavage plane is smaller with more curved and finer tearing ridges.The inclusions distributed at the center of cleavage planes and along river lines can serve as crack initiation sites.The zigzag pattern of primary crack propagation path has width of 476μm and the length of secondary cracks remains below 10μm.These cracks are deflected or arrested by IAFs,PFs and HAGBs,and tend to propagate along{110}plane family.These factors contribute to superior overall mechanical properties of Mg steel,especially increasing low-temperature impact toughness from 23 to 175 J. 展开更多
关键词 microstructure Mechanical property Crack behavior Fracture mechanism Coarse-grained heat-affected zone
原文传递
Microstructure and microwave surface resistance of YBCO films deposited under different oxygen pressures
5
作者 Zhi-Bo Sheng Fu-Cong Chen +8 位作者 Pei-Yu Xiong Qi-Ru Yi Jie Yuan Yu Chen Yue-Liang Gu Kui Jin Huan-Hua Wang Xiao-Long Li Chen Gao 《Chinese Physics B》 2025年第4期486-492,共7页
YBa_(2)Cu_(3)O_(7-x)(YBCO)films with low microwave surface resistance(RS)are essential for high temperature superconducting microwave devices.The oxygen pressure during deposition has been found to influence RS signif... YBa_(2)Cu_(3)O_(7-x)(YBCO)films with low microwave surface resistance(RS)are essential for high temperature superconducting microwave devices.The oxygen pressure during deposition has been found to influence RS significantly.In this work,we deposited highly c-axis aligned YBCO films on single crystal MgO(001)substrates under different oxygen pressures via pulsed laser ablation.Their detailed microstructure was characterized with three-dimensional reciprocal space mapping(3D-RSM)method and their microwave surface resistance was also measured with resonant cavity perturbation method.We found that the variation of oxygen pressure can affect film microstructure,including grain orientation distribution and the concentration of crystal defects.The microstructure modulation can explain RS dependence on the oxygen pressure. 展开更多
关键词 microstructure microwave surface resistance reciprocal space mapping YBCO films
原文传递
Microstructure evolution and coercivity enhancement mechanisms of Ga-doped Nd-Ce-Fe-B sintered magnets upon post-sinter annealing
6
作者 Rong-Shun Lai Qiang Ma +3 位作者 Hai-Bo Xu Yang-Yang Zhang Zhi-Bin Li Bao-Gen Shen 《Rare Metals》 2025年第4期2629-2643,共15页
The low coercivity is the major factor inhibiting the large-scale commercial utilization of Nd-Ce-Fe-B sintered magnets.In this work,we achieved a record-high coercivity of 15.04 kOe in Ga-doped Nd-Ce-Fe-B sintered ma... The low coercivity is the major factor inhibiting the large-scale commercial utilization of Nd-Ce-Fe-B sintered magnets.In this work,we achieved a record-high coercivity of 15.04 kOe in Ga-doped Nd-Ce-Fe-B sintered magnets with 30 wt%Ce replacing Nd,demonstrating enormous potential.The Ga-doped Nd-Ce-Fe-B magnets with higher boron(HB)and lower boron(LB)content are designed.The coercivity of the HB magnet increases slightly from 10.80 to 12.26 kOe after annealing,attributed to the optimized distribution of grain boundary(GB)phases.In contrast,the coercivity of the LB magnet remarkably increases from 8.13 to 15.04 kOe after annealing.Microstructural observations indicate that the narrow GB phase in the as-sintered magnet is rich in Fe,and the strong exchange coupling of adjacent grains resulted in low coercivity.The evolution of Ga-rich phases reveals a potential formation mechanism of the RE_(6)Fe_(13)Ga phase,that is the RE-Fe amorphous phase and REGa phase in the as-sintered magnet combine to form the RE_(6)Fe_(13)Ga phase and RE-Ga amorphous phase during post-sinter annealing(RE:rare earth).Moreover,the GB phase of the annealed magnet transforms into a Fe-lean phase with a thickness of 16.4 nm.Magnetization and demagnetization behavior characterizations reveal that the exchange decoupling of adjacent grains induced by the optimized GB phases is the main reason for the remarkable coercivity enhancement,which is also validated by micromagnetic simulations. 展开更多
关键词 Nd-Ce-Fe-B sintered magnets Ga-doped microstructures COERCIVITY Micromagnetic simulations
原文传递
Microstructure Evolution and Fracture Mechanisms in Electron Beam Welded Joint of Ti-6Al-4V ELI Alloy Ultra-thick Plates
7
作者 F.S.Li L.H.Wu +5 位作者 Y.Kan H.B.Zhao D.R.Ni P.Xue B.L.Xiao Z.Y.Ma 《Acta Metallurgica Sinica(English Letters)》 2025年第8期1317-1330,共14页
It is rather difficult for titanium alloy ultra-thick plates to achieve superior weld formation and excellent mechanical properties along the weld penetration direction due to the large fluctuations of the molten pool... It is rather difficult for titanium alloy ultra-thick plates to achieve superior weld formation and excellent mechanical properties along the weld penetration direction due to the large fluctuations of the molten pool,largely limiting their engineering application.In this study,106-mm-thick Ti-6Al-4V ELI alloy plates were successfully butt welded via electron beam welding(EBW).The defect-free EBW joint with full penetration was obtained.The precipitated secondary α(α_(s))in heat affected zone(HAZ),αlamellae in fusion line(FL)and α′martensite in fusion zone(FZ)increased the α_(s)/β,α/β and α′/β interfaces,respectively,resulting in the higher microhardness and impact energy values(57 J in the HAZ,62 J in the FL and 51.9 J in the FZ)than those in the base material(BM).The impact energy of the joint in this study was higher than that for Ti-6Al-4V ELI alloy joints as reported,which was mainly attributed to the formation of the relatively thickerαphase and finer interlamellar spacing in this study,enhancing the resistance to crack propagation.Furthermore,the average fracture toughness(90.2 MPa m^(1/2))of the FZ was higher than that of the BM(74.2 MPa m^(1/2)).This study provides references for the welding application of titanium alloy ultra-thick plates in the manufacture of large-sized components. 展开更多
关键词 Ti-6Al-4V ELI alloy Electron beam welding microstructure Mechanical properties
原文传递
Microstructural evolution and dynamic recrystallization mechanisms of additively manufactured TiAl alloy with heterogeneous microstructure during hot compression 被引量:3
8
作者 Hui TAO Hui-zhong LI +5 位作者 Jia-hui LI Li WANG Wei-wei HE Xiao-fen TAN Rui ZHOU Xiao-peng LIANG 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2024年第10期3208-3220,共13页
Microstructural evolution and dynamic recrystallization(DRX)mechanisms of a Ti-48Al-2Cr-2Nb(at.%)alloy prepared by selective electron beam melting(SEBM)during hot deformation at 1150℃and 0.1 s^(-1)were investigated b... Microstructural evolution and dynamic recrystallization(DRX)mechanisms of a Ti-48Al-2Cr-2Nb(at.%)alloy prepared by selective electron beam melting(SEBM)during hot deformation at 1150℃and 0.1 s^(-1)were investigated by hot compression tests,optical microscope(OM),scanning electron microscope(SEM),electron back-scattered diffraction(EBSD)and transmission electron microscope(TEM).The results show that the initial microstructure of the as-SEBMed alloy exhibits layers of coarseγgrains and fineγ+α_(2)+(α_(2)/γ)lamellar mixture grains alternately along the building direction.During the early stage of hot deformation,deformation twins tend to form within the coarse grains,facilitating subsequent deformation,and a small number of DRX grains appear in the fine-grained regions.With the increase of strain,extensive DRX grains are formed through different DRX mechanisms in both coarse and fine-grained regions,involving discontinuous dynamic recrystallization mechanism(DDRX)in the fine-grained regions and a coexistence of DDRX and continuous dynamic recrystallization(CDRX)in the coarsegrained regions. 展开更多
关键词 TiAl alloy selective electron beam melting heterogeneous microstructure discontinuous dynamic recrystallization(DDRX) continuous dynamic recrystallization(CDRX)
在线阅读 下载PDF
MEMS气体传感器发展现状与对策
9
作者 苏铮 邢志鹏 +2 位作者 钟一红 许梦雪 孙旭辉 《传感技术学报》 北大核心 2025年第9期1533-1539,共7页
新型MEMS气体传感器具有功耗低、体积小、灵敏度高、选择性好、集成度高等优点而被广泛应用。随着物联网、微机电系统技术与人工智能的快速发展,利用MEMS气敏传感阵列与人工智能算法构建的人工嗅觉技术在更多的领域中发挥重要作用,实现... 新型MEMS气体传感器具有功耗低、体积小、灵敏度高、选择性好、集成度高等优点而被广泛应用。随着物联网、微机电系统技术与人工智能的快速发展,利用MEMS气敏传感阵列与人工智能算法构建的人工嗅觉技术在更多的领域中发挥重要作用,实现气体传感器从“功能实现”到“性能提升”到“智能化”的发展路线。从MEMS气体传感器的种类、气敏材料、传感机理及应用等方面描述了其研究现状,并聚焦MEMS气体传感器现存的问题,提出了未来的发展方向及相应对策。 展开更多
关键词 MEms气体传感器 微热板 传感器微结构原理 策略
在线阅读 下载PDF
Macro-mechanics and Microstructure of Nanomaterial-modified Geopolymer Concrete: A Comprehensive Review 被引量:1
10
作者 WANG Tao FAN Xiangqian +1 位作者 GAO Changsheng QU Chiyu 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2025年第1期204-214,共11页
We have described in detail the effects of nano-SiO_(2),nano-CaCO_(3),carbon nanotubes,and nano-Al_(2)O_(3) on geopolymer concrete from the perspectives of macro mechanics and microstructure.The existing research resu... We have described in detail the effects of nano-SiO_(2),nano-CaCO_(3),carbon nanotubes,and nano-Al_(2)O_(3) on geopolymer concrete from the perspectives of macro mechanics and microstructure.The existing research results show that the mechanism of nano-materials on geopolymer concrete mainly includes the filling effect,nucleation effect,and bridging effect,the appropriate amount of nano-materials can be used as fillers to reduce the porosity of geopolymer concrete,and can also react with Ca(OH)2 to produce C-S-H gel,thereby improving the mechanical properties of geopolymer concrete.The optimum content of nano-SiO_(2) is between 1.0%and 2.0%.The optimum content of nano-CaCO_(3) is between 2.0%and 3.0%.The optimum content of carbon nanotubes is between 0.1%and 0.2%.The optimum content of nano-Al_(2)O_(3) is between 1.0%and 2.0%.The main problems existing in the research and application of nanomaterial-modified geopolymer concrete are summarized,which lays a foundation for the further application of nanomaterial in geopolymer concrete. 展开更多
关键词 NANOMATERIALS low carbon geopolymer concrete macro-mechanics microstructure
原文传递
Microstructure and Wear/corrosion Resistance of Stainless Steel Laser-alloyed with Mn+W_(2)C, Mn+NiWC and Mn+SiC 被引量:1
11
作者 ZHOU Rui DIAO Xiaogang SUN Yixin 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2025年第1期283-294,共12页
In-situ formed high Mn steel coating reinforced by carbides was formed by laser surface alloying(LSA).Laser alloyed layers on 1Cr18Ni9Ti steel with Mn+W_(2)C(specimen A),Mn+NiWC(specimen B)and Mn+SiC(specimen C)powder... In-situ formed high Mn steel coating reinforced by carbides was formed by laser surface alloying(LSA).Laser alloyed layers on 1Cr18Ni9Ti steel with Mn+W_(2)C(specimen A),Mn+NiWC(specimen B)and Mn+SiC(specimen C)powders were fabricated to improve the wear and corrosion behavior of 1Cr18Ni9Ti steel blades in high speed mixers.Microstructure evolution,phases,element distribution,microhardness,wear and corrosion behavior of the laser alloyed layers were investigated.Results indicated that high Mn steel matrix composites with undissolved W_(2)C,WC and other in-situ formed carbides were formed by LSA with Mn+W_(2)C and Mn+NiWC while SiC totally dissolved into the high Mn matrix when adding Mn+SiC.Ni as the binding phase in Ni-WC powder decreased the crack sensitivity of the alloyed layer as compared with the addition of W_(2)C powder.An improvement in average microhardness was achieved in the matrix in specimen A,B and C,with the value of 615,602 and 277 HV_(0.5),while that of the substrate was 212 HV_(0.5).The increase of microhardness,wear and corrosion resistance is highly corelated to microstructure,formed phases,type and content of carbides,micro-hardness and toughness of the alloyed layers. 展开更多
关键词 laser surface alloying stainless steel carbide type microstructure wear and corrosion resistance
原文传递
Microstructures,Deformation Mechanisms and Seismic Properties of Synkinematic Migmatite from Southeastern Xizang:Insights from the Migmatitic Core of the Ailao Shan-Red River Shear Zone,Western Yunnan,China
12
作者 Weiwei Ma Bo Zhang +2 位作者 Fulong Cai Baoyou Huang Lei Zhang 《Journal of Earth Science》 SCIE CAS CSCD 2024年第4期1149-1169,共21页
Seismic anisotropy originating within the continental crust is commonly used to determine the deformation and kinematic flow within active orogens and is attributed to regionally oriented mica or hornblende grains.How... Seismic anisotropy originating within the continental crust is commonly used to determine the deformation and kinematic flow within active orogens and is attributed to regionally oriented mica or hornblende grains.However,naturally deformed rocks usually contain compositional layers(e.g.,parallel compositional banding).It is necessary to understand how both varying mineral contents and differing intensities of compositional layering influence the seismic properties of the deep crust.In this study,we analyzed the seismic response of migmatitic amphibolite with compositional banding structures.We present the microstructures,fabrics,calculated seismic velocities,and seismic anisotropies of mylonitic amphibolite from a horizontal shear layer preserved within the Ailao Shan-Red River shear zone,southwestern Yunnan,China.The investigated sample is characterized by pronounced centimeter-scale compositional banding.The microstructures and fabrics suggest that migmatitic amphibolite rocks within deep crust may delineate regions of deformation-assisted,channelized,reactive,porous melt flow.The origin of compositional banding in the studied migmatitic amphibolite is attributed primarily to partial melting together with some horizontal shearing deformation.The microfabrics and structures investigated in this study are considered to be typical for the base of active horizontal shear layers in the deep crust of southeastern Xizang.Seismic responses are modeled by using crystal preferred orientations for minerals of the migmatitic amphibolite by applying the Voigt-Reuss-Hill homogenization method.Calculated P-wave and S-wave velocities are largely consistent in the various layers of the migmatite.However,seismic anisotropies of P-wave(AV_(p))and S-wave(AVs)are higher in the melanosomes(AV_(p)=5.6%,AV_(s)=6.83%)than those in the leucosomes and the whole rock(AV_(p)=4.2%–4.6%,AV_(s)=3.1%–3.2%).In addition,there is pronounced,S-wave splitting oblique to the foliation plane in the migmatitic amphibolite.The multiple parallel compositional layers generate marked variation in the geometry of the seismic anisotropy(Vs1 polarization)in the whole rock.Combined with the macroscale geographical orientation of fabrics in the Ailao Shan-Red River shear zone,these compositional banding effects are inferred to generate significant variations in the magnitude and orientation of seismic anisotropy,especially for shear-wave anisotropy(AV_(s))in the deep crust.Hence,our data suggest that layering of various origins(e.g.,shear layers,partial-melting layers,and compositional layers)represents a new potential source of anisotropy within the deep crust. 展开更多
关键词 deformation-assisted melt flow seismic anisotropy microstructure compositional banding MIGMATITE deep crust southeastern Xizang
原文传递
Microstructure,mechanical properties and multiphase synergistic strengthening mechanisms of a novel laser additive manufactured AlNi6TiZr alloy
13
作者 Jiang Bi Liukun Wu +8 位作者 Zeqi Liu Haixiang Wang Shide Li Ji Wang Zhuoyun Yang Nannan Lu Xi Chen Mikhail Dmitrievich Starostenkov Guojiang Dong 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2024年第11期59-69,共11页
In this work,selective laser melting(SLM)process is used to prepare the AlNi6TiZr alloy.By analyzing the printing quality and mechanical properties of the printed specimens with different process parameters,the SLM fo... In this work,selective laser melting(SLM)process is used to prepare the AlNi6TiZr alloy.By analyzing the printing quality and mechanical properties of the printed specimens with different process parameters,the SLM forming window of AlNi6TiZr is obtained.The relative density of the sample printed with 270 W-1100 mm/s(laser energy density:82 J/mm3)reaches 99.7%,exhibiting excellent mechanical properties(yield strength(YS):421.7 MPa;ultimate tensile strength(UTS):480.4 MPa).After an aging treatment of 325 ℃-12 h,the YS and UTS of the sample increased to 494 MPa and 550.7 MPa,respectively.Adding Ni,Ti,and Zr components promoted the generation of multi-phase precipitates in the Al alloy and improved the synergistic strengthening effect of multi-phases.The hard-shell structure(HSS)formed by the Al_(3)Ni phase at the grain boundary significantly strengthened the grain boundary strength.The precipitated Al_(3)(Ti,Zr)phases at the grain boundaries prevent grain growth and dislocation movement.The Al_(3)Ni and Al_(3)(Ti,Zr)phases have good thermal stability that can still maintain excellent enhancement effects at high temperature.AlNi6TiZr alloy has great application prospects in medium and high-temperature environments. 展开更多
关键词 Selective laser melting Al6NiTiZr alloy microstructure Mechanical properties Thermal stability Strengthening mechanism
原文传递
Effect of Hot Working on Microstructures and Mechanical Properties of Gravity-Cast Al-8.3Zn-3.3Cu-2.2Mg HighStrength Aluminum Alloy 被引量:1
14
作者 Qi Yushi Jin Yu +5 位作者 Wei Fangming Du Lanjun Ren Yan Liang Xueqian Chen Gang Du Zhiming 《稀有金属材料与工程》 北大核心 2025年第2期327-336,共10页
The microstructures and mechanical properties of Al-8.3Zn-3.3Cu-2.2Mg alloys prepared via hot extrusion and liquid forging methods were investigated.Results show that based on DEFORM simulation analysis,the optimal ho... The microstructures and mechanical properties of Al-8.3Zn-3.3Cu-2.2Mg alloys prepared via hot extrusion and liquid forging methods were investigated.Results show that based on DEFORM simulation analysis,the optimal hot extrusion parameters are determined as ingot initial temperature of 380°C and extrusion speed of 3 mm/s.The hot-extruded aluminum alloy after T6 heat treatment presents superior mechanical properties with yield strength of 519.6 MPa,ultimate tensile strength of 582.1 MPa,and elongation of 11.0%.Compared with the properties of gravity-cast and liquid-forged alloys,the yield strength of hot-extruded alloy increases by 30.8%and 4.9%,and the ultimate tensile strength improves by 43.5%and 10.2%,respectively.The significant improvement in tensile strength of the hot-extruded alloys is attributed to the elimination of casting defects and the refinement of matrix grain and eutectic phases.In addition,the hot-extruded alloy demonstrates superior plasticity compared with the liquid-forged alloy.This is because severe plastic deformation occurs during hot extrusion,which effectively breaks and disperses the eutectic phases,facilitating the dissolution and precipitation of the second phases and inhibiting the microcrack initiation. 展开更多
关键词 Al-Zn-Cu-Mg alloy hot extrusion liquid forging mechanical properties microstructure
原文传递
Surface-induced Microstructure and Performance Changes in P3HT Ultrathin Films
15
作者 Hong-Tao Shan Jia-Xin He +4 位作者 Bing-Yan Zhu Xue-Ting Cao Ying-Ying Yan Jian-Jun Zhou Hong Huo 《Chinese Journal of Polymer Science》 SCIE EI CAS CSCD 2024年第6期805-814,共10页
In this work,poly(3-hexylthiophene)(P3HT)ultrathin films(P3HT-T)were prepared by spin-coating a dilute P3HT solution(in a toluene:o-dichlorobenzene(Tol:ODCB)blend with a volume ratio of 80:20)with ultrasonication and ... In this work,poly(3-hexylthiophene)(P3HT)ultrathin films(P3HT-T)were prepared by spin-coating a dilute P3HT solution(in a toluene:o-dichlorobenzene(Tol:ODCB)blend with a volume ratio of 80:20)with ultrasonication and the addition of the nucleating agent bicycle[2.2.1]heptane-2,3-dicarboxylic acid disodium salt(HPN-68L)on glass,Si wafers and indium tin oxide(ITO)substrates.The electrical and mechanical properties of the P3HT-T ultrathin films were investigated,and it was found that the conductivity and crack onset strain(COS)were simultaneously improved in comparison with those of the corresponding pristine P3HT film(P3HT-0,without ultrasonication and nucleating agent)on the same substrate,regardless of what substrate was used.Moreover,the conductivity of P3HT-T ultrathin films on different substrates was similar(varying from 3.7 S·cm^(-1)to 4.4 S·cm^(-1)),yet the COS increased from 97%to 138%by varying the substrate from a Si wafer to ITO.Combining grazing-incidence wide-angle X-ray diffraction(GIXRD),UV-visible(UV-Vis)spectroscopy and atomic force microscopy(AFM),we found that the solid order and crystallinity of the P3HT-T ultrathin film on the Si wafer are highest,followed by those on glass,and much lower on ITO.Finally,the surface energy and roughness of three substrates were investigated,and it was found that the polar component of the surface energyγp plays a critical role in determining the crystalline microstructures of P3HT ultrathin films on different substrates.Our work indicates that the P3HT ultrathin film can obviously improve the stretchability and simultaneously retain similar electrical performance when a suitable substrate is chosen.These findings offer a new direction for research on stretchable CP ultrathin films to facilitate future practical applications. 展开更多
关键词 P3HT ultrathin film Substrate Crystalline microstructures Polar component of the surface energy Electrical and stretchable performances
原文传递
Microstructure Analysis of TC4/Al 6063/Al 7075 Explosive Welded Composite Plate via Multi-scale Simulation and Experiment 被引量:1
16
作者 Zhou Jianan Luo Ning +3 位作者 Liang Hanliang Chen Jinhua Liu Zhibing Zhou Xiaohong 《稀有金属材料与工程》 北大核心 2025年第1期27-38,共12页
Because of the challenge of compounding lightweight,high-strength Ti/Al alloys due to their considerable disparity in properties,Al 6063 as intermediate layer was proposed to fabricate TC4/Al 6063/Al 7075 three-layer ... Because of the challenge of compounding lightweight,high-strength Ti/Al alloys due to their considerable disparity in properties,Al 6063 as intermediate layer was proposed to fabricate TC4/Al 6063/Al 7075 three-layer composite plate by explosive welding.The microscopic properties of each bonding interface were elucidated through field emission scanning electron microscope and electron backscattered diffraction(EBSD).A methodology combining finite element method-smoothed particle hydrodynamics(FEM-SPH)and molecular dynamics(MD)was proposed for the analysis of the forming and evolution characteristics of explosive welding interfaces at multi-scale.The results demonstrate that the bonding interface morphologies of TC4/Al 6063 and Al 6063/Al 7075 exhibit a flat and wavy configuration,without discernible defects or cracks.The phenomenon of grain refinement is observed in the vicinity of the two bonding interfaces.Furthermore,the degree of plastic deformation of TC4 and Al 7075 is more pronounced than that of Al 6063 in the intermediate layer.The interface morphology characteristics obtained by FEM-SPH simulation exhibit a high degree of similarity to the experimental results.MD simulations reveal that the diffusion of interfacial elements predominantly occurs during the unloading phase,and the simulated thickness of interfacial diffusion aligns well with experimental outcomes.The introduction of intermediate layer in the explosive welding process can effectively produce high-quality titanium/aluminum alloy composite plates.Furthermore,this approach offers a multi-scale simulation strategy for the study of explosive welding bonding interfaces. 展开更多
关键词 TC4/Al 6063/Al 7075 composite plate explosive welding microstructure analysis multi-scale simulation
原文传递
High-temperature Mo-based metallic glass thin films with tunable microstructure and mechanical behaviors
17
作者 Chenyang Wang Zhifu Zhang +4 位作者 Haofei Wu Xiaodong Wang Kolan Madhav Reddy Pan Liu Shuangxi Song 《Journal of Materials Science & Technology》 CSCD 2024年第31期20-35,共16页
Developing high-temperature metallic glass thin films(MGTFs)with excellent combination properties is crucial for extending the practical applications of metallic glasses.A high-temperature multicomponent Mo-based MGTF... Developing high-temperature metallic glass thin films(MGTFs)with excellent combination properties is crucial for extending the practical applications of metallic glasses.A high-temperature multicomponent Mo-based MGTF with tunable microstructure prepared by single-target magnetron sputtering was presented in this study.Corresponding mechanical behaviors and thermal stability of MGTFs related to microstructure are systemically explored.By adjusting deposition parameters(pressure and power),the microstructure of as-deposited MGTFs can be altered from the dense homogeneous type to the loose nanoglass type.Such structure evolution can be explained by the competition between the surface diffusion and geometric shadowing effect.MGTFs with dense microstructure possess smaller surface roughness,higher hardness,higher Young's modulus,and better wear resistance.Moreover,they also possess higher thermal stability where the fully amorphous structure and smooth surface can be well maintained after vacuum annealing at 1123 K for 30 min.By contrast,the MGTF with nanoglass microstructure shows inferior mechanical properties and thermal stability due to plentiful loose interface regions,providing abundant free volumes during deformation and acting as favorable crystal nucleation sites during annealing.The correlation between the microstructure and properties of as-deposited MGTFs is clarified with the universal scaling law of glasses.The annealing treatment distinctly increases the hardness and Young's modulus of MGTFs.Meanwhile,after annealing,pop-in behaviors occur in the as-annealed MGTFs with dense microstructure but not in the as-annealed MGTF with nanoglass microstructure during the nanoindentation.These phenomena can be rationalized by the annihilation of free volumes during annealing and the evolution of the dynamical variable,shear transition zone,for the plastic deformation in MGTFs. 展开更多
关键词 Metallic glass thin films Magnetron sputtering microstructure Mechanical behavior Thermal stability
原文传递
A review of superplastic magnesium alloys:Focusing on alloying strategy,grain structure control and deformation mechanisms 被引量:2
18
作者 Siqing Wang Min Zha +5 位作者 Hailong Jia Yajie Yang Dawei Wang Cheng Wang Yipeng Gao Hui-Yuan Wang 《Journal of Materials Science & Technology》 2025年第8期303-319,共17页
In response to the urgent demand for lightweight,magnesium(Mg)alloys have garnered considerable attention owing to their low density.Nonetheless,the intrinsic poor room-temperature formability of Mg alloys remains a m... In response to the urgent demand for lightweight,magnesium(Mg)alloys have garnered considerable attention owing to their low density.Nonetheless,the intrinsic poor room-temperature formability of Mg alloys remains a major obstacle in shaping precise complex components,necessitating the development of superplastic Mg alloys.Excellent superplasticity is usually acquired in high-alloyed Mg alloys with enhanced microstructural thermal stability facilitated by abundant optimized second-phase particles.While for cost-effective low-alloyed Mg alloys lacking particles,regulating solute segregation has emerged as a promising approach to achieve superplasticity recently.Moreover,the potential of bimodal-grained Mg alloys for superplastic deformation has been revealed,expanding the options for designing superplastic materials beyond the conventional approach of fine-grained microstructures.This study reviews significant developments in superplastic Mg alloys from the view of alloying strategies,grain structure control and deformation mechanisms,with potential implications for future research and industrial applications of superplastic Mg alloys. 展开更多
关键词 Mg alloys SUPERPLASTICITY Second-phase particles Solute segregation microstructure control
原文传递
Influence of Hot Isostatic Pressing Temperature on Microstructure and Mechanical Properties of Ti-6.5Al-3.5Mo-1.5Zr-0.3Si Alloy 被引量:2
19
作者 X.W.Shang Z.G.Lu +1 位作者 R.P.Guo L.Xu 《Acta Metallurgica Sinica(English Letters)》 2025年第4期627-641,共15页
Hot isostatic pressing (HIP) temperature has a significant impact on the service performance of powder metallurgy titanium alloys. In this study, a high-temperature titanium alloy, Ti-6.5Al-3.5Mo-1.5Zr-0.3Si, was prep... Hot isostatic pressing (HIP) temperature has a significant impact on the service performance of powder metallurgy titanium alloys. In this study, a high-temperature titanium alloy, Ti-6.5Al-3.5Mo-1.5Zr-0.3Si, was prepared under different HIP temperatures (880–1000℃), and the microstructural evolution and mechanical properties were systematically investigated. The results demonstrated that the HIPed alloys were predominantly composed of more than 80 vol.% α phase and a small amount of β phase, and their phase compositions were basically unaffected by the HIP temperatures. Under the typical single-temperature-maintained HIP (STM-HIP) regime, the microstructure of alloy significantly coarsened as the HIP temperature increased, and the alloy strength exhibited an obvious linear negative correlation with the HIP temperature. On the basis of Hall–Petch relation, the prediction model of grain size was established, and the mathematical equation between HIP temperature and grain size (d=M(T_(HIP-N)^(-2))) was deduced. Furthermore, a possible evolution mechanism of microstructure was proposed, which could be divided into the decomposition of initial α′ martensite for as-received powder, formation of the globular α grains in prior particle boundaries (PPBs) region, and precipitation of the platelet α grains in non-PPBs region. For these alloys prepared by the dual-temperature-maintained HIP (DTM-HIP) regime, although their tensile properties were comparable to that of alloy prepared by STM-HIP regime with same high-temperature holding stage, higher proportion of globular α grains occurred due to more recrystallization nucleation during the low-temperature holding stage, which probably provided a solution for improving the dynamic service performance of HIPed alloys. 展开更多
关键词 Powder metallurgy Hot isostatic pressing Titanium alloy Mechanical properties microstructure evolution
原文传递
Solidification modes and delta-ferrite of two types of 316L stainless steels:a combination of as-cast microstructure and HT-CLSM research 被引量:2
20
作者 Yang Wang Chao Chen +5 位作者 Xiao-yu Yang Zheng-rui Zhang Jian Wang Zhou Li Lei Chen Wang-zhong Mu 《Journal of Iron and Steel Research International》 2025年第2期426-436,共11页
In 316L austenitic stainless steel,the presence of ferrite phase severely affects the non-magnetic properties.316L austenitic stainless steel with low-alloy type(L-316L)and high-alloy type(H-316L)has been studied.The ... In 316L austenitic stainless steel,the presence of ferrite phase severely affects the non-magnetic properties.316L austenitic stainless steel with low-alloy type(L-316L)and high-alloy type(H-316L)has been studied.The microstructure and solidification kinetics of the two as-cast grades were in situ observed by high temperature confocal laser scanning microscopy(HT-CLSM).There are significant differences in the as-cast microstructures of the two 316L stainless steel compositions.In L-316L steel,ferrite morphology appears as the short rods with a ferrite content of 6.98%,forming a dual-phase microstructure consisting of austenite and ferrite.Conversely,in H-316L steel,the ferrite appears as discontinuous network structures with a content of 4.41%,forming a microstructure composed of austenite and sigma(σ)phase.The alloying elements in H-316L steel exhibit a complex distribution,with Ni and Mo enriching at the austenite grain boundaries.HT-CLSM experiments provide the real-time observation of the solidification processes of both 316L specimens and reveal distinct solidification modes:L-316L steel solidifies in an FA mode,whereas H-316L steel solidifies in an AF mode.These differences result in ferrite and austenite predominantly serving as the nucleation and growth phases,respectively.The solidification mode observed by experiments is similar to the thermodynamic calculation results.The L-316L steel solidified in the FA mode and showed minimal element segregation,which lead to a direct transformation of ferrite to austenite phase(δ→γ)during phase transformation after solidification.Besides,the H-316L steel solidified in the AF mode and showed severe element segregation,which lead to Mo enrichment at grain boundaries and transformation of ferrite into sigma and austenite phases through the eutectoid reaction(δ→σ+γ). 展开更多
关键词 316L austenitic stainless steel As-cast microstructure High-temperature confocal laser scanning microscopy Solidification mode FERRITE Characterization
原文传递
上一页 1 2 250 下一页 到第
使用帮助 返回顶部