The hot compression curves and deformed microstructures were investigated under various hot deformation conditions in three states:hot isostatic pressing(HIP,A1),HIP+hot extrusion at 1100℃(A2),and HIP+hot extrusion a...The hot compression curves and deformed microstructures were investigated under various hot deformation conditions in three states:hot isostatic pressing(HIP,A1),HIP+hot extrusion at 1100℃(A2),and HIP+hot extrusion at 1150℃(A3).The results show that A2 sample,extruded at 1100℃ with uniform γ+γ′duplex microstructures,demonstrates excellent hot deformation behavior at both 1050 and 1100℃.The true stress-true strain curves of A2 sample maintain a hardening-softening equilibrium over a larger strain range,with post-deformation average grain size of 5μm.The as-HIPed A1 sample and 1150℃ extruded A3 sample exhibit a softening region in deformation curves at 1050℃,and the grain microstructures reflect an incomplete recrystallized state,i.e.combination of fine recrystallized grains and initial larger grains,characterized by a necklace-like microstructure.The predominant recrystallization mechanism for these samples is strain-induced boundary migration.At 1150℃ with a strain rate of 0.001 s^(-1),the influence of the initial microstructure on hot deformation behavior and resultant microstructure is relatively less pronounced,and postdeformation microstructures are fully recrystallized grains.Fine-grained microstructures are conducive to maximizing the hot deformation potential of alloy.By judiciously adjusting deformation regimes,a fine and uniform deformed microstructure can be obtained.展开更多
We have described in detail the effects of nano-SiO_(2),nano-CaCO_(3),carbon nanotubes,and nano-Al_(2)O_(3) on geopolymer concrete from the perspectives of macro mechanics and microstructure.The existing research resu...We have described in detail the effects of nano-SiO_(2),nano-CaCO_(3),carbon nanotubes,and nano-Al_(2)O_(3) on geopolymer concrete from the perspectives of macro mechanics and microstructure.The existing research results show that the mechanism of nano-materials on geopolymer concrete mainly includes the filling effect,nucleation effect,and bridging effect,the appropriate amount of nano-materials can be used as fillers to reduce the porosity of geopolymer concrete,and can also react with Ca(OH)2 to produce C-S-H gel,thereby improving the mechanical properties of geopolymer concrete.The optimum content of nano-SiO_(2) is between 1.0%and 2.0%.The optimum content of nano-CaCO_(3) is between 2.0%and 3.0%.The optimum content of carbon nanotubes is between 0.1%and 0.2%.The optimum content of nano-Al_(2)O_(3) is between 1.0%and 2.0%.The main problems existing in the research and application of nanomaterial-modified geopolymer concrete are summarized,which lays a foundation for the further application of nanomaterial in geopolymer concrete.展开更多
In-situ formed high Mn steel coating reinforced by carbides was formed by laser surface alloying(LSA).Laser alloyed layers on 1Cr18Ni9Ti steel with Mn+W_(2)C(specimen A),Mn+NiWC(specimen B)and Mn+SiC(specimen C)powder...In-situ formed high Mn steel coating reinforced by carbides was formed by laser surface alloying(LSA).Laser alloyed layers on 1Cr18Ni9Ti steel with Mn+W_(2)C(specimen A),Mn+NiWC(specimen B)and Mn+SiC(specimen C)powders were fabricated to improve the wear and corrosion behavior of 1Cr18Ni9Ti steel blades in high speed mixers.Microstructure evolution,phases,element distribution,microhardness,wear and corrosion behavior of the laser alloyed layers were investigated.Results indicated that high Mn steel matrix composites with undissolved W_(2)C,WC and other in-situ formed carbides were formed by LSA with Mn+W_(2)C and Mn+NiWC while SiC totally dissolved into the high Mn matrix when adding Mn+SiC.Ni as the binding phase in Ni-WC powder decreased the crack sensitivity of the alloyed layer as compared with the addition of W_(2)C powder.An improvement in average microhardness was achieved in the matrix in specimen A,B and C,with the value of 615,602 and 277 HV_(0.5),while that of the substrate was 212 HV_(0.5).The increase of microhardness,wear and corrosion resistance is highly corelated to microstructure,formed phases,type and content of carbides,micro-hardness and toughness of the alloyed layers.展开更多
Because of the challenge of compounding lightweight,high-strength Ti/Al alloys due to their considerable disparity in properties,Al 6063 as intermediate layer was proposed to fabricate TC4/Al 6063/Al 7075 three-layer ...Because of the challenge of compounding lightweight,high-strength Ti/Al alloys due to their considerable disparity in properties,Al 6063 as intermediate layer was proposed to fabricate TC4/Al 6063/Al 7075 three-layer composite plate by explosive welding.The microscopic properties of each bonding interface were elucidated through field emission scanning electron microscope and electron backscattered diffraction(EBSD).A methodology combining finite element method-smoothed particle hydrodynamics(FEM-SPH)and molecular dynamics(MD)was proposed for the analysis of the forming and evolution characteristics of explosive welding interfaces at multi-scale.The results demonstrate that the bonding interface morphologies of TC4/Al 6063 and Al 6063/Al 7075 exhibit a flat and wavy configuration,without discernible defects or cracks.The phenomenon of grain refinement is observed in the vicinity of the two bonding interfaces.Furthermore,the degree of plastic deformation of TC4 and Al 7075 is more pronounced than that of Al 6063 in the intermediate layer.The interface morphology characteristics obtained by FEM-SPH simulation exhibit a high degree of similarity to the experimental results.MD simulations reveal that the diffusion of interfacial elements predominantly occurs during the unloading phase,and the simulated thickness of interfacial diffusion aligns well with experimental outcomes.The introduction of intermediate layer in the explosive welding process can effectively produce high-quality titanium/aluminum alloy composite plates.Furthermore,this approach offers a multi-scale simulation strategy for the study of explosive welding bonding interfaces.展开更多
Hot isostatic pressing (HIP) temperature has a significant impact on the service performance of powder metallurgy titanium alloys. In this study, a high-temperature titanium alloy, Ti-6.5Al-3.5Mo-1.5Zr-0.3Si, was prep...Hot isostatic pressing (HIP) temperature has a significant impact on the service performance of powder metallurgy titanium alloys. In this study, a high-temperature titanium alloy, Ti-6.5Al-3.5Mo-1.5Zr-0.3Si, was prepared under different HIP temperatures (880–1000℃), and the microstructural evolution and mechanical properties were systematically investigated. The results demonstrated that the HIPed alloys were predominantly composed of more than 80 vol.% α phase and a small amount of β phase, and their phase compositions were basically unaffected by the HIP temperatures. Under the typical single-temperature-maintained HIP (STM-HIP) regime, the microstructure of alloy significantly coarsened as the HIP temperature increased, and the alloy strength exhibited an obvious linear negative correlation with the HIP temperature. On the basis of Hall–Petch relation, the prediction model of grain size was established, and the mathematical equation between HIP temperature and grain size (d=M(T_(HIP-N)^(-2))) was deduced. Furthermore, a possible evolution mechanism of microstructure was proposed, which could be divided into the decomposition of initial α′ martensite for as-received powder, formation of the globular α grains in prior particle boundaries (PPBs) region, and precipitation of the platelet α grains in non-PPBs region. For these alloys prepared by the dual-temperature-maintained HIP (DTM-HIP) regime, although their tensile properties were comparable to that of alloy prepared by STM-HIP regime with same high-temperature holding stage, higher proportion of globular α grains occurred due to more recrystallization nucleation during the low-temperature holding stage, which probably provided a solution for improving the dynamic service performance of HIPed alloys.展开更多
The characterization techniques were employed like transmission electron microscope,X-ray diffraction and microstructural characterization to investigate microstructural evolution and impact of precipitate-phase preci...The characterization techniques were employed like transmission electron microscope,X-ray diffraction and microstructural characterization to investigate microstructural evolution and impact of precipitate-phase precipitation on strength and toughness of a self-developed 32Si_(2)CrNi_(2)MoVNb steel during the quenching and tempering process.Research outputs indicated that the steel microstructure under the quenching state could be composed of martensite with a high dislocation density,a small amount of residual austenite,and many dispersed spherical MC carbides.In details,after tempering at 200℃,fine needle-shapedε-carbides would precipitate,which may improve yield strength and toughness of the steel.However,as compared to that after tempering at 200℃,the average length of needle-shapedε-carbides was found to increase to 144.1±4 from 134.1±3 nm after tempering at 340℃.As a result,the yield strength may increase to 1505±40 MPa,and the impact absorption energy(V-notch)may also decrease.Moreover,after tempering at 450℃,thoseε-carbides in the steel may transform into coarse rod-shaped cementite,and dislocation recoveries at such high tempering temperature may lead to decrease of strength and toughness of the steel.Finally,the following properties could be obtained:a yield strength of 1440±35 MPa,an ultimate tensile strength of 1864±50 MPa and an impact absorption energy of 45.9±4 J,by means of rational composition design and microstructural control.展开更多
Al-Cu-Mn alloys are widely used to produce automobile components like cylinder heads and engine blocks because of their capability to retain excellent thermal and mechanical characteristics at high temperatures.Howeve...Al-Cu-Mn alloys are widely used to produce automobile components like cylinder heads and engine blocks because of their capability to retain excellent thermal and mechanical characteristics at high temperatures.However,the Al-Cu-Mn-based alloys demonstrate restricted fluidity,leading to casting defects such as shrinkage and incomplete filling.This research investigated the microstructure and fluidity of Al-4.7Cu-1.0Mn-0.5Mg(wt%)alloy with minor cerium(Ce)addition.The as-cast alloys predominantly compriseα-Al matrix,accompanied by the presence of Al_(2)Cu,Al_(6)Mn,and Al_(8)Cu_(4)Ce phases.The influence of adding Ce on the fluidity of the Al-4.7Cu-1.0Mn-0.5Mg alloy was investigated using a trispiral fluidity test mold in this research.The findings suggest that the addition of Ce within the range of 0.1 wt%to 0.5 wt%in the Al-4.7Cu-1.0Mn-0.5Mg alloy results in an enhancement in fluidity.Specifically,the alloy containing 0.4 wt%Ce exhibits a significant increase in fluidity distance,from 349.7 to 485.7 mm.This improvement can be attributed to the reduction in viscosity,the refinement of secondary dendrite arm spacing,and the modification of secondary phase particles.However,a higher concentration of Ce leads to a decrease in fluidity length,potentially due to the formation of Al_(8)Cu_(4)Ce.展开更多
Electrolytic copper foil has gained significant attention as an essential component in lithium-ion batteries(LIBs),printed circuit boards(PCBs),and chip packaging substrates(CPSs)applications.With the advancement of L...Electrolytic copper foil has gained significant attention as an essential component in lithium-ion batteries(LIBs),printed circuit boards(PCBs),and chip packaging substrates(CPSs)applications.With the advancement of LIBs towards higher energy densities and the increasing density of electronic components on circuits,copper foil is required to have demanding properties,such as extremely thin thickness and extremely high tensile strength.This comprehensive review firstly summarizes recent progress on the fabrication of electrolytic copper foil,and the effects of process parameters,cathode substrate,and additives on the electrodeposition behavior,microstructure,and properties of copper foil are discussed in detail.Then the regulation strategies of mechanical properties of electrolytic copper foil are also summarized,including the formation of nanotwins and texture.Furthermore,the recent advances in novel electrolytic copper foils,such as composite foils and extra-thin copper foils,are also overviewed.Lastly,the remaining challenges and perspectives on the further development of electrolytic copper foils are presented.展开更多
WC particles reinforced CoCrFeNiMo high-entropy alloy(HEA)composite coatings were prepared on Cr12MoV steel successfully by laser cladding technology to improve the wear resistance of substrates.Effect of WC content o...WC particles reinforced CoCrFeNiMo high-entropy alloy(HEA)composite coatings were prepared on Cr12MoV steel successfully by laser cladding technology to improve the wear resistance of substrates.Effect of WC content on microstructure and wear property of the composite coatings was studied in detail.Large numbers of carbides with four main types:primary carbide crystals,eutectic structures,massive crystals growing along the periphery of the remaining WC particles and incompletely fused WC particles,were found to exist in the WC/CoCrFeNiMo composite coatings.With increasing WC content,the microhardness of coatings is gradually improved while the average friction coefficients follow the opposite trend due to solid solution strengthening and second phase strengthening effect.The maximum microhardness and minimum friction coefficient are HV_(0.2)689.7 and 0.72,respectively,for the composite coating with 30 wt.%WC,the wear resistance of the substrate is improved significantly,the wear mechanisms are spalling wear and abrasive wear due to their high microhardness.展开更多
This article studies the effects of different Sn contents on the melting characteristics,microstructure,and mechanical properties of brazed joints of low-silver BAg5CuZn-0.3 wt.%La brazing material.A differential ther...This article studies the effects of different Sn contents on the melting characteristics,microstructure,and mechanical properties of brazed joints of low-silver BAg5CuZn-0.3 wt.%La brazing material.A differential thermal analyzer(HCR-1)was used to measure the solid-liquidus temperature of BAg5CuZn-0.3 wt.%La-xSn brazing material.The results show that the addition of Sn element effect-ively reduces the solid-liquidus temperature of BAg5CuZn-0.3 wt.%La brazing material.Microstructural characterization was con-ducted using scanning electron microscopy(SEM),energy dispersive spectroscopy(EDS),X-ray diffraction(XRD),etc.Analysis re-veals that progressive aggregation and precipitation of Cu-Sn intermetallic compounds occur with increasing Sn content,leading to microstructural coarsening.Notably,severe grain coarsening is observed when the Sn content reaches 4 wt.%.Shear testing of the BAg5CuZn-0.3 wt.%La-xSn brazing joints reveals a non-monotonic trend in joint strength:as Sn content increases,the shear strength initially improves but subsequently deteriorates after reaching an optimal value.展开更多
The high-strength Mg-7Sn alloys(wt.%)with a heterogeneous grain structure were prepared by low-temperature extrusion(230°C)with the extrusion ratio of 9:1(9E230)and 17:1(17E230).The two extruded alloys contained ...The high-strength Mg-7Sn alloys(wt.%)with a heterogeneous grain structure were prepared by low-temperature extrusion(230°C)with the extrusion ratio of 9:1(9E230)and 17:1(17E230).The two extruded alloys contained fine dynamic recrystallization(DRX)grains(FG)and coarse un DRX grains(CG).The difference in deformability between CG and FG leads to the formation of heterogeneous grain structure.The average grain size and basal texture intensities increased while the volume fraction of CG decreased with increasing extrusion ratio.Tensile testing results indicated that the extruded 17E230 alloy exhibited higher tensile strengths than 9E230 alloy,whose tensile yield strength(σ_(0.2)),ultimate tensile strengths(σ_(b)),and elongation to failure(ε_(f))were 231.1 MPa,319.5MPa,and 12.54%respectively.The high tensile strengths of the extruded alloy mainly originated from grain refinement,texture strengthening,precipitation strengthening from a great number of nano-scale Mg_(2)Sn phases,solid solution strengthening and hetero-deformation induced(HDI)strengthening,while the good ductility of the alloy was also mainly attributed to grain refinement,activation of the non-basal slip systems and HDI hardening.展开更多
The microstructure evolution and strengthening mechanism of WE54 alloy with different hard-plate rolling(HPR)processes were systematically investigated.The results suggest that the mechanical properties of the as-roll...The microstructure evolution and strengthening mechanism of WE54 alloy with different hard-plate rolling(HPR)processes were systematically investigated.The results suggest that the mechanical properties of the as-rolled alloys are significantly enhanced compared to those of the as-cast alloy.When subjected to three rolling passes at 450℃ and 490℃,grain refinement occurs due to dynamic recrystallization.A mixed-grain structure is formed after a single pass rolling with a substantial reduction(65%)at 490℃.The dynamic recrystallization(DRX)mechanism of the alloy during the HPR includes continuous dynamic recrystallization(CDRX),discontinuous dynamic recrystallization(DDRX),and twin-induced recrystallization(TDRX).The WE54 alloy exhibits the highest strength after three passes of HPR at 450℃,with tensile strength and yield strength of 374 and 323 MPa,respectively.The significant improvement in the mechanical properties of the alloy is primarily attributed to fine-grain strengthening,solid solution strengthening,and dislocation strengthening.展开更多
In cold regions,rock structures will be weakened by freeze-thaw cycles under various water immersion conditions.Determining how water immersion conditions impact rock deterioration under freeze-thaw cycles is critical...In cold regions,rock structures will be weakened by freeze-thaw cycles under various water immersion conditions.Determining how water immersion conditions impact rock deterioration under freeze-thaw cycles is critical to assess accurately the frost resistance of engineered rock.In this paper,freeze-thaw cycles(temperature range of-20℃-20℃)were performed on the sandstones in different water immersion conditions(fully,partially and non-immersed in water).Then,computed tomography(CT)tests were conducted on the sandstones when the freeze-thaw number reached 0,5,10,15,20 and 30.Next,the effects of water immersion conditions on the microstructure deterioration of sandstone under freezethaw cycles were evaluated using CT spatial imaging,porosity and damage factor.Finally,focusing on the partially immersed condition,the immersion volume rate was defined to understand the effects of immersion degree on the freeze-thaw damage of sandstone and to propose a damage model considering the freeze-thaw number and immersion degree.The results show that with increasing freeze-thaw number,the porosities and damage factors under fully and partially immersed conditions increase continuously,while those under non-immersed condition first increase and then remain approximately constant.The most severe freeze-thaw damage occurs in fully immersed condition,followed by partially immersed condition and finally non-immersed condition.Interestingly,the freeze-thaw number and the immersion volume rate both impact the microstructure deterioration of the partially immersed sandstone.For the same freeze-thaw number,the damage factor increases approximately linearly with increasing immersion volume rate,and the increasing immersion degree exacerbates the microstructure deterioration of sandstone.Moreover,the proposed model can effectively estimate the freeze-thaw damage of partially immersed sandstone with different immersion volume rates.展开更多
In 316L austenitic stainless steel,the presence of ferrite phase severely affects the non-magnetic properties.316L austenitic stainless steel with low-alloy type(L-316L)and high-alloy type(H-316L)has been studied.The ...In 316L austenitic stainless steel,the presence of ferrite phase severely affects the non-magnetic properties.316L austenitic stainless steel with low-alloy type(L-316L)and high-alloy type(H-316L)has been studied.The microstructure and solidification kinetics of the two as-cast grades were in situ observed by high temperature confocal laser scanning microscopy(HT-CLSM).There are significant differences in the as-cast microstructures of the two 316L stainless steel compositions.In L-316L steel,ferrite morphology appears as the short rods with a ferrite content of 6.98%,forming a dual-phase microstructure consisting of austenite and ferrite.Conversely,in H-316L steel,the ferrite appears as discontinuous network structures with a content of 4.41%,forming a microstructure composed of austenite and sigma(σ)phase.The alloying elements in H-316L steel exhibit a complex distribution,with Ni and Mo enriching at the austenite grain boundaries.HT-CLSM experiments provide the real-time observation of the solidification processes of both 316L specimens and reveal distinct solidification modes:L-316L steel solidifies in an FA mode,whereas H-316L steel solidifies in an AF mode.These differences result in ferrite and austenite predominantly serving as the nucleation and growth phases,respectively.The solidification mode observed by experiments is similar to the thermodynamic calculation results.The L-316L steel solidified in the FA mode and showed minimal element segregation,which lead to a direct transformation of ferrite to austenite phase(δ→γ)during phase transformation after solidification.Besides,the H-316L steel solidified in the AF mode and showed severe element segregation,which lead to Mo enrichment at grain boundaries and transformation of ferrite into sigma and austenite phases through the eutectoid reaction(δ→σ+γ).展开更多
Tungsten heavy alloys(WHAs)prepared using laser additive manufacturing(AM)exhibit intricate ge-ometries,albeit with limited mechanical properties.Here we designed a high-strength WHA featuring a FeCrCoNi high entropy ...Tungsten heavy alloys(WHAs)prepared using laser additive manufacturing(AM)exhibit intricate ge-ometries,albeit with limited mechanical properties.Here we designed a high-strength WHA featuring a FeCrCoNi high entropy alloy(HEA)binder via the laser metal deposition(LMD)technique.Due to the distinctive thermal cycle and rapid cooling rate,the as-deposited alloys exhibit microstructures with hy-poeutectic,eutectic-like,and spot-like characteristics.To elucidate this phenomenon,the solidification paths were delineated and analyzed by combining microstructural characterization and phase equilib-rium simulation.Theμphase precipitated out from the supersaturated solid solution,thereby nucleating massive dislocations on the FeCrCoNi matrix to increase the work hardening rate.Furthermore,theμphase formed an ultrafine intermetallic compound(IMC)layer around the W grain,reducing the hole or crack between the W grain and FeCrCoNi matrix.Attributed to the precipitation strengthening,the solid solution of the FeCrCoNi binder,along with the load-bearing strength of W,the developed alloy achieved ultrahigh compressive stress and strain of 2047 MPa and 32%respectively at room temperature.These findings contribute valuable insights to the advancement of additive manufacturing for tungsten alloys,leveraging their excellent properties.展开更多
Titanium(Ti)and its alloys are frequently utilized as critical components in a variety of engineering ap-plications because of their high specific strength and excellent corrosion resistance.Compared to conven-tional ...Titanium(Ti)and its alloys are frequently utilized as critical components in a variety of engineering ap-plications because of their high specific strength and excellent corrosion resistance.Compared to conven-tional surface strengthening technologies,laser shock peening(LSP)has increasingly attracted attention from researchers and industries,since it significantly improves the surface strength,biocompatibility,fa-tigue resistance,and anti-corrosion ability of Ti and its alloys.Despite numerous studies that have been carried out to elucidate the effects of LSP on microstructural evolution and mechanical properties of Ti and its alloys in recent years,a comprehensive review of recent advancements in the field of Ti and its alloys subjected to LSP is still lacking.In this review,the standard LSP and the novel process designs of LSP assisted by thermal,cryogenic,electropulsing and magnetic fields are discussed and compared.Microstructural evolution,with focuses on the dislocation dynamics,deformation twinning,grain refine-ment and surface amorphization,during LSP processing of Ti alloys is reviewed.Furthermore,the en-hanced engineering performance of the L SP-processed(L SPed)Ti alloys,including surface hardness,wear resistance,fatigue life and corrosion resistance are summarized.Finally,this review concludes by present-ing an overview of the current challenges encountered in this field and offering insights into anticipated future trends.展开更多
The regulation of sintering temperature in spark plasma sintering enables the achievement of grain refinement,phase control,and performance enhancement in the preparation of AZ91D magnesium alloy.This study investigat...The regulation of sintering temperature in spark plasma sintering enables the achievement of grain refinement,phase control,and performance enhancement in the preparation of AZ91D magnesium alloy.This study investigates the influence of sintering temperature on microstructural evolution and mechanical properties of the AZ91D alloy.Microstructural analysis was conducted using scanning electron microscopy,electron backscatter diffraction,and X-ray diffraction.Microscopic structures and mechanical behaviors were examined through hardness and tensile tests.Elevated sintering temperatures resulted in reduced secondary phase content,leading to a decrease in mechanical performance.The alloy exhibited optimal mechanical properties at 320℃.The nanoparticle coarsening process and particle evolution during sintering were simulated using phase field methods.By optimizing the sintering temperature,precise control over microstructural and textural evolution can be achieved,facilitating the attainment of desired hardness levels and mechanical properties.展开更多
Solution and aging treatment were conducted on the laser directed energy deposition(LDED)-prepared carbon nanotubes(CNTs)-reinforced WE43(CNTs/WE43)layers to optimize their microstructure and surface properties in thi...Solution and aging treatment were conducted on the laser directed energy deposition(LDED)-prepared carbon nanotubes(CNTs)-reinforced WE43(CNTs/WE43)layers to optimize their microstructure and surface properties in this study.The microstructure of the WE43 and CNTs/WE43 layers was systematically compared.The dissolution of divorced eutectics at the grain boundaries was retarded by CNTs during solution treatment.The spot segregation composed of Mg_(24)Y_(5),CNTs,and Zr cores in the solution treated CNTs/WE43 layer presented a slight decreasing in Y content.The grain growth of both types of layers underwent three stages:slow,rapid,and steady-state.The significant inhibitory effect of CNTs on the grain growth of the LDED WE43 matrix was more pronounced than the promoting effect of temperature,resulting in a 47%increase at 510℃ and a 35%increase at 540℃ in the grain growth exponent compared to the WE43 layers at 510℃.During the subsequent aging treatment at 225℃,the precipitation sequences from plate-shaped β″to plate-shaped and globular β′ were observed in both types of layers.CNTs can facilitate an increase in the nucleation rate of precipitates,but without accelerating precipitation hardening rate.The long and short diameters of the precipitates in peak-aged state were decreased by 48.5%and 43.1%by addition of CNTs,respectively.The wear resistance of both the WE43 and CNTs/WE43 layers can be significantly enhanced through solution and aging treatment.The enhancement in wear resistance for the CNTs/WE43 layers is considerably greater than that of the WE43 layers.展开更多
Three types of activators such as sodium hydroxide,calcium oxide and triethanolamine(TEA)are used to establish different activation environments to address the problems associated with the process of activating fly as...Three types of activators such as sodium hydroxide,calcium oxide and triethanolamine(TEA)are used to establish different activation environments to address the problems associated with the process of activating fly ash paste.We conducted mechanical tests and numerical simulations to understand the evolution of microstructure,and used environmental scanning electron microscopy(ESEM)and energy dispersive spectroscopy(EDS)techniques to analyze the microenvironments of the samples.The mechanical properties of fly ash paste under different activation conditions and the changes in the microstructure and composition were investigated.The results revealed that under conditions of low NaOH content(1%-3%),the strength of the sample increased significantly.When the content exceeded 4%,the rate of increase in strength decreased.Based on the results,the optimal NaOH content was identified,which was about 4%.A good activation effect,especially for short-term activation(3-7 d),was achieved using TEA under high doping conditions.The activation effect was poor for long-term strength after 28 days.The CaO content did not significantly affect the degree of activation achieved.The maximum effect was exerted when the content of CaO was 2%.The virtual cement and concrete testing laboratory(VCCTL)was used to simulate the hydration process,and the results revealed that the use of the three types of activators accelerated the formation of Ca(OH)_(2) in the system.The activators also corroded the surface of the fly ash particles,resulting in a pozzolanic reaction.The active substances in fly ash were released efficiently,and hydration was realized.The pores were filled with hydration products,and the microstructure changed to form a new frame of paste filling that helped improve the strength of fly ash paste.展开更多
Refractory high/medium-entropy alloys(RH/MEAs)are known for their outstanding performance at el-evated temperatures;however,they usually exhibit poor room-temperature plasticity,which can be at-tributed to the non-uni...Refractory high/medium-entropy alloys(RH/MEAs)are known for their outstanding performance at el-evated temperatures;however,they usually exhibit poor room-temperature plasticity,which can be at-tributed to the non-uniform deformation that occurs at room temperature.Once cracks nucleate,they will rapidly propagate into vertical splitting cracks.Here,we introduce multiple phases including FCC and HCP phases into the NbMoTa RMEA via appropriate addition of carbon.The results show that multiple-phase synergy effectively suppresses non-uniform deformation,thereby delaying the onset of vertical splitting cracks.An optimal combination of compressive strength-plasticity is achieved by the(NbMoTa)_(92.5)C_(7.5) alloy.The significant improvement in room-temperature mechanical properties can be attributed to its hierarchical microstructure:in the mesoscale,the BCC matrix is divided by eutectic structures;while at the microscale,the BCC matrix is further refined by abundant lath-like FCC precipitates.The FCC precip-itates contain high-density stacking faults,acting as a dislocation source under compressive loading.The HCP phase in the eutectic microstructures,in turn,acts as a strong barrier to dislocation movement and simultaneously increases the dislocation storage capacity.These findings open a new route to tailor the microstructure and mechanical properties of RH/MEAs.展开更多
基金Shenzhen Science and Technology Program(KJZD20230923113900001)Project of Industry and Information Technology Bureau of Shenzhen Municipality(201806071403422960)。
文摘The hot compression curves and deformed microstructures were investigated under various hot deformation conditions in three states:hot isostatic pressing(HIP,A1),HIP+hot extrusion at 1100℃(A2),and HIP+hot extrusion at 1150℃(A3).The results show that A2 sample,extruded at 1100℃ with uniform γ+γ′duplex microstructures,demonstrates excellent hot deformation behavior at both 1050 and 1100℃.The true stress-true strain curves of A2 sample maintain a hardening-softening equilibrium over a larger strain range,with post-deformation average grain size of 5μm.The as-HIPed A1 sample and 1150℃ extruded A3 sample exhibit a softening region in deformation curves at 1050℃,and the grain microstructures reflect an incomplete recrystallized state,i.e.combination of fine recrystallized grains and initial larger grains,characterized by a necklace-like microstructure.The predominant recrystallization mechanism for these samples is strain-induced boundary migration.At 1150℃ with a strain rate of 0.001 s^(-1),the influence of the initial microstructure on hot deformation behavior and resultant microstructure is relatively less pronounced,and postdeformation microstructures are fully recrystallized grains.Fine-grained microstructures are conducive to maximizing the hot deformation potential of alloy.By judiciously adjusting deformation regimes,a fine and uniform deformed microstructure can be obtained.
基金Funded by the National Natural Science Foundation of China(Nos.U23A20672,52171270,51879168)the PI Project of Southern Marine Science and Engineering Guangdong Laboratory(Guangzhou)(GML20240001,GML2024009)。
文摘We have described in detail the effects of nano-SiO_(2),nano-CaCO_(3),carbon nanotubes,and nano-Al_(2)O_(3) on geopolymer concrete from the perspectives of macro mechanics and microstructure.The existing research results show that the mechanism of nano-materials on geopolymer concrete mainly includes the filling effect,nucleation effect,and bridging effect,the appropriate amount of nano-materials can be used as fillers to reduce the porosity of geopolymer concrete,and can also react with Ca(OH)2 to produce C-S-H gel,thereby improving the mechanical properties of geopolymer concrete.The optimum content of nano-SiO_(2) is between 1.0%and 2.0%.The optimum content of nano-CaCO_(3) is between 2.0%and 3.0%.The optimum content of carbon nanotubes is between 0.1%and 0.2%.The optimum content of nano-Al_(2)O_(3) is between 1.0%and 2.0%.The main problems existing in the research and application of nanomaterial-modified geopolymer concrete are summarized,which lays a foundation for the further application of nanomaterial in geopolymer concrete.
文摘In-situ formed high Mn steel coating reinforced by carbides was formed by laser surface alloying(LSA).Laser alloyed layers on 1Cr18Ni9Ti steel with Mn+W_(2)C(specimen A),Mn+NiWC(specimen B)and Mn+SiC(specimen C)powders were fabricated to improve the wear and corrosion behavior of 1Cr18Ni9Ti steel blades in high speed mixers.Microstructure evolution,phases,element distribution,microhardness,wear and corrosion behavior of the laser alloyed layers were investigated.Results indicated that high Mn steel matrix composites with undissolved W_(2)C,WC and other in-situ formed carbides were formed by LSA with Mn+W_(2)C and Mn+NiWC while SiC totally dissolved into the high Mn matrix when adding Mn+SiC.Ni as the binding phase in Ni-WC powder decreased the crack sensitivity of the alloyed layer as compared with the addition of W_(2)C powder.An improvement in average microhardness was achieved in the matrix in specimen A,B and C,with the value of 615,602 and 277 HV_(0.5),while that of the substrate was 212 HV_(0.5).The increase of microhardness,wear and corrosion resistance is highly corelated to microstructure,formed phases,type and content of carbides,micro-hardness and toughness of the alloyed layers.
基金Opening Foundation of Key Laboratory of Explosive Energy Utilization and Control,Anhui Province(BP20240104)Graduate Innovation Program of China University of Mining and Technology(2024WLJCRCZL049)Postgraduate Research&Practice Innovation Program of Jiangsu Province(KYCX24_2701)。
文摘Because of the challenge of compounding lightweight,high-strength Ti/Al alloys due to their considerable disparity in properties,Al 6063 as intermediate layer was proposed to fabricate TC4/Al 6063/Al 7075 three-layer composite plate by explosive welding.The microscopic properties of each bonding interface were elucidated through field emission scanning electron microscope and electron backscattered diffraction(EBSD).A methodology combining finite element method-smoothed particle hydrodynamics(FEM-SPH)and molecular dynamics(MD)was proposed for the analysis of the forming and evolution characteristics of explosive welding interfaces at multi-scale.The results demonstrate that the bonding interface morphologies of TC4/Al 6063 and Al 6063/Al 7075 exhibit a flat and wavy configuration,without discernible defects or cracks.The phenomenon of grain refinement is observed in the vicinity of the two bonding interfaces.Furthermore,the degree of plastic deformation of TC4 and Al 7075 is more pronounced than that of Al 6063 in the intermediate layer.The interface morphology characteristics obtained by FEM-SPH simulation exhibit a high degree of similarity to the experimental results.MD simulations reveal that the diffusion of interfacial elements predominantly occurs during the unloading phase,and the simulated thickness of interfacial diffusion aligns well with experimental outcomes.The introduction of intermediate layer in the explosive welding process can effectively produce high-quality titanium/aluminum alloy composite plates.Furthermore,this approach offers a multi-scale simulation strategy for the study of explosive welding bonding interfaces.
基金support from CAS Project for Young Scientists in Basic Research(YSBR-025)and the Technology Innovation(RCJJ-145-24-39)R.P.Guo acknowledges the financial support from the National Natural Science Foundation of China(No.52401104)+1 种基金the Fundamental Research Program of Shanxi Province(No.202203021221072)the China Postdoctoral Science Foundation(No.2024M753298).
文摘Hot isostatic pressing (HIP) temperature has a significant impact on the service performance of powder metallurgy titanium alloys. In this study, a high-temperature titanium alloy, Ti-6.5Al-3.5Mo-1.5Zr-0.3Si, was prepared under different HIP temperatures (880–1000℃), and the microstructural evolution and mechanical properties were systematically investigated. The results demonstrated that the HIPed alloys were predominantly composed of more than 80 vol.% α phase and a small amount of β phase, and their phase compositions were basically unaffected by the HIP temperatures. Under the typical single-temperature-maintained HIP (STM-HIP) regime, the microstructure of alloy significantly coarsened as the HIP temperature increased, and the alloy strength exhibited an obvious linear negative correlation with the HIP temperature. On the basis of Hall–Petch relation, the prediction model of grain size was established, and the mathematical equation between HIP temperature and grain size (d=M(T_(HIP-N)^(-2))) was deduced. Furthermore, a possible evolution mechanism of microstructure was proposed, which could be divided into the decomposition of initial α′ martensite for as-received powder, formation of the globular α grains in prior particle boundaries (PPBs) region, and precipitation of the platelet α grains in non-PPBs region. For these alloys prepared by the dual-temperature-maintained HIP (DTM-HIP) regime, although their tensile properties were comparable to that of alloy prepared by STM-HIP regime with same high-temperature holding stage, higher proportion of globular α grains occurred due to more recrystallization nucleation during the low-temperature holding stage, which probably provided a solution for improving the dynamic service performance of HIPed alloys.
基金the National Natural Science Foundation of China(Key Program)(52031004).
文摘The characterization techniques were employed like transmission electron microscope,X-ray diffraction and microstructural characterization to investigate microstructural evolution and impact of precipitate-phase precipitation on strength and toughness of a self-developed 32Si_(2)CrNi_(2)MoVNb steel during the quenching and tempering process.Research outputs indicated that the steel microstructure under the quenching state could be composed of martensite with a high dislocation density,a small amount of residual austenite,and many dispersed spherical MC carbides.In details,after tempering at 200℃,fine needle-shapedε-carbides would precipitate,which may improve yield strength and toughness of the steel.However,as compared to that after tempering at 200℃,the average length of needle-shapedε-carbides was found to increase to 144.1±4 from 134.1±3 nm after tempering at 340℃.As a result,the yield strength may increase to 1505±40 MPa,and the impact absorption energy(V-notch)may also decrease.Moreover,after tempering at 450℃,thoseε-carbides in the steel may transform into coarse rod-shaped cementite,and dislocation recoveries at such high tempering temperature may lead to decrease of strength and toughness of the steel.Finally,the following properties could be obtained:a yield strength of 1440±35 MPa,an ultimate tensile strength of 1864±50 MPa and an impact absorption energy of 45.9±4 J,by means of rational composition design and microstructural control.
基金Project supported by the National Natural Science Foundation of China (52171030)the Key Basic Research Project of the Basic Strengthen Program (2021-JCJQ-ZD-043-00)the National Key Research and Development Program of China (2018YFA0702903)。
文摘Al-Cu-Mn alloys are widely used to produce automobile components like cylinder heads and engine blocks because of their capability to retain excellent thermal and mechanical characteristics at high temperatures.However,the Al-Cu-Mn-based alloys demonstrate restricted fluidity,leading to casting defects such as shrinkage and incomplete filling.This research investigated the microstructure and fluidity of Al-4.7Cu-1.0Mn-0.5Mg(wt%)alloy with minor cerium(Ce)addition.The as-cast alloys predominantly compriseα-Al matrix,accompanied by the presence of Al_(2)Cu,Al_(6)Mn,and Al_(8)Cu_(4)Ce phases.The influence of adding Ce on the fluidity of the Al-4.7Cu-1.0Mn-0.5Mg alloy was investigated using a trispiral fluidity test mold in this research.The findings suggest that the addition of Ce within the range of 0.1 wt%to 0.5 wt%in the Al-4.7Cu-1.0Mn-0.5Mg alloy results in an enhancement in fluidity.Specifically,the alloy containing 0.4 wt%Ce exhibits a significant increase in fluidity distance,from 349.7 to 485.7 mm.This improvement can be attributed to the reduction in viscosity,the refinement of secondary dendrite arm spacing,and the modification of secondary phase particles.However,a higher concentration of Ce leads to a decrease in fluidity length,potentially due to the formation of Al_(8)Cu_(4)Ce.
基金supported by the National Key R&D Plan Program of China(No.2021YFB3400800)Henan Key Research and Development Program(No.231111241000)+1 种基金the Joint Fund of Henan Province Science and Technology R&D Program(No.225200810026)Zhongyuan Scholar Workstation Funded Program(No.224400510025).
文摘Electrolytic copper foil has gained significant attention as an essential component in lithium-ion batteries(LIBs),printed circuit boards(PCBs),and chip packaging substrates(CPSs)applications.With the advancement of LIBs towards higher energy densities and the increasing density of electronic components on circuits,copper foil is required to have demanding properties,such as extremely thin thickness and extremely high tensile strength.This comprehensive review firstly summarizes recent progress on the fabrication of electrolytic copper foil,and the effects of process parameters,cathode substrate,and additives on the electrodeposition behavior,microstructure,and properties of copper foil are discussed in detail.Then the regulation strategies of mechanical properties of electrolytic copper foil are also summarized,including the formation of nanotwins and texture.Furthermore,the recent advances in novel electrolytic copper foils,such as composite foils and extra-thin copper foils,are also overviewed.Lastly,the remaining challenges and perspectives on the further development of electrolytic copper foils are presented.
基金Project(2021YFC2801904)supported by the National Key R&D Program of ChinaProject(KY10100230067)supported by the Basic Product Innovation Research Project,China+3 种基金Projects(52271130,52305344)supported by the National Natural Science Foundation of ChinaProjects(ZR2020ME017,ZR2020QE186)supported by the Natural Science Foundation of Shandong Province,ChinaProjects(AMGM2024F11,AMGM2021F10,AMGM2023F06)supported by the Science Fund of Shandong Laboratory of Advanced Materials and Green Manufacturing at Yantai,ChinaProject(KY90200210015)supported by Leading Scientific Research Project of China National Nuclear Corporation(CNNC),China。
文摘WC particles reinforced CoCrFeNiMo high-entropy alloy(HEA)composite coatings were prepared on Cr12MoV steel successfully by laser cladding technology to improve the wear resistance of substrates.Effect of WC content on microstructure and wear property of the composite coatings was studied in detail.Large numbers of carbides with four main types:primary carbide crystals,eutectic structures,massive crystals growing along the periphery of the remaining WC particles and incompletely fused WC particles,were found to exist in the WC/CoCrFeNiMo composite coatings.With increasing WC content,the microhardness of coatings is gradually improved while the average friction coefficients follow the opposite trend due to solid solution strengthening and second phase strengthening effect.The maximum microhardness and minimum friction coefficient are HV_(0.2)689.7 and 0.72,respectively,for the composite coating with 30 wt.%WC,the wear resistance of the substrate is improved significantly,the wear mechanisms are spalling wear and abrasive wear due to their high microhardness.
基金the support from Jinhua Sanhuan Welding Materials Company LimitedSchool of Materials Science and Engineering,Nanjing University of Science and Technology.
文摘This article studies the effects of different Sn contents on the melting characteristics,microstructure,and mechanical properties of brazed joints of low-silver BAg5CuZn-0.3 wt.%La brazing material.A differential thermal analyzer(HCR-1)was used to measure the solid-liquidus temperature of BAg5CuZn-0.3 wt.%La-xSn brazing material.The results show that the addition of Sn element effect-ively reduces the solid-liquidus temperature of BAg5CuZn-0.3 wt.%La brazing material.Microstructural characterization was con-ducted using scanning electron microscopy(SEM),energy dispersive spectroscopy(EDS),X-ray diffraction(XRD),etc.Analysis re-veals that progressive aggregation and precipitation of Cu-Sn intermetallic compounds occur with increasing Sn content,leading to microstructural coarsening.Notably,severe grain coarsening is observed when the Sn content reaches 4 wt.%.Shear testing of the BAg5CuZn-0.3 wt.%La-xSn brazing joints reveals a non-monotonic trend in joint strength:as Sn content increases,the shear strength initially improves but subsequently deteriorates after reaching an optimal value.
基金supported by the Major Science and Technology Project of Gansu Province(Grant No.22ZD6GA008)the National Natural Science Foundation of China(Nos.52261027,52001152 and 51961021)+2 种基金the Open Project of State Key Laboratory for Mechanical Behavior of Materials(20192102)Undergraduate Innovation and Entrepreneurship Training Program(Nos.DC20231482,DC20231188 and DC20231558)Gansu Provincial Excellent Graduate Students“Innovation Star”Program(2022CXZX-394)。
文摘The high-strength Mg-7Sn alloys(wt.%)with a heterogeneous grain structure were prepared by low-temperature extrusion(230°C)with the extrusion ratio of 9:1(9E230)and 17:1(17E230).The two extruded alloys contained fine dynamic recrystallization(DRX)grains(FG)and coarse un DRX grains(CG).The difference in deformability between CG and FG leads to the formation of heterogeneous grain structure.The average grain size and basal texture intensities increased while the volume fraction of CG decreased with increasing extrusion ratio.Tensile testing results indicated that the extruded 17E230 alloy exhibited higher tensile strengths than 9E230 alloy,whose tensile yield strength(σ_(0.2)),ultimate tensile strengths(σ_(b)),and elongation to failure(ε_(f))were 231.1 MPa,319.5MPa,and 12.54%respectively.The high tensile strengths of the extruded alloy mainly originated from grain refinement,texture strengthening,precipitation strengthening from a great number of nano-scale Mg_(2)Sn phases,solid solution strengthening and hetero-deformation induced(HDI)strengthening,while the good ductility of the alloy was also mainly attributed to grain refinement,activation of the non-basal slip systems and HDI hardening.
基金financially supported by the Natural Science Basic Research Program of Shaanxi Province,China(No.2023-JC-QN-0581)Advanced Power Specialty,China(No.YK22C-9)。
文摘The microstructure evolution and strengthening mechanism of WE54 alloy with different hard-plate rolling(HPR)processes were systematically investigated.The results suggest that the mechanical properties of the as-rolled alloys are significantly enhanced compared to those of the as-cast alloy.When subjected to three rolling passes at 450℃ and 490℃,grain refinement occurs due to dynamic recrystallization.A mixed-grain structure is formed after a single pass rolling with a substantial reduction(65%)at 490℃.The dynamic recrystallization(DRX)mechanism of the alloy during the HPR includes continuous dynamic recrystallization(CDRX),discontinuous dynamic recrystallization(DDRX),and twin-induced recrystallization(TDRX).The WE54 alloy exhibits the highest strength after three passes of HPR at 450℃,with tensile strength and yield strength of 374 and 323 MPa,respectively.The significant improvement in the mechanical properties of the alloy is primarily attributed to fine-grain strengthening,solid solution strengthening,and dislocation strengthening.
基金funding support from the National Natural Science Foundation of China(Grant No.12172019).
文摘In cold regions,rock structures will be weakened by freeze-thaw cycles under various water immersion conditions.Determining how water immersion conditions impact rock deterioration under freeze-thaw cycles is critical to assess accurately the frost resistance of engineered rock.In this paper,freeze-thaw cycles(temperature range of-20℃-20℃)were performed on the sandstones in different water immersion conditions(fully,partially and non-immersed in water).Then,computed tomography(CT)tests were conducted on the sandstones when the freeze-thaw number reached 0,5,10,15,20 and 30.Next,the effects of water immersion conditions on the microstructure deterioration of sandstone under freezethaw cycles were evaluated using CT spatial imaging,porosity and damage factor.Finally,focusing on the partially immersed condition,the immersion volume rate was defined to understand the effects of immersion degree on the freeze-thaw damage of sandstone and to propose a damage model considering the freeze-thaw number and immersion degree.The results show that with increasing freeze-thaw number,the porosities and damage factors under fully and partially immersed conditions increase continuously,while those under non-immersed condition first increase and then remain approximately constant.The most severe freeze-thaw damage occurs in fully immersed condition,followed by partially immersed condition and finally non-immersed condition.Interestingly,the freeze-thaw number and the immersion volume rate both impact the microstructure deterioration of the partially immersed sandstone.For the same freeze-thaw number,the damage factor increases approximately linearly with increasing immersion volume rate,and the increasing immersion degree exacerbates the microstructure deterioration of sandstone.Moreover,the proposed model can effectively estimate the freeze-thaw damage of partially immersed sandstone with different immersion volume rates.
基金support of the Research Project Supported by Shanxi Scholarship Council of China(2022-040)"Chunhui Plan"Collaborative Research Project by the Ministry of Education of China(HZKY20220507)+2 种基金National Natural Science Foundation of China(52104338)Applied Fundamental Research Programs of Shanxi Province(202303021221036)Shandong Postdoctoral Science Foundation(SDCX-ZG-202303027,SDBX2023054).
文摘In 316L austenitic stainless steel,the presence of ferrite phase severely affects the non-magnetic properties.316L austenitic stainless steel with low-alloy type(L-316L)and high-alloy type(H-316L)has been studied.The microstructure and solidification kinetics of the two as-cast grades were in situ observed by high temperature confocal laser scanning microscopy(HT-CLSM).There are significant differences in the as-cast microstructures of the two 316L stainless steel compositions.In L-316L steel,ferrite morphology appears as the short rods with a ferrite content of 6.98%,forming a dual-phase microstructure consisting of austenite and ferrite.Conversely,in H-316L steel,the ferrite appears as discontinuous network structures with a content of 4.41%,forming a microstructure composed of austenite and sigma(σ)phase.The alloying elements in H-316L steel exhibit a complex distribution,with Ni and Mo enriching at the austenite grain boundaries.HT-CLSM experiments provide the real-time observation of the solidification processes of both 316L specimens and reveal distinct solidification modes:L-316L steel solidifies in an FA mode,whereas H-316L steel solidifies in an AF mode.These differences result in ferrite and austenite predominantly serving as the nucleation and growth phases,respectively.The solidification mode observed by experiments is similar to the thermodynamic calculation results.The L-316L steel solidified in the FA mode and showed minimal element segregation,which lead to a direct transformation of ferrite to austenite phase(δ→γ)during phase transformation after solidification.Besides,the H-316L steel solidified in the AF mode and showed severe element segregation,which lead to Mo enrichment at grain boundaries and transformation of ferrite into sigma and austenite phases through the eutectoid reaction(δ→σ+γ).
基金financially suppoted by the National Natural Sci-ence Foundation of China(No.52371041).
文摘Tungsten heavy alloys(WHAs)prepared using laser additive manufacturing(AM)exhibit intricate ge-ometries,albeit with limited mechanical properties.Here we designed a high-strength WHA featuring a FeCrCoNi high entropy alloy(HEA)binder via the laser metal deposition(LMD)technique.Due to the distinctive thermal cycle and rapid cooling rate,the as-deposited alloys exhibit microstructures with hy-poeutectic,eutectic-like,and spot-like characteristics.To elucidate this phenomenon,the solidification paths were delineated and analyzed by combining microstructural characterization and phase equilib-rium simulation.Theμphase precipitated out from the supersaturated solid solution,thereby nucleating massive dislocations on the FeCrCoNi matrix to increase the work hardening rate.Furthermore,theμphase formed an ultrafine intermetallic compound(IMC)layer around the W grain,reducing the hole or crack between the W grain and FeCrCoNi matrix.Attributed to the precipitation strengthening,the solid solution of the FeCrCoNi binder,along with the load-bearing strength of W,the developed alloy achieved ultrahigh compressive stress and strain of 2047 MPa and 32%respectively at room temperature.These findings contribute valuable insights to the advancement of additive manufacturing for tungsten alloys,leveraging their excellent properties.
基金supported by the National Key R&D Plan of China(No.2022YFB3705603)the National Natural Science Foundation of China(No.52101046)+1 种基金the Excellent Youth Overseas Project of National Science and Natural Foundation of China,the Baowu Special Metallurgy Cooperation Limited(No.22H010101336)the Medicine-Engineering Interdisciplinary Project of Shanghai Jiao Tong University(No.YG2022QN076).
文摘Titanium(Ti)and its alloys are frequently utilized as critical components in a variety of engineering ap-plications because of their high specific strength and excellent corrosion resistance.Compared to conven-tional surface strengthening technologies,laser shock peening(LSP)has increasingly attracted attention from researchers and industries,since it significantly improves the surface strength,biocompatibility,fa-tigue resistance,and anti-corrosion ability of Ti and its alloys.Despite numerous studies that have been carried out to elucidate the effects of LSP on microstructural evolution and mechanical properties of Ti and its alloys in recent years,a comprehensive review of recent advancements in the field of Ti and its alloys subjected to LSP is still lacking.In this review,the standard LSP and the novel process designs of LSP assisted by thermal,cryogenic,electropulsing and magnetic fields are discussed and compared.Microstructural evolution,with focuses on the dislocation dynamics,deformation twinning,grain refine-ment and surface amorphization,during LSP processing of Ti alloys is reviewed.Furthermore,the en-hanced engineering performance of the L SP-processed(L SPed)Ti alloys,including surface hardness,wear resistance,fatigue life and corrosion resistance are summarized.Finally,this review concludes by present-ing an overview of the current challenges encountered in this field and offering insights into anticipated future trends.
基金supported by the National Natural Science Foundation of China(Nos.52074246,22008224,52275390,52205429,52201146)National Defense Basic Scientific Research Program of China(Nos.JCKY2020408B002,WDZC2022-12)+2 种基金Key Research and Development Program of Shanxi Province(202102050201011,2022ZDYF035)Science and Technology Major Project of Shanxi Province(20191102008,20191102007)Guiding Local Science and Technology Development Projects by the Central Government(YDZJSX2022A025,YDZJSX2021A027).
文摘The regulation of sintering temperature in spark plasma sintering enables the achievement of grain refinement,phase control,and performance enhancement in the preparation of AZ91D magnesium alloy.This study investigates the influence of sintering temperature on microstructural evolution and mechanical properties of the AZ91D alloy.Microstructural analysis was conducted using scanning electron microscopy,electron backscatter diffraction,and X-ray diffraction.Microscopic structures and mechanical behaviors were examined through hardness and tensile tests.Elevated sintering temperatures resulted in reduced secondary phase content,leading to a decrease in mechanical performance.The alloy exhibited optimal mechanical properties at 320℃.The nanoparticle coarsening process and particle evolution during sintering were simulated using phase field methods.By optimizing the sintering temperature,precise control over microstructural and textural evolution can be achieved,facilitating the attainment of desired hardness levels and mechanical properties.
基金supported by the National Natural Science Foundation of China(52005264).
文摘Solution and aging treatment were conducted on the laser directed energy deposition(LDED)-prepared carbon nanotubes(CNTs)-reinforced WE43(CNTs/WE43)layers to optimize their microstructure and surface properties in this study.The microstructure of the WE43 and CNTs/WE43 layers was systematically compared.The dissolution of divorced eutectics at the grain boundaries was retarded by CNTs during solution treatment.The spot segregation composed of Mg_(24)Y_(5),CNTs,and Zr cores in the solution treated CNTs/WE43 layer presented a slight decreasing in Y content.The grain growth of both types of layers underwent three stages:slow,rapid,and steady-state.The significant inhibitory effect of CNTs on the grain growth of the LDED WE43 matrix was more pronounced than the promoting effect of temperature,resulting in a 47%increase at 510℃ and a 35%increase at 540℃ in the grain growth exponent compared to the WE43 layers at 510℃.During the subsequent aging treatment at 225℃,the precipitation sequences from plate-shaped β″to plate-shaped and globular β′ were observed in both types of layers.CNTs can facilitate an increase in the nucleation rate of precipitates,but without accelerating precipitation hardening rate.The long and short diameters of the precipitates in peak-aged state were decreased by 48.5%and 43.1%by addition of CNTs,respectively.The wear resistance of both the WE43 and CNTs/WE43 layers can be significantly enhanced through solution and aging treatment.The enhancement in wear resistance for the CNTs/WE43 layers is considerably greater than that of the WE43 layers.
基金Supported by Yunnan Major Scientific and Technological Projects(No.202403AA080001)National Natural Science Foundation of China(No.52074137)Yunnan Fundamental Research Projects(No.202201AT070151)。
文摘Three types of activators such as sodium hydroxide,calcium oxide and triethanolamine(TEA)are used to establish different activation environments to address the problems associated with the process of activating fly ash paste.We conducted mechanical tests and numerical simulations to understand the evolution of microstructure,and used environmental scanning electron microscopy(ESEM)and energy dispersive spectroscopy(EDS)techniques to analyze the microenvironments of the samples.The mechanical properties of fly ash paste under different activation conditions and the changes in the microstructure and composition were investigated.The results revealed that under conditions of low NaOH content(1%-3%),the strength of the sample increased significantly.When the content exceeded 4%,the rate of increase in strength decreased.Based on the results,the optimal NaOH content was identified,which was about 4%.A good activation effect,especially for short-term activation(3-7 d),was achieved using TEA under high doping conditions.The activation effect was poor for long-term strength after 28 days.The CaO content did not significantly affect the degree of activation achieved.The maximum effect was exerted when the content of CaO was 2%.The virtual cement and concrete testing laboratory(VCCTL)was used to simulate the hydration process,and the results revealed that the use of the three types of activators accelerated the formation of Ca(OH)_(2) in the system.The activators also corroded the surface of the fly ash particles,resulting in a pozzolanic reaction.The active substances in fly ash were released efficiently,and hydration was realized.The pores were filled with hydration products,and the microstructure changed to form a new frame of paste filling that helped improve the strength of fly ash paste.
基金financial support from the Na-tional Natural Science Foundation of China(No.52231006)National Key Research and Development Program of China(No.2017YFB0702003)the National Natural Science Foundation of China(No.51871217).
文摘Refractory high/medium-entropy alloys(RH/MEAs)are known for their outstanding performance at el-evated temperatures;however,they usually exhibit poor room-temperature plasticity,which can be at-tributed to the non-uniform deformation that occurs at room temperature.Once cracks nucleate,they will rapidly propagate into vertical splitting cracks.Here,we introduce multiple phases including FCC and HCP phases into the NbMoTa RMEA via appropriate addition of carbon.The results show that multiple-phase synergy effectively suppresses non-uniform deformation,thereby delaying the onset of vertical splitting cracks.An optimal combination of compressive strength-plasticity is achieved by the(NbMoTa)_(92.5)C_(7.5) alloy.The significant improvement in room-temperature mechanical properties can be attributed to its hierarchical microstructure:in the mesoscale,the BCC matrix is divided by eutectic structures;while at the microscale,the BCC matrix is further refined by abundant lath-like FCC precipitates.The FCC precip-itates contain high-density stacking faults,acting as a dislocation source under compressive loading.The HCP phase in the eutectic microstructures,in turn,acts as a strong barrier to dislocation movement and simultaneously increases the dislocation storage capacity.These findings open a new route to tailor the microstructure and mechanical properties of RH/MEAs.