A typical high-e fficiency solar cell device needs the best lattice matching between different constituent layers to mitigate the open-circuit voltage loss. In the present work, the physical properties of CdS thin fil...A typical high-e fficiency solar cell device needs the best lattice matching between different constituent layers to mitigate the open-circuit voltage loss. In the present work, the physical properties of CdS thin films are investigated where films with 100 nm thickness were fabricated on the different types of substrates viz. soda–lime glass, indium-doped tin oxide(ITO)-and fl uorine-doped tin oxide(FTO)-coated glass substrates, and silicon wafer using electron beam evaporation. The X-ray diffraction patterns confirmed that deposited thin films showed cubic phase and had(111) as predominant orientation where the structural parameters were observed to be varied with nature of substrates. The ohmic behaviour of the CdS films was disclosed by current–voltage characteristics, whereas the scanning electron microscopy micrograph revealed the uniform deposition of the CdS films with the presence of round-shaped grains. The elemental analysis confirmed the CdS films deposition where the Cd/S weight percentage ratio was changed with nature of substrates. The direct energy band gap was observed in the 1.63–2.50 eV range for the films grown on different substrates. The investigated properties of thin CdS layers demonstrated that the selection of substrate(in terms of nature) during device fabrication plays a crucial role.展开更多
Biomass solid fuel(BSF)has emerged as a promising renewable energy source,but its morphological and microstructural properties are crucial in determining their physical,mechanical,and chemical characteristics.This pap...Biomass solid fuel(BSF)has emerged as a promising renewable energy source,but its morphological and microstructural properties are crucial in determining their physical,mechanical,and chemical characteristics.This paper provides an overview of recent research on BSF.The focus is on biomass sources,BSF processing methods,and morphological and microstructural properties,with a special emphasis on energy-related studies.Specific inclusion and exclusion criteria were established for the study to ensure relevance.The inclusion criteria encompassed studies about BSFs and studies investigating the influence of biomass sources and processing methods on the morphological and microstructural properties of solid fuels within the past five years.Various technologies for converting biomass into usable energy were discussed,including gasification,torrefaction,carbonization,hydrothermal carbonization(HTC),and pyrolysis.Each has advantages and disadvantages in energy performance,techno-economics,and climate impact.Gasification is efficient but requires high investment.Pyrolysis produces bio-oil,char,and gases based on feedstock availability.Carbonization generates low-cost biochar for solid fuels and carbon sequestration applications.Torrefaction increases energy density for co-firing with coal.HTC processes wet biomass efficiently with lower energy input.Thermal treatment affects BSF durability and strength,often leading to less durability due to voids and gaps between particles.Hydrothermal carbonization alters surface morphology,creating cavities,pores,and distinctive shapes.Slow pyrolysis generates biochar with better morphological properties,while fast pyrolysis yields biochar with lower porosity and surface area.Wood constitutes 67%of the biomass sources utilized for bioenergy generation,followed by wood residues(5%),agro-residues(4%),municipal solid wastes(3%),energy crops(3%),livestock wastes(3%),and forest residues(1%).Each source has advantages and drawbacks,such as availability,cost,environmental impact,and suitability for specific regions and energy requirements.This review is valuable for energy professionals,researchers,and policymakers interested in biomass solid fuel.展开更多
In this work, low-carbon steel specimens were subjected to the quenching and partitioning process after being partially or fully austenitized to investigate their microstructural evolution and mechanical properties. A...In this work, low-carbon steel specimens were subjected to the quenching and partitioning process after being partially or fully austenitized to investigate their microstructural evolution and mechanical properties. According to the results of scanning electron microscopy and transmission electron microscopy observations, X-ray diffraction analysis, and tensile tests, upper bainite or tempered martensite appears successively in the microstructure with increasing austenitization temperature or increasing partitioning time. In the partially austenitized specimens, the retained austenite grains are carbon-enriched twice during the heat treatment, which can significantly stabilize the phases at room temperature. Furthermore, after partial austenitization, the specimen exhibits excellent elongation, with a maximum elongation of 37.1%. By contrast, after full austenitization, the specimens exhibit good ultimate tensile strength and high yield strength. In the case of a specimen with a yield strength of 969 MPa, the maximum value of the ultimate tensile strength reaches 1222 MPa. During the partitioning process, carbon partitioning and carbon homogenization within austenite affect interface migration. In addition, the volume fraction and grain size of retained austenite observed in the final microstructure will also be affected.展开更多
Microstructural characterization and mechanical properties of as-cast Mg-8Sn-1Al-1Zn-xCu(x=0wt%, 1wt%, 1.5wt% and 2.0wt%) alloys were studied by OM, Pandat software, XRD, SEM, DSC and a standard universal testing ma...Microstructural characterization and mechanical properties of as-cast Mg-8Sn-1Al-1Zn-xCu(x=0wt%, 1wt%, 1.5wt% and 2.0wt%) alloys were studied by OM, Pandat software, XRD, SEM, DSC and a standard universal testing machine. The experimental results indicate that adding Cu to TAZ811 alloy leads to the formation of the AlMgCu and Cu3 Sn phases. Tensile tests indicate that yield strength increases fi rstly and then decreases with increasing Cu content. The alloy with the addition of 1.5wt% Cu exhibits optimal mechanical properties among the studied alloys. The improved mechanical properties can be ascribed to the second phase strengthening and fi ne-grain strengthening mechanisms resulting from the more dispersed second phases and smaller grain size, respectively. The decrease in ultimate tensile strength and elongation of TAZ811-2.0wt% Cu alloy at room temperature is ascribed to the formation of continuous AlMgCu and coarse Mg2 Sn phases in the liquid state.展开更多
In this work, we make the best use of the vanadium element; a series of A1-V-B alloys and VB2/A390 composite alloys were fabricated. For Ak-10V-6B alloy, the grain size of VB2 can be controlled within about 1 μm and ...In this work, we make the best use of the vanadium element; a series of A1-V-B alloys and VB2/A390 composite alloys were fabricated. For Ak-10V-6B alloy, the grain size of VB2 can be controlled within about 1 μm and is distributed uniformly in the AI matrix. Further, it can be found that VB2 promises to be a useful reinforcement particle for piston alloy. The addition of VB2 can improve the mechanical properties of the A390 composite alloys significantly. The results show that with 1 % VB2 addition, A390 composite alloy exhibits the best performance. Compared with the A390 alloy, the coefficient of thermal expansion is 13.2 × 10^-6 K-1, which decreased by 12.6%; the average Brinell hardness can reach 156.5 HB, wear weight loss decreased by 28.9% and ultimate tensile strength at 25℃ (UTS25 ℃) can reach 355 MPa, which increased by 36.5%.展开更多
Notable advancements have been made in the additive manufacturing(AM)of aerospace materials,driven by the needs for integrated components with intricate geometries and small-lot production of high-value components.Nic...Notable advancements have been made in the additive manufacturing(AM)of aerospace materials,driven by the needs for integrated components with intricate geometries and small-lot production of high-value components.Nickel-based superalloys,pivotal materials for high-temperature bearing components in aeroengines,present significant challenges in the fabrication of complex parts due to their great hardness.Huge attention and rapid progress have been garnered in AM processing of nicklebased superalloys,largely owing to its distinct benefits in the freedom of fabrication and reduced manufacturing lifecycle.Despite extensive research into AM in nickel-based superalloys,the corresponding results and conclusions are scattered attributed to the variety of nickel-based superalloys and complex AM processing parameters.Therefore,there is still a pressing need for a comprehensive and deep understanding of the relationship between the AM processing and microstructures and mechanical performance of nickel-based superalloys.This review introduces the processing characteristics of four primary AM technologies utilized for superalloys and summarizes the microstructures and mechanical properties prior to and post-heat treatments.Additionally,this review presents innovative superalloys specifically accommodated to AM processing and offers insights into the material development and performance improvement,aiming to provide a valuable assessment on AM processing of nickel-based superalloys and an effective guidance for the future research.展开更多
Influence of thermomechanical treatments (mill annealing, duplex annealing, solution treatment plus aging and triple annealing) on microstructures and mechanical properties of TC4-DT titanium alloy was investigated....Influence of thermomechanical treatments (mill annealing, duplex annealing, solution treatment plus aging and triple annealing) on microstructures and mechanical properties of TC4-DT titanium alloy was investigated. Results showed that thermomechanical treatments had a significant influence on the microstructure parameters and higher annealing and aging temperature and lower cooling rate led to the decrease of the volume fraction of primaryαand the size of prior-βand the increase of the width of grain boundary αand secondary α. The highest strength was obtained by solution treatment and aging due to a large amount of transformedβand finer grain boundaryαand secondaryαat the expense of slight decrease of elongation and the ultimate strength, yield strength, elongation, reduction of area were 1100 MPa, 1030 MPa, 13%and 53%separately. A good combination of strength and ductility has been obtained by duplex annealing with the above values 940 MPa, 887.5 MPa, 15%and 51%respectively. Analysis between microstructure parameters and tensile properties showed that with the volume fraction of transformedβphase and the prior-βgrain size increasing, the ultimate strength, yield strength and reduction of area increased, but the elongation decreased. While the width of grain boundary α and secondary α showed a contrary effect on the tensile properties. Elimination of grain boundaryαas well as small prior-βgrain size can also improve ductility.展开更多
The effect of arc-ultrasound on microstructures and mechanical properties of SiCp/6061A1 MMCs joints produced by arc-ultrasound plasma arc "in-situ" alloy-welding with different excitation frequencies was investigat...The effect of arc-ultrasound on microstructures and mechanical properties of SiCp/6061A1 MMCs joints produced by arc-ultrasound plasma arc "in-situ" alloy-welding with different excitation frequencies was investigated, in which argon-nitrogen mixture was used as plasma gas, Ti wire as filler and the arc-ultrasound was produced by modulating the plasma arc with high frequency. The results show that arc-ultrasound could refine the new reinforced composites such as TiC, TiN significantly, and improve their distribution greatly. And new phase A13Ti becomes finer and less. The test results of mechanical properties indicate that the maximum tensile strength of welded joints is gained when the excitation frequency is 50 kHz, and the maximum is 225 MPa, raising by about 7% comoared with conventional nlasma arc welding (PAW) (20q MPa).展开更多
Sweet potatoes have become a research focus in recent years, due to their particular nutritional and functional qualities. Considering yoghurt is one of the most popular dairy products, sweet potato supplementation wi...Sweet potatoes have become a research focus in recent years, due to their particular nutritional and functional qualities. Considering yoghurt is one of the most popular dairy products, sweet potato supplementation will play a significant impact on the produced yoghurt texture it will also add attractive orange colour to the final product. The article focused on the replacement of the stabilizers used in the manufacture of yoghurt with sweet potato flour dehydrated in a lab (SPFL) due to its functional features and a less expensive alternative and the improvement of yoghurt colour due to the presence of anthocyanin pigment. In order to reach these goals, experimental yoghurt was fortified with 0, 0.5, 1, 2, and 4 g SPFL/100g cow milk (%) and stored at 4°C for 14 days. The obtained data were then compared with commercial yoghurt samples (CS1, CS2, CS3, and CS4). Sensory evaluation revealed that the 2% SPFL, CS1, and CS3 obtained higher scores than the other treatments. The fat content of the yoghurts was identical whereas, the other physicochemical parameters and water holding capacity (WHC %) levels varied. SPFL supplementation had a significant impact on the rheological properties of yoghurt production, allowing sweet potato flour to replace the industrial stabiliser. Scanning Electron Micrograph (SEM) of yoghurt enriched with SPFL revealed denser and smaller gaps, as well as the presence of sweet potato globules embedded in and attached to the gel matrix. The results obtained in the present research imply that sweet potatoes can be used to produce a kind of cohesive and gummy yoghurt that can be used instead of industrial stabilizers.展开更多
By using real-space recursion method,the energetics of the undoped and Al and/or RE atoms doped 7(1450)〈0001〉 symmetric tilt grain boundaries(GBs)in AZ91 alloys were investigated.Similar calculations were perfor...By using real-space recursion method,the energetics of the undoped and Al and/or RE atoms doped 7(1450)〈0001〉 symmetric tilt grain boundaries(GBs)in AZ91 alloys were investigated.Similar calculations were performed on undoped and doped bulk α Mg for comparison.The results showed that Al atoms segregated at GBs in AZ91 alloys.When RE atoms were added,they also segregated at GBs,and their segregation is stronger than Al atoms'.Therefore,RE atoms retard the segregation of Al atoms.Calculations of interaction energy indicated that Al atoms repelled each other,and could form ordered phase with host Mg atoms.On the contrary to the case of Al,RE atoms attracted each other,they could not form ordered phase with Mg,but could form clusters.Between RE and Al,there existed attractive interaction,and this attractive interaction was the origin of Al11RE3 precipitation.Precipitation of Al11RE3 particles with high melting point and high thermal stability along GB improves high temperature properties of AZ91 alloys.展开更多
The effects of Ca addition on the as-cast microstructure and mechanical properties of the Mg-5Zn-5Sn (mass fraction,%) alloy were investigated.The results indicate that an addition of 0.5%-1.5% (mass fraction) Ca to t...The effects of Ca addition on the as-cast microstructure and mechanical properties of the Mg-5Zn-5Sn (mass fraction,%) alloy were investigated.The results indicate that an addition of 0.5%-1.5% (mass fraction) Ca to the Mg-5Zn-5Sn alloy not only refines the as-cast microstructure of the alloy but also causes the formation of the primary and/or eutectic CaMgSn phases with high thermal stability;an increase in Ca amount from 0.5% to 1.5% (mass fraction) increases the amount and size of the CaMgSn phase.In addition,Ca addition to the Mg-5Zn-5Sn alloy improves not only the tensile properties at room temperature and 150 ℃ but also the creep properties.Among the Ca-containing Mg-5Zn-5Sn alloys,the one added 0.5% (mass fraction) Ca obtains the optimum ultimate tensile strength and elongation at room temperature and 150 ℃,however,the alloy added 1.5% (mass fraction) Ca exhibits the optimum yield strength and creep properties.展开更多
Desired microstructure and surface integrity are critical to achieving the high performance of additively manufactured components.In the present work,the hybrid post-processes of magnetic abrasive finishing(MAF)and po...Desired microstructure and surface integrity are critical to achieving the high performance of additively manufactured components.In the present work,the hybrid post-processes of magnetic abrasive finishing(MAF)and post-heat treatment(HT)were applied to the additively manufactured Inconel718 superalloys.Their hybrid effects and influencing mechanism on the surface quality and mechanical properties of the additively manufactured samples have been studied comparatively.The results show that the MAF process effectively reduces the surface roughness by more than an order of magnitude due to the flexibility and geometric consistency of the magnetic particles and abrasives with the finished surfaces.The proper sequence of MAF and HT obtains enhanced mechanical properties for the homogenized-MAF-aged sample with the yield strength of 1147 MPa,the ultimate tensile strength of 1334 MPa,and the elongation of 22.9%,which exceeds the standard wrought material.The surface integrity,compressive residual stress field,and grain refinement induced by the MAF and subsequent aging heat treatment increase the cracking resistance and delay the fracture failure,which significantly benefits the mechanical properties.The MAF process combined with proper post-heat treatment provides an effective pathway to improve the mechanical properties of additively manufactured materials.展开更多
Electron beam welding (EBW) was applied to a 10-mm-thick plate cut from Ti-6246 compressor disk. The microstructural characteristics, microhardness and room temperature tensile properties were investigated. Microstr...Electron beam welding (EBW) was applied to a 10-mm-thick plate cut from Ti-6246 compressor disk. The microstructural characteristics, microhardness and room temperature tensile properties were investigated. Microstructure observations indicated that there existed plenty of thin needle-like α platelets studding in the matrix of the columnar β grains in the as-welded fusion zone (FZ). Post-weld heat treat- ment (PWHT) led to the precipitation of small secondary α platelets in the β matrix in heat affected zone and FZ. The thickness and the density of α platelets increased as the temperature of PWHT increased from 545 to 645 C. The microhardness across the Ti-6246 EBWjoint exhibited a nonuniform distribution. The hardness increased with the decrease of distance to the weld center, and reached the maximum of 467 HV in FZ when PWHT was carried out at 595 C. All the weldments tested with tension were fractured at the base material (BM) and exhibited a ductile fracture mode. The major deformation barrier in BM was the platelet α/β interfaces, however, the major deformation barrier in FZ was found to be β grain boundaries and secondary α/β interfaces. The BM with thicker platelet α phases had lower strength than the other two zones in the joint, and the BM deformed first and led to fracture in this zone.展开更多
In the present research, the orthogonal experiment was carried out to investigate the influence of different austempering process parameters (i.e. austenitizing temperature and time, and austempering temperature and ...In the present research, the orthogonal experiment was carried out to investigate the influence of different austempering process parameters (i.e. austenitizing temperature and time, and austempering temperature and time) on microstructure and mechanical properties of LZQT500-7 ductile iron dense bars with 172 mm in diameter which were produced by horizontal continuous casting (HCC). The results show that the major factors influencing the hardness of austempered ductile iron (ADI) are austenitizing temperature and austempering temperature. The fraction of retained austenite increases as the austenitizing and austempering temperatures increase. When austenitizing temperature is low, acicular ferrite and retained austenite can be efifciently obtained by appropriately extending the austenitizing time. The proper austmepering time could ensure enough stability of retained austenite and prevent high carbon austenite decomposition. The optimal mechanical properties of ADI can be achieved with the fol owing process parameters: austenitizing temperature and time are 866 °C and 135 min, and austempering temperature and time are 279 °C and 135 min, respectively. The microstructure of ADI under the optimal austempering process consists of ifne acicular ferrite and a smal amount of retained austenite, and the hardness, tensile strength, yield strength, elongation and impact toughness of the bars are HBW 476, 1670 MPa, 1428 MPa, 2.93%and 25.7 J, respectively.展开更多
A series of CoCrFeNb_xNi(x values in molar ratio, x = 0, 0.25, 0.45, 0.5, 0.75, 1.0 and 1.2) high entropy alloys(HEAs) was prepared to investigate the alloying effect of Nb on the microstructures and mechanical pr...A series of CoCrFeNb_xNi(x values in molar ratio, x = 0, 0.25, 0.45, 0.5, 0.75, 1.0 and 1.2) high entropy alloys(HEAs) was prepared to investigate the alloying effect of Nb on the microstructures and mechanical properties. The results indicate that the prepared CoCrFeNb_xNi(x 〉 0) HEAs consist of a simple FCC solid solution phase and a Laves phase. The microstructures of the alloys change from an initial single-phase FCC solid solution structure(x = 0) to a hypoeutectic microstructure(x = 0.25), then to a full eutectic microstructure(x = 0.45) and finally to a hypereutectic microstructure(0.5 〈 x 〈 1.2). The compressive test results show that the Nb0.45(x = 0.45) alloy with a full eutectic microstructure possesses the highest compressive fracture strength of 2558 MPa and a fracture strain of 27.9%. The CoCrFeNi alloy exhibits an excellent compressive ductility, which can reach 50% height reduction without fracture. The Nb0.25 alloy with a hypoeutectic structure exhibits a larger plastic strain of 34.8%. With the increase of Nb content, increased hard/brittle Laves phase leads to a decrease of the plasticity and increases of the Vickers hardness and the wear resistance. The wear mass loss, width and depth of wear scar of the Nb1.2(x = 1.2) alloy with a hypereutectic structure are the lowest among all alloy systems, indicating that the wear resistance of the Nb1.2 alloy is the best one.展开更多
Ti-45Al-9(V, Nb, Y) alloys with four different x=V/Nb (atomic ratio x = 1, 1.5, 2 and 3.5) have been prepared, and the microstructures, properties and hot deformation behaviors were investigated. SEM, XRD and TEM resu...Ti-45Al-9(V, Nb, Y) alloys with four different x=V/Nb (atomic ratio x = 1, 1.5, 2 and 3.5) have been prepared, and the microstructures, properties and hot deformation behaviors were investigated. SEM, XRD and TEM results showed that Ti-45Al-9(V, Nb, Y) alloys were mainly composed of γ, α 2 , and β phase, and the volume fraction of β phase increased with the increase of the atomic ratio of V/Nb. The alloys were featured with lamellar microstructure with β and γ phases locating at the colony boundaries, and some β precipitates appearing at γ/γ interfaces. It was found that the colony size decreased with the increase of x. The alloys exhibited moderate mechanical properties at room temperature, with a yield strength of over 600 MPa, and fractures showed mainly translamellar character. The alloy with x=3.5 exhibited the best deformability at elevated temperature and that with x=1 had superior oxidation resistance at 800 ℃.展开更多
An integrated metallurgical model was developed to predict microstructure evolution and mechanical properties of low-carbon steel plates produced by TMCP. The metallurgical phenomena occurring during TMCP and mechanic...An integrated metallurgical model was developed to predict microstructure evolution and mechanical properties of low-carbon steel plates produced by TMCP. The metallurgical phenomena occurring during TMCP and mechanical properties were predicted for different process parameters. In the later passes full recrystallization becomes difficult to occur and higher residual strain remains in austenite after rolling. For the reasonable temperature and cooling schedule, yield strength of 30 mm plain carbon steel plate can reach 310 MPa. The first on-line application of prediction and control of microstructure and properties (PCMP) in the medium plate production was achieved. The predictions of the system are in good agreement with measurements.展开更多
Ultrafine-grain and high-strength Mg-SLi-1Al sheets were prepared by accumulative roll bonding (ARB) process. Evolution of microstructure and mechanical properties of ARB-processed Mg-5Li-1Al sheets was investigated...Ultrafine-grain and high-strength Mg-SLi-1Al sheets were prepared by accumulative roll bonding (ARB) process. Evolution of microstructure and mechanical properties of ARB-processed Mg-5Li-1Al sheets was investigated. Results show that, during ARB process, the evolution of deformation mechanism oft Mg-5Li-1Al alloy is as follows: twinning deformation, shear deformation, forming macro shear zone, and finally dynamic recrystallization (DRX). The grain refining mechanism changes from twin DRX to rotation DRX. With the increase in ARB cycles, strength of the Mg-5Li-1Al sheets is enhanced, whilst elongation varies slightly. With the increase in rolling cycles, anisotropy of mechanical properties decreases. It is conclusive that strain hardening and grain refinement dominate the strengthening mechanism of Mg-5Li-1Al alloy.展开更多
A low-alloyed Mg-2Zn-0.8Sr-0.2Ca matrix composite reinforced by TiC nano-particles was successfully prepared by semi-solid stirring under the assistance of ultrasonic,and then the as-cast composite was hot extruded.Th...A low-alloyed Mg-2Zn-0.8Sr-0.2Ca matrix composite reinforced by TiC nano-particles was successfully prepared by semi-solid stirring under the assistance of ultrasonic,and then the as-cast composite was hot extruded.The results indicated that the volume fraction of dynamical recrystallization and the recrystallized grain size have a certain decline at lower extrusion temperature or rate.The finest grain size of~0.30μm is obtained in the sample extruded at 200℃and 0.1 mm/s.The as-extruded sample displays a strong basal texture intensity,and the basal texture intensity increases to 5.937 mud while the extrusion temperature increases from 200 to 240℃.The ultra-high mechanical properties(ultimate tensile strength of 480.2 MPa,yield strength of 462 MPa)are obtained after extrusion at 200℃with a rate of 0.1 mm/s.Among all strengthening mechanisms for the present composite,the grain refinement contributes the most to the increase in strength.A mixture of cleavage facets and dimples were observed in the fracture surfaces of three as-extruded nanocomposites,which explain a mix of brittle-ductile fracture way of the samples.展开更多
The feasibility of using coral reef sand(CRS) in Portland cement concrete is investigated by testing the mechanical property and microstructure of concrete. The composition, structure and properties of the CRS are a...The feasibility of using coral reef sand(CRS) in Portland cement concrete is investigated by testing the mechanical property and microstructure of concrete. The composition, structure and properties of the CRS are analyzed. Mechanical properties and microstructure of concrete with CRS are studied and compared to concrete with natural river sand. The relationship between the microstructure and performance of CRS concrete is established. The CRS has a porous surface with high water intake capacity, which contributes to the mechanical properties of concrete. The interfacial transition zone between the cement paste and CRS is densified compared to normal concrete with river sand. Hydration products form in the pore space of CRS and interlock with the matrix of cement paste, which increases the strength. The total porosity of concrete prepared with CRS is higher than that with natural sand. The main difference in pore size distribution is the fraction of fine pores in the range of 100 nm.展开更多
文摘A typical high-e fficiency solar cell device needs the best lattice matching between different constituent layers to mitigate the open-circuit voltage loss. In the present work, the physical properties of CdS thin films are investigated where films with 100 nm thickness were fabricated on the different types of substrates viz. soda–lime glass, indium-doped tin oxide(ITO)-and fl uorine-doped tin oxide(FTO)-coated glass substrates, and silicon wafer using electron beam evaporation. The X-ray diffraction patterns confirmed that deposited thin films showed cubic phase and had(111) as predominant orientation where the structural parameters were observed to be varied with nature of substrates. The ohmic behaviour of the CdS films was disclosed by current–voltage characteristics, whereas the scanning electron microscopy micrograph revealed the uniform deposition of the CdS films with the presence of round-shaped grains. The elemental analysis confirmed the CdS films deposition where the Cd/S weight percentage ratio was changed with nature of substrates. The direct energy band gap was observed in the 1.63–2.50 eV range for the films grown on different substrates. The investigated properties of thin CdS layers demonstrated that the selection of substrate(in terms of nature) during device fabrication plays a crucial role.
基金The World Academy of Sciences(TWAS)and The Council of Scientific and Industrial Research(No.CSIR-HRDG:P-81-1-09).
文摘Biomass solid fuel(BSF)has emerged as a promising renewable energy source,but its morphological and microstructural properties are crucial in determining their physical,mechanical,and chemical characteristics.This paper provides an overview of recent research on BSF.The focus is on biomass sources,BSF processing methods,and morphological and microstructural properties,with a special emphasis on energy-related studies.Specific inclusion and exclusion criteria were established for the study to ensure relevance.The inclusion criteria encompassed studies about BSFs and studies investigating the influence of biomass sources and processing methods on the morphological and microstructural properties of solid fuels within the past five years.Various technologies for converting biomass into usable energy were discussed,including gasification,torrefaction,carbonization,hydrothermal carbonization(HTC),and pyrolysis.Each has advantages and disadvantages in energy performance,techno-economics,and climate impact.Gasification is efficient but requires high investment.Pyrolysis produces bio-oil,char,and gases based on feedstock availability.Carbonization generates low-cost biochar for solid fuels and carbon sequestration applications.Torrefaction increases energy density for co-firing with coal.HTC processes wet biomass efficiently with lower energy input.Thermal treatment affects BSF durability and strength,often leading to less durability due to voids and gaps between particles.Hydrothermal carbonization alters surface morphology,creating cavities,pores,and distinctive shapes.Slow pyrolysis generates biochar with better morphological properties,while fast pyrolysis yields biochar with lower porosity and surface area.Wood constitutes 67%of the biomass sources utilized for bioenergy generation,followed by wood residues(5%),agro-residues(4%),municipal solid wastes(3%),energy crops(3%),livestock wastes(3%),and forest residues(1%).Each source has advantages and drawbacks,such as availability,cost,environmental impact,and suitability for specific regions and energy requirements.This review is valuable for energy professionals,researchers,and policymakers interested in biomass solid fuel.
基金funded by China Scholarship Council (No. 201406460053)
文摘In this work, low-carbon steel specimens were subjected to the quenching and partitioning process after being partially or fully austenitized to investigate their microstructural evolution and mechanical properties. According to the results of scanning electron microscopy and transmission electron microscopy observations, X-ray diffraction analysis, and tensile tests, upper bainite or tempered martensite appears successively in the microstructure with increasing austenitization temperature or increasing partitioning time. In the partially austenitized specimens, the retained austenite grains are carbon-enriched twice during the heat treatment, which can significantly stabilize the phases at room temperature. Furthermore, after partial austenitization, the specimen exhibits excellent elongation, with a maximum elongation of 37.1%. By contrast, after full austenitization, the specimens exhibit good ultimate tensile strength and high yield strength. In the case of a specimen with a yield strength of 969 MPa, the maximum value of the ultimate tensile strength reaches 1222 MPa. During the partitioning process, carbon partitioning and carbon homogenization within austenite affect interface migration. In addition, the volume fraction and grain size of retained austenite observed in the final microstructure will also be affected.
基金Funded by the National Natural Science Foundation of China(51301118)the Shanxi Province Science Foundation for Youths(2013021013-4)+1 种基金the Advanced Programs of Department of Human Resources and Social Security of Shanxi Province for Returned Scholarsthe Foundation for Young Scholars of Taiyuan University of Technology
文摘Microstructural characterization and mechanical properties of as-cast Mg-8Sn-1Al-1Zn-xCu(x=0wt%, 1wt%, 1.5wt% and 2.0wt%) alloys were studied by OM, Pandat software, XRD, SEM, DSC and a standard universal testing machine. The experimental results indicate that adding Cu to TAZ811 alloy leads to the formation of the AlMgCu and Cu3 Sn phases. Tensile tests indicate that yield strength increases fi rstly and then decreases with increasing Cu content. The alloy with the addition of 1.5wt% Cu exhibits optimal mechanical properties among the studied alloys. The improved mechanical properties can be ascribed to the second phase strengthening and fi ne-grain strengthening mechanisms resulting from the more dispersed second phases and smaller grain size, respectively. The decrease in ultimate tensile strength and elongation of TAZ811-2.0wt% Cu alloy at room temperature is ascribed to the formation of continuous AlMgCu and coarse Mg2 Sn phases in the liquid state.
基金supported by the National Basic Research Program of China ("973 Program", No. 2012CB825702)the National Natural Science Foundation of China (Nos. 51001065 and 51071097)+1 种基金the Taishan Scholar Blue Industry Talents Support Program of Shandong Province (2013)Young Scholars Program of Shandong University
文摘In this work, we make the best use of the vanadium element; a series of A1-V-B alloys and VB2/A390 composite alloys were fabricated. For Ak-10V-6B alloy, the grain size of VB2 can be controlled within about 1 μm and is distributed uniformly in the AI matrix. Further, it can be found that VB2 promises to be a useful reinforcement particle for piston alloy. The addition of VB2 can improve the mechanical properties of the A390 composite alloys significantly. The results show that with 1 % VB2 addition, A390 composite alloy exhibits the best performance. Compared with the A390 alloy, the coefficient of thermal expansion is 13.2 × 10^-6 K-1, which decreased by 12.6%; the average Brinell hardness can reach 156.5 HB, wear weight loss decreased by 28.9% and ultimate tensile strength at 25℃ (UTS25 ℃) can reach 355 MPa, which increased by 36.5%.
基金financially supported by the National Key R&D Program of China(No.2021YFB3702301)the National Natural Science Foundation of China(No.52101068]+2 种基金the China Postdoctoral Science Foundation[No.2022T150342]the Postdoctoral International Exchange Program[No.YJ20210129]the Shuimu Tsinghua Scholar Program(No.2020SM100)
文摘Notable advancements have been made in the additive manufacturing(AM)of aerospace materials,driven by the needs for integrated components with intricate geometries and small-lot production of high-value components.Nickel-based superalloys,pivotal materials for high-temperature bearing components in aeroengines,present significant challenges in the fabrication of complex parts due to their great hardness.Huge attention and rapid progress have been garnered in AM processing of nicklebased superalloys,largely owing to its distinct benefits in the freedom of fabrication and reduced manufacturing lifecycle.Despite extensive research into AM in nickel-based superalloys,the corresponding results and conclusions are scattered attributed to the variety of nickel-based superalloys and complex AM processing parameters.Therefore,there is still a pressing need for a comprehensive and deep understanding of the relationship between the AM processing and microstructures and mechanical performance of nickel-based superalloys.This review introduces the processing characteristics of four primary AM technologies utilized for superalloys and summarizes the microstructures and mechanical properties prior to and post-heat treatments.Additionally,this review presents innovative superalloys specifically accommodated to AM processing and offers insights into the material development and performance improvement,aiming to provide a valuable assessment on AM processing of nickel-based superalloys and an effective guidance for the future research.
基金Project(51101119)supported by the National Natural Science Foundation of China
文摘Influence of thermomechanical treatments (mill annealing, duplex annealing, solution treatment plus aging and triple annealing) on microstructures and mechanical properties of TC4-DT titanium alloy was investigated. Results showed that thermomechanical treatments had a significant influence on the microstructure parameters and higher annealing and aging temperature and lower cooling rate led to the decrease of the volume fraction of primaryαand the size of prior-βand the increase of the width of grain boundary αand secondary α. The highest strength was obtained by solution treatment and aging due to a large amount of transformedβand finer grain boundaryαand secondaryαat the expense of slight decrease of elongation and the ultimate strength, yield strength, elongation, reduction of area were 1100 MPa, 1030 MPa, 13%and 53%separately. A good combination of strength and ductility has been obtained by duplex annealing with the above values 940 MPa, 887.5 MPa, 15%and 51%respectively. Analysis between microstructure parameters and tensile properties showed that with the volume fraction of transformedβphase and the prior-βgrain size increasing, the ultimate strength, yield strength and reduction of area increased, but the elongation decreased. While the width of grain boundary α and secondary α showed a contrary effect on the tensile properties. Elimination of grain boundaryαas well as small prior-βgrain size can also improve ductility.
基金Project (09003)supported by the Open Research Fund of State Key Laboratory of Advanced Welding Production Technology, Harbin Institute of Technology, ChinaProject (JSAWT-07-04 ) supported by Provincial Key Research Fund of Advanced Welding Technology, Jiangsu University of Science and Technology, China
文摘The effect of arc-ultrasound on microstructures and mechanical properties of SiCp/6061A1 MMCs joints produced by arc-ultrasound plasma arc "in-situ" alloy-welding with different excitation frequencies was investigated, in which argon-nitrogen mixture was used as plasma gas, Ti wire as filler and the arc-ultrasound was produced by modulating the plasma arc with high frequency. The results show that arc-ultrasound could refine the new reinforced composites such as TiC, TiN significantly, and improve their distribution greatly. And new phase A13Ti becomes finer and less. The test results of mechanical properties indicate that the maximum tensile strength of welded joints is gained when the excitation frequency is 50 kHz, and the maximum is 225 MPa, raising by about 7% comoared with conventional nlasma arc welding (PAW) (20q MPa).
文摘Sweet potatoes have become a research focus in recent years, due to their particular nutritional and functional qualities. Considering yoghurt is one of the most popular dairy products, sweet potato supplementation will play a significant impact on the produced yoghurt texture it will also add attractive orange colour to the final product. The article focused on the replacement of the stabilizers used in the manufacture of yoghurt with sweet potato flour dehydrated in a lab (SPFL) due to its functional features and a less expensive alternative and the improvement of yoghurt colour due to the presence of anthocyanin pigment. In order to reach these goals, experimental yoghurt was fortified with 0, 0.5, 1, 2, and 4 g SPFL/100g cow milk (%) and stored at 4°C for 14 days. The obtained data were then compared with commercial yoghurt samples (CS1, CS2, CS3, and CS4). Sensory evaluation revealed that the 2% SPFL, CS1, and CS3 obtained higher scores than the other treatments. The fat content of the yoghurts was identical whereas, the other physicochemical parameters and water holding capacity (WHC %) levels varied. SPFL supplementation had a significant impact on the rheological properties of yoghurt production, allowing sweet potato flour to replace the industrial stabiliser. Scanning Electron Micrograph (SEM) of yoghurt enriched with SPFL revealed denser and smaller gaps, as well as the presence of sweet potato globules embedded in and attached to the gel matrix. The results obtained in the present research imply that sweet potatoes can be used to produce a kind of cohesive and gummy yoghurt that can be used instead of industrial stabilizers.
基金Project supported by the National Natural Science Foundation of China(50671069,50571071)Science Research Plan of Liaoning Province Education Bureau(05L297)+1 种基金Postdoctor Science Foundation of China(2004036113)the Doctor Starting Project and the Experiment Center of Shenyang Normal University
文摘By using real-space recursion method,the energetics of the undoped and Al and/or RE atoms doped 7(1450)〈0001〉 symmetric tilt grain boundaries(GBs)in AZ91 alloys were investigated.Similar calculations were performed on undoped and doped bulk α Mg for comparison.The results showed that Al atoms segregated at GBs in AZ91 alloys.When RE atoms were added,they also segregated at GBs,and their segregation is stronger than Al atoms'.Therefore,RE atoms retard the segregation of Al atoms.Calculations of interaction energy indicated that Al atoms repelled each other,and could form ordered phase with host Mg atoms.On the contrary to the case of Al,RE atoms attracted each other,they could not form ordered phase with Mg,but could form clusters.Between RE and Al,there existed attractive interaction,and this attractive interaction was the origin of Al11RE3 precipitation.Precipitation of Al11RE3 particles with high melting point and high thermal stability along GB improves high temperature properties of AZ91 alloys.
基金Project(50725413) supported by the National Natural Science Foundation of ChinaProject (2007CB613704) supported by the National Basic Research Program of China Projects(2006AA4012-9-6,2007BB4400) supported by Chongqing Science and Technology Commission,China
文摘The effects of Ca addition on the as-cast microstructure and mechanical properties of the Mg-5Zn-5Sn (mass fraction,%) alloy were investigated.The results indicate that an addition of 0.5%-1.5% (mass fraction) Ca to the Mg-5Zn-5Sn alloy not only refines the as-cast microstructure of the alloy but also causes the formation of the primary and/or eutectic CaMgSn phases with high thermal stability;an increase in Ca amount from 0.5% to 1.5% (mass fraction) increases the amount and size of the CaMgSn phase.In addition,Ca addition to the Mg-5Zn-5Sn alloy improves not only the tensile properties at room temperature and 150 ℃ but also the creep properties.Among the Ca-containing Mg-5Zn-5Sn alloys,the one added 0.5% (mass fraction) Ca obtains the optimum ultimate tensile strength and elongation at room temperature and 150 ℃,however,the alloy added 1.5% (mass fraction) Ca exhibits the optimum yield strength and creep properties.
基金financial support from the Fundamental Research Funds for the Central Universities in China(No.2021CDJQY-024)the Research Project from Chongqing Key Laboratory of Metal Additive Manufacturing(3D Printing)in Chongqing University(No.02090011044158)the National Natural Science Foundation of China(No.51975073)。
文摘Desired microstructure and surface integrity are critical to achieving the high performance of additively manufactured components.In the present work,the hybrid post-processes of magnetic abrasive finishing(MAF)and post-heat treatment(HT)were applied to the additively manufactured Inconel718 superalloys.Their hybrid effects and influencing mechanism on the surface quality and mechanical properties of the additively manufactured samples have been studied comparatively.The results show that the MAF process effectively reduces the surface roughness by more than an order of magnitude due to the flexibility and geometric consistency of the magnetic particles and abrasives with the finished surfaces.The proper sequence of MAF and HT obtains enhanced mechanical properties for the homogenized-MAF-aged sample with the yield strength of 1147 MPa,the ultimate tensile strength of 1334 MPa,and the elongation of 22.9%,which exceeds the standard wrought material.The surface integrity,compressive residual stress field,and grain refinement induced by the MAF and subsequent aging heat treatment increase the cracking resistance and delay the fracture failure,which significantly benefits the mechanical properties.The MAF process combined with proper post-heat treatment provides an effective pathway to improve the mechanical properties of additively manufactured materials.
文摘Electron beam welding (EBW) was applied to a 10-mm-thick plate cut from Ti-6246 compressor disk. The microstructural characteristics, microhardness and room temperature tensile properties were investigated. Microstructure observations indicated that there existed plenty of thin needle-like α platelets studding in the matrix of the columnar β grains in the as-welded fusion zone (FZ). Post-weld heat treat- ment (PWHT) led to the precipitation of small secondary α platelets in the β matrix in heat affected zone and FZ. The thickness and the density of α platelets increased as the temperature of PWHT increased from 545 to 645 C. The microhardness across the Ti-6246 EBWjoint exhibited a nonuniform distribution. The hardness increased with the decrease of distance to the weld center, and reached the maximum of 467 HV in FZ when PWHT was carried out at 595 C. All the weldments tested with tension were fractured at the base material (BM) and exhibited a ductile fracture mode. The major deformation barrier in BM was the platelet α/β interfaces, however, the major deformation barrier in FZ was found to be β grain boundaries and secondary α/β interfaces. The BM with thicker platelet α phases had lower strength than the other two zones in the joint, and the BM deformed first and led to fracture in this zone.
基金financially supported by the fund of the Key Projects of Shaanxi Provincial International Technology Cooperation Plan(2013KW16)the Scientific Research Program funded by Shaanxi Provincial Education Department(2013JK0914)+2 种基金the State Key Laboratory of Solidifi cation Processing in NWPU(SKLSP201115)the Scientific Research Project of Xi'an University of Technology(2013CX004)the fund of the Key Laboratory of Electrical Materials and Infi ltration Technology of Shaanxi Province,China(2014)
文摘In the present research, the orthogonal experiment was carried out to investigate the influence of different austempering process parameters (i.e. austenitizing temperature and time, and austempering temperature and time) on microstructure and mechanical properties of LZQT500-7 ductile iron dense bars with 172 mm in diameter which were produced by horizontal continuous casting (HCC). The results show that the major factors influencing the hardness of austempered ductile iron (ADI) are austenitizing temperature and austempering temperature. The fraction of retained austenite increases as the austenitizing and austempering temperatures increase. When austenitizing temperature is low, acicular ferrite and retained austenite can be efifciently obtained by appropriately extending the austenitizing time. The proper austmepering time could ensure enough stability of retained austenite and prevent high carbon austenite decomposition. The optimal mechanical properties of ADI can be achieved with the fol owing process parameters: austenitizing temperature and time are 866 °C and 135 min, and austempering temperature and time are 279 °C and 135 min, respectively. The microstructure of ADI under the optimal austempering process consists of ifne acicular ferrite and a smal amount of retained austenite, and the hardness, tensile strength, yield strength, elongation and impact toughness of the bars are HBW 476, 1670 MPa, 1428 MPa, 2.93%and 25.7 J, respectively.
基金supported by the National Natural Science Foundation of China (Nos. 51134013, and 51471044)funds for the central universities, key laboratory of basic research projects of Liaoning Province Department of Education (No. LZ2014007)the Natural Science Foundation of Liaoning Province (No. 2014028013)
文摘A series of CoCrFeNb_xNi(x values in molar ratio, x = 0, 0.25, 0.45, 0.5, 0.75, 1.0 and 1.2) high entropy alloys(HEAs) was prepared to investigate the alloying effect of Nb on the microstructures and mechanical properties. The results indicate that the prepared CoCrFeNb_xNi(x 〉 0) HEAs consist of a simple FCC solid solution phase and a Laves phase. The microstructures of the alloys change from an initial single-phase FCC solid solution structure(x = 0) to a hypoeutectic microstructure(x = 0.25), then to a full eutectic microstructure(x = 0.45) and finally to a hypereutectic microstructure(0.5 〈 x 〈 1.2). The compressive test results show that the Nb0.45(x = 0.45) alloy with a full eutectic microstructure possesses the highest compressive fracture strength of 2558 MPa and a fracture strain of 27.9%. The CoCrFeNi alloy exhibits an excellent compressive ductility, which can reach 50% height reduction without fracture. The Nb0.25 alloy with a hypoeutectic structure exhibits a larger plastic strain of 34.8%. With the increase of Nb content, increased hard/brittle Laves phase leads to a decrease of the plasticity and increases of the Vickers hardness and the wear resistance. The wear mass loss, width and depth of wear scar of the Nb1.2(x = 1.2) alloy with a hypereutectic structure are the lowest among all alloy systems, indicating that the wear resistance of the Nb1.2 alloy is the best one.
基金supported by the State Key Lab of Advanced Metals and Materials China
文摘Ti-45Al-9(V, Nb, Y) alloys with four different x=V/Nb (atomic ratio x = 1, 1.5, 2 and 3.5) have been prepared, and the microstructures, properties and hot deformation behaviors were investigated. SEM, XRD and TEM results showed that Ti-45Al-9(V, Nb, Y) alloys were mainly composed of γ, α 2 , and β phase, and the volume fraction of β phase increased with the increase of the atomic ratio of V/Nb. The alloys were featured with lamellar microstructure with β and γ phases locating at the colony boundaries, and some β precipitates appearing at γ/γ interfaces. It was found that the colony size decreased with the increase of x. The alloys exhibited moderate mechanical properties at room temperature, with a yield strength of over 600 MPa, and fractures showed mainly translamellar character. The alloy with x=3.5 exhibited the best deformability at elevated temperature and that with x=1 had superior oxidation resistance at 800 ℃.
基金This work was financially supported by the High Technology Development Program(No.2001AA339030)the National Natural Science Foundation of China(No.50334010).
文摘An integrated metallurgical model was developed to predict microstructure evolution and mechanical properties of low-carbon steel plates produced by TMCP. The metallurgical phenomena occurring during TMCP and mechanical properties were predicted for different process parameters. In the later passes full recrystallization becomes difficult to occur and higher residual strain remains in austenite after rolling. For the reasonable temperature and cooling schedule, yield strength of 30 mm plain carbon steel plate can reach 310 MPa. The first on-line application of prediction and control of microstructure and properties (PCMP) in the medium plate production was achieved. The predictions of the system are in good agreement with measurements.
基金supported by the National Natural Science Foundation of China (51671063)Research Fund for the Doctoral Program of Higher Education (20132304110006)+1 种基金the Fundamental Research Funds for the Central Universities (HEUCF20161016)Harbin City Application Technology Research and Development Project (2015AE4AE005, 2015RQXXJ001, 2016AB2AG013)
文摘Ultrafine-grain and high-strength Mg-SLi-1Al sheets were prepared by accumulative roll bonding (ARB) process. Evolution of microstructure and mechanical properties of ARB-processed Mg-5Li-1Al sheets was investigated. Results show that, during ARB process, the evolution of deformation mechanism oft Mg-5Li-1Al alloy is as follows: twinning deformation, shear deformation, forming macro shear zone, and finally dynamic recrystallization (DRX). The grain refining mechanism changes from twin DRX to rotation DRX. With the increase in ARB cycles, strength of the Mg-5Li-1Al sheets is enhanced, whilst elongation varies slightly. With the increase in rolling cycles, anisotropy of mechanical properties decreases. It is conclusive that strain hardening and grain refinement dominate the strengthening mechanism of Mg-5Li-1Al alloy.
基金financially supported by the National Natural Science Foundation of China(Nos.51771129,51401144,and 51771128)the Program for the Outstanding Innovative Teams of Higher Learning Institutions of Shanxi,China+1 种基金the Natural Science Foundation of Shanxi Province,China(Nos.2015021067 and 201601D011034)the Projects of International Cooperation in Shanxi,China(No.201703D421039)
文摘A low-alloyed Mg-2Zn-0.8Sr-0.2Ca matrix composite reinforced by TiC nano-particles was successfully prepared by semi-solid stirring under the assistance of ultrasonic,and then the as-cast composite was hot extruded.The results indicated that the volume fraction of dynamical recrystallization and the recrystallized grain size have a certain decline at lower extrusion temperature or rate.The finest grain size of~0.30μm is obtained in the sample extruded at 200℃and 0.1 mm/s.The as-extruded sample displays a strong basal texture intensity,and the basal texture intensity increases to 5.937 mud while the extrusion temperature increases from 200 to 240℃.The ultra-high mechanical properties(ultimate tensile strength of 480.2 MPa,yield strength of 462 MPa)are obtained after extrusion at 200℃with a rate of 0.1 mm/s.Among all strengthening mechanisms for the present composite,the grain refinement contributes the most to the increase in strength.A mixture of cleavage facets and dimples were observed in the fracture surfaces of three as-extruded nanocomposites,which explain a mix of brittle-ductile fracture way of the samples.
基金Funded by the Fundamental Research Funds for the Central Universities(WUT:142201001)
文摘The feasibility of using coral reef sand(CRS) in Portland cement concrete is investigated by testing the mechanical property and microstructure of concrete. The composition, structure and properties of the CRS are analyzed. Mechanical properties and microstructure of concrete with CRS are studied and compared to concrete with natural river sand. The relationship between the microstructure and performance of CRS concrete is established. The CRS has a porous surface with high water intake capacity, which contributes to the mechanical properties of concrete. The interfacial transition zone between the cement paste and CRS is densified compared to normal concrete with river sand. Hydration products form in the pore space of CRS and interlock with the matrix of cement paste, which increases the strength. The total porosity of concrete prepared with CRS is higher than that with natural sand. The main difference in pore size distribution is the fraction of fine pores in the range of 100 nm.