The microstructural evolution of C-(A)-S-H gel in Portland cement pastes immersed in pure water and 5.0 wt% Na2SO4 solution for different ages was comparatively investigated, by means of ^(29) Si NMR spectroscopy,...The microstructural evolution of C-(A)-S-H gel in Portland cement pastes immersed in pure water and 5.0 wt% Na2SO4 solution for different ages was comparatively investigated, by means of ^(29) Si NMR spectroscopy, and SEM-EDS analysis. Additionally, molecular dynamics simulation was performed to study the aluminum coordination status and interaction of sulfate ions in C-(A)-S-H gel. The results showed significant changes in the microstructural evolution of C-(A)-S-H gel in Portland cement paste. Sulfate attack has decalcifying and dealuminizing effect on C-(A)-S-H gel which is evident from increase in mean chain length(MCL) and decrease in Ca/Si & Al[4]/Si ratios of C-(A)-S-H gel. Additionally, Molecular dynamics simulation proves that Al[4] substituted in silicate chains of C-(A)-S-H gel is thermodynamically metastable, which may explain its migration from the silicate chains and transformation to Al[6], thus lowering the Al[4]/Si ratio of C-(A)-S-H gel. SO4^(2-)ions can carry the interfacial Ca^(2+) ions into the pore solution by the diffusion-absorption-desorption process, which unravels the mechanism of sulfate attack on C-(A)-S-H gel.展开更多
1.Introduction The strength-ductility trade-offdilemma has long been a per-sistent challenge in Al matrix composites(AMCs)[1,2].This is-sue primarily arises from the agglomeration of reinforcements at the grain bounda...1.Introduction The strength-ductility trade-offdilemma has long been a per-sistent challenge in Al matrix composites(AMCs)[1,2].This is-sue primarily arises from the agglomeration of reinforcements at the grain boundaries(GBs),which restricts local plastic flow dur-ing the plastic deformation and leads to stress concentration[3,4].Recently,the development of concepts aimed at achieving hetero-geneous grain has emerged as a promising approach for enhanc-ing comprehensive mechanical properties[5,6].展开更多
Notable advancements have been made in the additive manufacturing(AM)of aerospace materials,driven by the needs for integrated components with intricate geometries and small-lot production of high-value components.Nic...Notable advancements have been made in the additive manufacturing(AM)of aerospace materials,driven by the needs for integrated components with intricate geometries and small-lot production of high-value components.Nickel-based superalloys,pivotal materials for high-temperature bearing components in aeroengines,present significant challenges in the fabrication of complex parts due to their great hardness.Huge attention and rapid progress have been garnered in AM processing of nicklebased superalloys,largely owing to its distinct benefits in the freedom of fabrication and reduced manufacturing lifecycle.Despite extensive research into AM in nickel-based superalloys,the corresponding results and conclusions are scattered attributed to the variety of nickel-based superalloys and complex AM processing parameters.Therefore,there is still a pressing need for a comprehensive and deep understanding of the relationship between the AM processing and microstructures and mechanical performance of nickel-based superalloys.This review introduces the processing characteristics of four primary AM technologies utilized for superalloys and summarizes the microstructures and mechanical properties prior to and post-heat treatments.Additionally,this review presents innovative superalloys specifically accommodated to AM processing and offers insights into the material development and performance improvement,aiming to provide a valuable assessment on AM processing of nickel-based superalloys and an effective guidance for the future research.展开更多
Difficulties in the geometric and performance control of wire laser additive manufacturing have hindered its widespread application.In this study,an in situ process monitoring system that combines a machine vision-bas...Difficulties in the geometric and performance control of wire laser additive manufacturing have hindered its widespread application.In this study,an in situ process monitoring system that combines a machine vision-based interlayer height controller(IHC)and P-controller-based melt pool temperature controller(MTC)was developed to improve the vertical dimensional accuracy and mechanical properties of off-axis fine-wire laser-directed energy deposition(OAFW-LDED)for 316 L thin-walled parts.The IHC effectively mitigates external defect inheritance,while its synergy with the MTC ensures process stability,improving the vertical dimensional accuracy to±0.2 mm.Grain refinement was achieved by controlling the thermal input to optimize the thermal history and heat accumulation.A heterogeneous microstructure with alternating coarse and fine grains was observed and intergranular thermal cracking was suppressed.The yield and tensile strengths increased from 262 to 416 MPa to 313 and 516 MPa,respectively,with improved consistency in the yield strength between the top and bottom sections.However,excessive laser heat input caused interlayer cracks.Conversely,increasing the heat input through substrate preheating did not induce additional cracks and improved the overall hardness consistency of the thin-walled samples.Therefore,this study proposes a new formability control strategy for OAFW-LDEDs of thin-walled parts.展开更多
The main reason for the high strength in near-βtitanium alloys is the ultrafine precipitation of the acicular secondary a phase in theβmatrix.The purpose of this study is to use the pseudo-spinodal mechanism to obta...The main reason for the high strength in near-βtitanium alloys is the ultrafine precipitation of the acicular secondary a phase in theβmatrix.The purpose of this study is to use the pseudo-spinodal mechanism to obtain the ultrafine a phase for the design of a new high-strength near-γtitanium alloy.Thermodynamic calculations and TC21-(TC21+15 Mo)diffusion couple composition gradient experiments were used to demonstrate that TC21+3 Mo alloy can undergo a pseudo-spinodal decomposition to obtain the ultrafine a phase,resulting in a high-strength alloy.By adjusting the heat treatment process to obtain a bimodal microstructure,the alloy exhibits a good balance between ultimate tensile strength(1351 MPa)and plasticity(8.5%strain).Thus,it was demonstrated that the pseudospinodal mechanism combined with a high-throughput diffusion couple technique is an effective method for designing high-strength titanium alloys.展开更多
In this work, low-carbon steel specimens were subjected to the quenching and partitioning process after being partially or fully austenitized to investigate their microstructural evolution and mechanical properties. A...In this work, low-carbon steel specimens were subjected to the quenching and partitioning process after being partially or fully austenitized to investigate their microstructural evolution and mechanical properties. According to the results of scanning electron microscopy and transmission electron microscopy observations, X-ray diffraction analysis, and tensile tests, upper bainite or tempered martensite appears successively in the microstructure with increasing austenitization temperature or increasing partitioning time. In the partially austenitized specimens, the retained austenite grains are carbon-enriched twice during the heat treatment, which can significantly stabilize the phases at room temperature. Furthermore, after partial austenitization, the specimen exhibits excellent elongation, with a maximum elongation of 37.1%. By contrast, after full austenitization, the specimens exhibit good ultimate tensile strength and high yield strength. In the case of a specimen with a yield strength of 969 MPa, the maximum value of the ultimate tensile strength reaches 1222 MPa. During the partitioning process, carbon partitioning and carbon homogenization within austenite affect interface migration. In addition, the volume fraction and grain size of retained austenite observed in the final microstructure will also be affected.展开更多
To investigate the formation mechanism of calcium hexaluminate(CaAl_(12)O_(19), CA_6), the analytically pure alumina and calcia used as raw materials were mixed in CaO/Al_2O_3 ratio of 12.57:137.43 by mass. The...To investigate the formation mechanism of calcium hexaluminate(CaAl_(12)O_(19), CA_6), the analytically pure alumina and calcia used as raw materials were mixed in CaO/Al_2O_3 ratio of 12.57:137.43 by mass. The raw materials were ball-milled and shaped into green specimens, and fired at 1300-1600°C. Then, the phase composition and microstructure evolution of the fired specimen were studied, and a first principle calculation was performed. The results show that in the reaction system of CaO and Al_2O_3, a small amount of CA_6 forms at 1300°C, and greater amounts are formed at 1400°C and higher temperatures. The reaction is as follows: CaO ·2Al_2O_3(CA_2) + 4Al_2O_3 → CA_6. The diffusions of Ca^(2+) in CA_2 towards Al_2O_3 and Al^(3+) in Al_2O_3 towards CA_2 change the structures in different degrees of difficulty. Compared with the difficulty of structural change and the corresponding lattice energy change, it is deduced that the main formation mechanism is the diffusion of Ca^(2+) in CA_2 towards Al_2O_3.展开更多
Hexagonal boron nitride ceramic(h-BN) based on the nitridation of B powders was obtained by reaction sintering method. The effects of sintering temperature on the mechanical properties and microstructure of the resu...Hexagonal boron nitride ceramic(h-BN) based on the nitridation of B powders was obtained by reaction sintering method. The effects of sintering temperature on the mechanical properties and microstructure of the resultant products were investigated and the reaction mechanism was discussed. Results showed that the reaction between B and N2 occurred vigorously at temperatures ranging from 1 000 ℃ to 1 300 ℃, which resulted in the generation of t-BN. When the temperature exceeded 1 450 ℃, transformation from t-BN to h-BN began to occur. As the sintering temperature increased, the spherical particles of t-BN gradually transformed into fine sheet particles of h-BN. These particles subsequently displayed a compact arrangement to achieve a more uniform microstructure, thereby increasing the strength.展开更多
Microstructural characterization and mechanical properties of as-cast Mg-8Sn-1Al-1Zn-xCu(x=0wt%, 1wt%, 1.5wt% and 2.0wt%) alloys were studied by OM, Pandat software, XRD, SEM, DSC and a standard universal testing ma...Microstructural characterization and mechanical properties of as-cast Mg-8Sn-1Al-1Zn-xCu(x=0wt%, 1wt%, 1.5wt% and 2.0wt%) alloys were studied by OM, Pandat software, XRD, SEM, DSC and a standard universal testing machine. The experimental results indicate that adding Cu to TAZ811 alloy leads to the formation of the AlMgCu and Cu3 Sn phases. Tensile tests indicate that yield strength increases fi rstly and then decreases with increasing Cu content. The alloy with the addition of 1.5wt% Cu exhibits optimal mechanical properties among the studied alloys. The improved mechanical properties can be ascribed to the second phase strengthening and fi ne-grain strengthening mechanisms resulting from the more dispersed second phases and smaller grain size, respectively. The decrease in ultimate tensile strength and elongation of TAZ811-2.0wt% Cu alloy at room temperature is ascribed to the formation of continuous AlMgCu and coarse Mg2 Sn phases in the liquid state.展开更多
The fatigue performance and fracture mechanism of laser welded twinning induced plasticity(TWIP)steel joint were investigated experimentally based on the evolution of microstructure and micromechanical properties.Th...The fatigue performance and fracture mechanism of laser welded twinning induced plasticity(TWIP)steel joint were investigated experimentally based on the evolution of microstructure and micromechanical properties.The optical microscopy was used to analyze the evolution of microstructure.The variation of composition and phase structure of fusion zone were detected by energy dispersive X-ray and X-ray diffraction spectrometers.The micromechanical behaviors of the various zones were characterized using nanoindentation.The static tensile test and high cycle fatigue test were performed to evaluate the mechanical properties of welded joint and base metal.The microstructures,tensile properties and fatigue strength of base metal as well as welded metal were analyzed.The fatigue fracture surfaces of base metal and welded joint were observed by means of scanning electron microscopy,in order to identify fatigue crack initiation sites and propagation mechanisms.Moreover,the fatigue fracture characteristics and mechanisms for the laser welded TWIP steel joints were analyzed.展开更多
The effects of mechanical activation in a planetary mill on the structural changes and microstructural characteristics of the components of ferruginous quartzite beneficiation railings generated by wet magnetic separa...The effects of mechanical activation in a planetary mill on the structural changes and microstructural characteristics of the components of ferruginous quartzite beneficiation railings generated by wet magnetic separation process were studied using X-ray and laser diffraction methods. The results revealed the relationship between variations in the mean particle size of activated powders and the milling time. The crystallite size, microstrain, lattice parameters and unit cell volumes were determined for different milling times in powder samples of quartz, hematite, dolomite, and magnetite from the beneficiation tailings. The main trends in the variation of the crystallite size of quartz, hematite, dolomite, and magnetite as a function mean particle size of powder samples were revealed. Changes in the particle shape as a function of the activation time was also investigated.展开更多
This study characterizes the mechanical properties and volume fractions of the different phases in precision annealed GCr15 steel using nanoindentation technology. Experimental results indicate that the nanoindentatio...This study characterizes the mechanical properties and volume fractions of the different phases in precision annealed GCr15 steel using nanoindentation technology. Experimental results indicate that the nanoindentation hardness of cementite grains is between 14.15 GPa and 17.61 GPa,with a mean value of 15.40 GPa. This hardness is much higher than the hardness of ferrite grains. The nanoindentation hardness of ferrite is between 2.78 GPa and 4.89 GPa, with a mean value of 3.35 GPa. The volume fractions of the different phases were also determined using nanoindentation technology, and the volume fraction of cementite in the steel was identified as 15%.展开更多
In this work, we make the best use of the vanadium element; a series of A1-V-B alloys and VB2/A390 composite alloys were fabricated. For Ak-10V-6B alloy, the grain size of VB2 can be controlled within about 1 μm and ...In this work, we make the best use of the vanadium element; a series of A1-V-B alloys and VB2/A390 composite alloys were fabricated. For Ak-10V-6B alloy, the grain size of VB2 can be controlled within about 1 μm and is distributed uniformly in the AI matrix. Further, it can be found that VB2 promises to be a useful reinforcement particle for piston alloy. The addition of VB2 can improve the mechanical properties of the A390 composite alloys significantly. The results show that with 1 % VB2 addition, A390 composite alloy exhibits the best performance. Compared with the A390 alloy, the coefficient of thermal expansion is 13.2 × 10^-6 K-1, which decreased by 12.6%; the average Brinell hardness can reach 156.5 HB, wear weight loss decreased by 28.9% and ultimate tensile strength at 25℃ (UTS25 ℃) can reach 355 MPa, which increased by 36.5%.展开更多
The volume fractions and morphology of precipitates in precipitation-strengthened Cu-Ti alloys,which precipitate mainly as continuous and discontinuous precipitates,are important for the application of the alloy.This ...The volume fractions and morphology of precipitates in precipitation-strengthened Cu-Ti alloys,which precipitate mainly as continuous and discontinuous precipitates,are important for the application of the alloy.This study employed hardness and electrical conductivity tests transmission electron microscopy(TEM),atom probe tomography(APT),and first-principles calculations to demonstrate that the addition of Mg is effective for accelerating nanosized continuousβ'-Cu_(4)Ti precipitation as well as for suppressing the precipitation of coarse lamellar discontinuousβ-Cu_(4)Ti precipitates along the grain boundaries,resulting in Cu-Ti alloys with high yield strength and good electrical conductivity.The results showed that the continuous precipitation ofβ'-Cu_(4)Ti was accelerated by the Mg additions,which reduced the supersaturation of the matrix,thereby reducing the chemical driving force for the discontinuous precipitates.On the other hand,Mg additions increased the mismatch between the discontinuousβ-Cu_(4)Ti precipitates and matrix decreased the nucleation rate of the discontinuous precipitates,and increased the spacing of the discontinuous precipitation layer,resulting in a lower growth rate of the discontinuous precipitates.Therefore,the addition of Mg to Cu-Ti alloys enhances the strength and improves the resistance to over-ageing.展开更多
The microstructure, mechanical properties and wear resistance of high chromium cast steel containing boron after different heat treatments were studied by means of the optical microscopy (OM), the scanning electron ...The microstructure, mechanical properties and wear resistance of high chromium cast steel containing boron after different heat treatments were studied by means of the optical microscopy (OM), the scanning electron microscopy (SEM), X-ray diffraction (XRD), hardness, impact toughness, tensile and pin-on-disc abrasion tests. The results show that as cast microstructures of boron-free high chromium steel consist of martensite and a few (Cr, Fe)_7C_3 carbide, and the macro-hardness of boron-free high chromium steel is 55-57 HRC. After 0.5 mass% B was added into high chromium cast steel, as-cast structure transforms into eutectic (Fe, Cr)2B, (Cr, Fe)7 (C, B)a and martensite, and the macro-hardness reaches 58-60 HRC. High temperature quenching leads to the disconnection and isolated distribution of boride, and there are many (Cr,Fe)_23 (C,B)_6 precipitated phases in the quenching structure. Quenching from 1050 ℃, high chromium steel obtained the highest hardness, and the hardness of high chromium cast steel containing boron is higher than that of boron-free high chromium steel. The change of quenching temperature has no obvious effect on impact toughness of high chromium steel, and the increase of quenching temperature leads to tensile strength having an increasing tendency. At the same quenching temperature, the wear resistance of high chromium cast steel containing boron is more excellent than that of boron-free high chromium steel. High chromium cast steel guide containing boron has good performance while using in steel bar mill.展开更多
The effect of relaxation after finished rolling on structures and properties of four microalloyed steel with different content of Nb and Ti was investigated. By alloy designing and control rolling + relaxation-precipi...The effect of relaxation after finished rolling on structures and properties of four microalloyed steel with different content of Nb and Ti was investigated. By alloy designing and control rolling + relaxation-precipitation-control phase trail storm ati on (RPC) process, a new 800 MPa grade HSLA plate steel could be obtained, the microstructure is composite ultra-fine lath bainite/martensite. The tempering process and mechanical properties of this kind of HSLA steel were investigated. The yield strength can achieve 800 MPa, and the ductility and impact toughness is satisfied.展开更多
The research and development status of casting magnesium alloys including the commercial casting alloys and the new types casting alloys are reviewed,with more attention to microstructure and mechanical properties of ...The research and development status of casting magnesium alloys including the commercial casting alloys and the new types casting alloys are reviewed,with more attention to microstructure and mechanical properties of modified-AZ91,AM60 and WE43 alloys with various additions,and new types of low cost casting alloys and high strength casting alloys.The modification and/or refinement of Mg2 Si phase in Mg-Al-Si based casting alloys by various additions are discussed and new purifying technologies for casting magnesium alloys are introduced to improve the performance.The modified AZ81 alloy with reduced impurities is found to have the tensile strength of 280 ± 6 MPa and elongation of 16% ± 0.7%.The fatigue strength of AZ91 D alloy could be obviously improved by addition of Ce and Nd.The Mg-16Gd-2Ag-0.3Zr alloy exhibits very high tensile and yield strengths(UTS:423 MPa and YS:328 MPa);however,its elongation still needs to be improved.展开更多
In the present research, the orthogonal experiment was carried out to investigate the influence of different austempering process parameters (i.e. austenitizing temperature and time, and austempering temperature and ...In the present research, the orthogonal experiment was carried out to investigate the influence of different austempering process parameters (i.e. austenitizing temperature and time, and austempering temperature and time) on microstructure and mechanical properties of LZQT500-7 ductile iron dense bars with 172 mm in diameter which were produced by horizontal continuous casting (HCC). The results show that the major factors influencing the hardness of austempered ductile iron (ADI) are austenitizing temperature and austempering temperature. The fraction of retained austenite increases as the austenitizing and austempering temperatures increase. When austenitizing temperature is low, acicular ferrite and retained austenite can be efifciently obtained by appropriately extending the austenitizing time. The proper austmepering time could ensure enough stability of retained austenite and prevent high carbon austenite decomposition. The optimal mechanical properties of ADI can be achieved with the fol owing process parameters: austenitizing temperature and time are 866 °C and 135 min, and austempering temperature and time are 279 °C and 135 min, respectively. The microstructure of ADI under the optimal austempering process consists of ifne acicular ferrite and a smal amount of retained austenite, and the hardness, tensile strength, yield strength, elongation and impact toughness of the bars are HBW 476, 1670 MPa, 1428 MPa, 2.93%and 25.7 J, respectively.展开更多
Electron beam welding (EBW) was applied to a 10-mm-thick plate cut from Ti-6246 compressor disk. The microstructural characteristics, microhardness and room temperature tensile properties were investigated. Microstr...Electron beam welding (EBW) was applied to a 10-mm-thick plate cut from Ti-6246 compressor disk. The microstructural characteristics, microhardness and room temperature tensile properties were investigated. Microstructure observations indicated that there existed plenty of thin needle-like α platelets studding in the matrix of the columnar β grains in the as-welded fusion zone (FZ). Post-weld heat treat- ment (PWHT) led to the precipitation of small secondary α platelets in the β matrix in heat affected zone and FZ. The thickness and the density of α platelets increased as the temperature of PWHT increased from 545 to 645 C. The microhardness across the Ti-6246 EBWjoint exhibited a nonuniform distribution. The hardness increased with the decrease of distance to the weld center, and reached the maximum of 467 HV in FZ when PWHT was carried out at 595 C. All the weldments tested with tension were fractured at the base material (BM) and exhibited a ductile fracture mode. The major deformation barrier in BM was the platelet α/β interfaces, however, the major deformation barrier in FZ was found to be β grain boundaries and secondary α/β interfaces. The BM with thicker platelet α phases had lower strength than the other two zones in the joint, and the BM deformed first and led to fracture in this zone.展开更多
To investigate the effect of AlsMn4Gd phase on microstructural and mechanical properties of Mg-Al-Ca magnesium alloy,two Mg-2.5AbCa and Mg-2.5Al2Ca-0.1 Al8Mn4Gd alloys were designed and compared in this work.The resul...To investigate the effect of AlsMn4Gd phase on microstructural and mechanical properties of Mg-Al-Ca magnesium alloy,two Mg-2.5AbCa and Mg-2.5Al2Ca-0.1 Al8Mn4Gd alloys were designed and compared in this work.The results show that a small amount of Gd can significantly refine a-Mg grains and change the morphology of AUCa particles.Indeed,the formed Al8Mn4Gd phase could serve as a heterogeneous nucleation site for the a-Mg grains and AbCa particles.Furthermore,the introduction of Gd not only optimized the mechanical properties of Mg-Al-Ca alloy,but also facilitated the thermal deformation(such as hot rolling).展开更多
基金Funded by National Natural Science Foundation of China(Nos.51778513,51578004,51608004)the Major State Basic Research Development Program of China("973"Program)(No.2015CB655101)
文摘The microstructural evolution of C-(A)-S-H gel in Portland cement pastes immersed in pure water and 5.0 wt% Na2SO4 solution for different ages was comparatively investigated, by means of ^(29) Si NMR spectroscopy, and SEM-EDS analysis. Additionally, molecular dynamics simulation was performed to study the aluminum coordination status and interaction of sulfate ions in C-(A)-S-H gel. The results showed significant changes in the microstructural evolution of C-(A)-S-H gel in Portland cement paste. Sulfate attack has decalcifying and dealuminizing effect on C-(A)-S-H gel which is evident from increase in mean chain length(MCL) and decrease in Ca/Si & Al[4]/Si ratios of C-(A)-S-H gel. Additionally, Molecular dynamics simulation proves that Al[4] substituted in silicate chains of C-(A)-S-H gel is thermodynamically metastable, which may explain its migration from the silicate chains and transformation to Al[6], thus lowering the Al[4]/Si ratio of C-(A)-S-H gel. SO4^(2-)ions can carry the interfacial Ca^(2+) ions into the pore solution by the diffusion-absorption-desorption process, which unravels the mechanism of sulfate attack on C-(A)-S-H gel.
基金support by the National Natural Science Foundation of China(Grant Nos.U23A20546 and 52271010)the Chinese National Natural Science Fund for Distinguished Young Scholars(Grant No.52025015)the Natural Science Foundation of Tianjin City(No.21JCZDJC00510).
文摘1.Introduction The strength-ductility trade-offdilemma has long been a per-sistent challenge in Al matrix composites(AMCs)[1,2].This is-sue primarily arises from the agglomeration of reinforcements at the grain boundaries(GBs),which restricts local plastic flow dur-ing the plastic deformation and leads to stress concentration[3,4].Recently,the development of concepts aimed at achieving hetero-geneous grain has emerged as a promising approach for enhanc-ing comprehensive mechanical properties[5,6].
基金financially supported by the National Key R&D Program of China(No.2021YFB3702301)the National Natural Science Foundation of China(No.52101068]+2 种基金the China Postdoctoral Science Foundation[No.2022T150342]the Postdoctoral International Exchange Program[No.YJ20210129]the Shuimu Tsinghua Scholar Program(No.2020SM100)
文摘Notable advancements have been made in the additive manufacturing(AM)of aerospace materials,driven by the needs for integrated components with intricate geometries and small-lot production of high-value components.Nickel-based superalloys,pivotal materials for high-temperature bearing components in aeroengines,present significant challenges in the fabrication of complex parts due to their great hardness.Huge attention and rapid progress have been garnered in AM processing of nicklebased superalloys,largely owing to its distinct benefits in the freedom of fabrication and reduced manufacturing lifecycle.Despite extensive research into AM in nickel-based superalloys,the corresponding results and conclusions are scattered attributed to the variety of nickel-based superalloys and complex AM processing parameters.Therefore,there is still a pressing need for a comprehensive and deep understanding of the relationship between the AM processing and microstructures and mechanical performance of nickel-based superalloys.This review introduces the processing characteristics of four primary AM technologies utilized for superalloys and summarizes the microstructures and mechanical properties prior to and post-heat treatments.Additionally,this review presents innovative superalloys specifically accommodated to AM processing and offers insights into the material development and performance improvement,aiming to provide a valuable assessment on AM processing of nickel-based superalloys and an effective guidance for the future research.
基金supported by Open Research Fund of the Sichuan Institute of Xiamen University(Grant No.202401ZDB004)。
文摘Difficulties in the geometric and performance control of wire laser additive manufacturing have hindered its widespread application.In this study,an in situ process monitoring system that combines a machine vision-based interlayer height controller(IHC)and P-controller-based melt pool temperature controller(MTC)was developed to improve the vertical dimensional accuracy and mechanical properties of off-axis fine-wire laser-directed energy deposition(OAFW-LDED)for 316 L thin-walled parts.The IHC effectively mitigates external defect inheritance,while its synergy with the MTC ensures process stability,improving the vertical dimensional accuracy to±0.2 mm.Grain refinement was achieved by controlling the thermal input to optimize the thermal history and heat accumulation.A heterogeneous microstructure with alternating coarse and fine grains was observed and intergranular thermal cracking was suppressed.The yield and tensile strengths increased from 262 to 416 MPa to 313 and 516 MPa,respectively,with improved consistency in the yield strength between the top and bottom sections.However,excessive laser heat input caused interlayer cracks.Conversely,increasing the heat input through substrate preheating did not induce additional cracks and improved the overall hardness consistency of the thin-walled samples.Therefore,this study proposes a new formability control strategy for OAFW-LDEDs of thin-walled parts.
基金financially supported by the National Key Technologies R&D Program of China(No.2016YFB0701301)the National Natural Science Foundation of China(Nos.51901251,51671218 and 51501229)the State Key Laboratory of Powder Metallurgy Independent Project of China(No.621021907)。
文摘The main reason for the high strength in near-βtitanium alloys is the ultrafine precipitation of the acicular secondary a phase in theβmatrix.The purpose of this study is to use the pseudo-spinodal mechanism to obtain the ultrafine a phase for the design of a new high-strength near-γtitanium alloy.Thermodynamic calculations and TC21-(TC21+15 Mo)diffusion couple composition gradient experiments were used to demonstrate that TC21+3 Mo alloy can undergo a pseudo-spinodal decomposition to obtain the ultrafine a phase,resulting in a high-strength alloy.By adjusting the heat treatment process to obtain a bimodal microstructure,the alloy exhibits a good balance between ultimate tensile strength(1351 MPa)and plasticity(8.5%strain).Thus,it was demonstrated that the pseudospinodal mechanism combined with a high-throughput diffusion couple technique is an effective method for designing high-strength titanium alloys.
基金funded by China Scholarship Council (No. 201406460053)
文摘In this work, low-carbon steel specimens were subjected to the quenching and partitioning process after being partially or fully austenitized to investigate their microstructural evolution and mechanical properties. According to the results of scanning electron microscopy and transmission electron microscopy observations, X-ray diffraction analysis, and tensile tests, upper bainite or tempered martensite appears successively in the microstructure with increasing austenitization temperature or increasing partitioning time. In the partially austenitized specimens, the retained austenite grains are carbon-enriched twice during the heat treatment, which can significantly stabilize the phases at room temperature. Furthermore, after partial austenitization, the specimen exhibits excellent elongation, with a maximum elongation of 37.1%. By contrast, after full austenitization, the specimens exhibit good ultimate tensile strength and high yield strength. In the case of a specimen with a yield strength of 969 MPa, the maximum value of the ultimate tensile strength reaches 1222 MPa. During the partitioning process, carbon partitioning and carbon homogenization within austenite affect interface migration. In addition, the volume fraction and grain size of retained austenite observed in the final microstructure will also be affected.
基金financially supported by the National Nature Science Foundation of China(No.51172120)
文摘To investigate the formation mechanism of calcium hexaluminate(CaAl_(12)O_(19), CA_6), the analytically pure alumina and calcia used as raw materials were mixed in CaO/Al_2O_3 ratio of 12.57:137.43 by mass. The raw materials were ball-milled and shaped into green specimens, and fired at 1300-1600°C. Then, the phase composition and microstructure evolution of the fired specimen were studied, and a first principle calculation was performed. The results show that in the reaction system of CaO and Al_2O_3, a small amount of CA_6 forms at 1300°C, and greater amounts are formed at 1400°C and higher temperatures. The reaction is as follows: CaO ·2Al_2O_3(CA_2) + 4Al_2O_3 → CA_6. The diffusions of Ca^(2+) in CA_2 towards Al_2O_3 and Al^(3+) in Al_2O_3 towards CA_2 change the structures in different degrees of difficulty. Compared with the difficulty of structural change and the corresponding lattice energy change, it is deduced that the main formation mechanism is the diffusion of Ca^(2+) in CA_2 towards Al_2O_3.
基金Funded by the Scientific and Technological Development Project of Yantai(2013JH020)
文摘Hexagonal boron nitride ceramic(h-BN) based on the nitridation of B powders was obtained by reaction sintering method. The effects of sintering temperature on the mechanical properties and microstructure of the resultant products were investigated and the reaction mechanism was discussed. Results showed that the reaction between B and N2 occurred vigorously at temperatures ranging from 1 000 ℃ to 1 300 ℃, which resulted in the generation of t-BN. When the temperature exceeded 1 450 ℃, transformation from t-BN to h-BN began to occur. As the sintering temperature increased, the spherical particles of t-BN gradually transformed into fine sheet particles of h-BN. These particles subsequently displayed a compact arrangement to achieve a more uniform microstructure, thereby increasing the strength.
基金Funded by the National Natural Science Foundation of China(51301118)the Shanxi Province Science Foundation for Youths(2013021013-4)+1 种基金the Advanced Programs of Department of Human Resources and Social Security of Shanxi Province for Returned Scholarsthe Foundation for Young Scholars of Taiyuan University of Technology
文摘Microstructural characterization and mechanical properties of as-cast Mg-8Sn-1Al-1Zn-xCu(x=0wt%, 1wt%, 1.5wt% and 2.0wt%) alloys were studied by OM, Pandat software, XRD, SEM, DSC and a standard universal testing machine. The experimental results indicate that adding Cu to TAZ811 alloy leads to the formation of the AlMgCu and Cu3 Sn phases. Tensile tests indicate that yield strength increases fi rstly and then decreases with increasing Cu content. The alloy with the addition of 1.5wt% Cu exhibits optimal mechanical properties among the studied alloys. The improved mechanical properties can be ascribed to the second phase strengthening and fi ne-grain strengthening mechanisms resulting from the more dispersed second phases and smaller grain size, respectively. The decrease in ultimate tensile strength and elongation of TAZ811-2.0wt% Cu alloy at room temperature is ascribed to the formation of continuous AlMgCu and coarse Mg2 Sn phases in the liquid state.
基金Item Sponsored by National Natural Science Foundation of China(51374151,21201129)Science and Technology Major Project of Shanxi Province of China(20111101053)Natural Science Foundation of Shanxi Province of China(2011011020-2)
文摘The fatigue performance and fracture mechanism of laser welded twinning induced plasticity(TWIP)steel joint were investigated experimentally based on the evolution of microstructure and micromechanical properties.The optical microscopy was used to analyze the evolution of microstructure.The variation of composition and phase structure of fusion zone were detected by energy dispersive X-ray and X-ray diffraction spectrometers.The micromechanical behaviors of the various zones were characterized using nanoindentation.The static tensile test and high cycle fatigue test were performed to evaluate the mechanical properties of welded joint and base metal.The microstructures,tensile properties and fatigue strength of base metal as well as welded metal were analyzed.The fatigue fracture surfaces of base metal and welded joint were observed by means of scanning electron microscopy,in order to identify fatigue crack initiation sites and propagation mechanisms.Moreover,the fatigue fracture characteristics and mechanisms for the laser welded TWIP steel joints were analyzed.
文摘The effects of mechanical activation in a planetary mill on the structural changes and microstructural characteristics of the components of ferruginous quartzite beneficiation railings generated by wet magnetic separation process were studied using X-ray and laser diffraction methods. The results revealed the relationship between variations in the mean particle size of activated powders and the milling time. The crystallite size, microstrain, lattice parameters and unit cell volumes were determined for different milling times in powder samples of quartz, hematite, dolomite, and magnetite from the beneficiation tailings. The main trends in the variation of the crystallite size of quartz, hematite, dolomite, and magnetite as a function mean particle size of powder samples were revealed. Changes in the particle shape as a function of the activation time was also investigated.
文摘This study characterizes the mechanical properties and volume fractions of the different phases in precision annealed GCr15 steel using nanoindentation technology. Experimental results indicate that the nanoindentation hardness of cementite grains is between 14.15 GPa and 17.61 GPa,with a mean value of 15.40 GPa. This hardness is much higher than the hardness of ferrite grains. The nanoindentation hardness of ferrite is between 2.78 GPa and 4.89 GPa, with a mean value of 3.35 GPa. The volume fractions of the different phases were also determined using nanoindentation technology, and the volume fraction of cementite in the steel was identified as 15%.
基金supported by the National Basic Research Program of China ("973 Program", No. 2012CB825702)the National Natural Science Foundation of China (Nos. 51001065 and 51071097)+1 种基金the Taishan Scholar Blue Industry Talents Support Program of Shandong Province (2013)Young Scholars Program of Shandong University
文摘In this work, we make the best use of the vanadium element; a series of A1-V-B alloys and VB2/A390 composite alloys were fabricated. For Ak-10V-6B alloy, the grain size of VB2 can be controlled within about 1 μm and is distributed uniformly in the AI matrix. Further, it can be found that VB2 promises to be a useful reinforcement particle for piston alloy. The addition of VB2 can improve the mechanical properties of the A390 composite alloys significantly. The results show that with 1 % VB2 addition, A390 composite alloy exhibits the best performance. Compared with the A390 alloy, the coefficient of thermal expansion is 13.2 × 10^-6 K-1, which decreased by 12.6%; the average Brinell hardness can reach 156.5 HB, wear weight loss decreased by 28.9% and ultimate tensile strength at 25℃ (UTS25 ℃) can reach 355 MPa, which increased by 36.5%.
基金financially supported by the Technological Innovation 2025&Major Special Project of Ningbo(Nos.2021Z084 and 2020Z039)。
文摘The volume fractions and morphology of precipitates in precipitation-strengthened Cu-Ti alloys,which precipitate mainly as continuous and discontinuous precipitates,are important for the application of the alloy.This study employed hardness and electrical conductivity tests transmission electron microscopy(TEM),atom probe tomography(APT),and first-principles calculations to demonstrate that the addition of Mg is effective for accelerating nanosized continuousβ'-Cu_(4)Ti precipitation as well as for suppressing the precipitation of coarse lamellar discontinuousβ-Cu_(4)Ti precipitates along the grain boundaries,resulting in Cu-Ti alloys with high yield strength and good electrical conductivity.The results showed that the continuous precipitation ofβ'-Cu_(4)Ti was accelerated by the Mg additions,which reduced the supersaturation of the matrix,thereby reducing the chemical driving force for the discontinuous precipitates.On the other hand,Mg additions increased the mismatch between the discontinuousβ-Cu_(4)Ti precipitates and matrix decreased the nucleation rate of the discontinuous precipitates,and increased the spacing of the discontinuous precipitation layer,resulting in a lower growth rate of the discontinuous precipitates.Therefore,the addition of Mg to Cu-Ti alloys enhances the strength and improves the resistance to over-ageing.
基金Item Sponsored by National Natural Science Foundation of China(51274016)Natural Science Foundation of Beijing of China(2142009)Plan Item of Beijing Education Committee of China(KM201310005003)
文摘The microstructure, mechanical properties and wear resistance of high chromium cast steel containing boron after different heat treatments were studied by means of the optical microscopy (OM), the scanning electron microscopy (SEM), X-ray diffraction (XRD), hardness, impact toughness, tensile and pin-on-disc abrasion tests. The results show that as cast microstructures of boron-free high chromium steel consist of martensite and a few (Cr, Fe)_7C_3 carbide, and the macro-hardness of boron-free high chromium steel is 55-57 HRC. After 0.5 mass% B was added into high chromium cast steel, as-cast structure transforms into eutectic (Fe, Cr)2B, (Cr, Fe)7 (C, B)a and martensite, and the macro-hardness reaches 58-60 HRC. High temperature quenching leads to the disconnection and isolated distribution of boride, and there are many (Cr,Fe)_23 (C,B)_6 precipitated phases in the quenching structure. Quenching from 1050 ℃, high chromium steel obtained the highest hardness, and the hardness of high chromium cast steel containing boron is higher than that of boron-free high chromium steel. The change of quenching temperature has no obvious effect on impact toughness of high chromium steel, and the increase of quenching temperature leads to tensile strength having an increasing tendency. At the same quenching temperature, the wear resistance of high chromium cast steel containing boron is more excellent than that of boron-free high chromium steel. High chromium cast steel guide containing boron has good performance while using in steel bar mill.
文摘The effect of relaxation after finished rolling on structures and properties of four microalloyed steel with different content of Nb and Ti was investigated. By alloy designing and control rolling + relaxation-precipitation-control phase trail storm ati on (RPC) process, a new 800 MPa grade HSLA plate steel could be obtained, the microstructure is composite ultra-fine lath bainite/martensite. The tempering process and mechanical properties of this kind of HSLA steel were investigated. The yield strength can achieve 800 MPa, and the ductility and impact toughness is satisfied.
基金supported by the National Natural Science Foundation of China(Grant Nos.51531002,51474043 and 51571043)the Ministry of Education of China(SRFDR 20130191110018)+1 种基金Chongqing Municipal Government(CSTC2013JCYJC60001,CEC project,Two River Scholar Project and The Chief Scientist Studio Project)Fundamental Research Funds for the Central Universities(No.106112015CDJZR135515)
文摘The research and development status of casting magnesium alloys including the commercial casting alloys and the new types casting alloys are reviewed,with more attention to microstructure and mechanical properties of modified-AZ91,AM60 and WE43 alloys with various additions,and new types of low cost casting alloys and high strength casting alloys.The modification and/or refinement of Mg2 Si phase in Mg-Al-Si based casting alloys by various additions are discussed and new purifying technologies for casting magnesium alloys are introduced to improve the performance.The modified AZ81 alloy with reduced impurities is found to have the tensile strength of 280 ± 6 MPa and elongation of 16% ± 0.7%.The fatigue strength of AZ91 D alloy could be obviously improved by addition of Ce and Nd.The Mg-16Gd-2Ag-0.3Zr alloy exhibits very high tensile and yield strengths(UTS:423 MPa and YS:328 MPa);however,its elongation still needs to be improved.
基金financially supported by the fund of the Key Projects of Shaanxi Provincial International Technology Cooperation Plan(2013KW16)the Scientific Research Program funded by Shaanxi Provincial Education Department(2013JK0914)+2 种基金the State Key Laboratory of Solidifi cation Processing in NWPU(SKLSP201115)the Scientific Research Project of Xi'an University of Technology(2013CX004)the fund of the Key Laboratory of Electrical Materials and Infi ltration Technology of Shaanxi Province,China(2014)
文摘In the present research, the orthogonal experiment was carried out to investigate the influence of different austempering process parameters (i.e. austenitizing temperature and time, and austempering temperature and time) on microstructure and mechanical properties of LZQT500-7 ductile iron dense bars with 172 mm in diameter which were produced by horizontal continuous casting (HCC). The results show that the major factors influencing the hardness of austempered ductile iron (ADI) are austenitizing temperature and austempering temperature. The fraction of retained austenite increases as the austenitizing and austempering temperatures increase. When austenitizing temperature is low, acicular ferrite and retained austenite can be efifciently obtained by appropriately extending the austenitizing time. The proper austmepering time could ensure enough stability of retained austenite and prevent high carbon austenite decomposition. The optimal mechanical properties of ADI can be achieved with the fol owing process parameters: austenitizing temperature and time are 866 °C and 135 min, and austempering temperature and time are 279 °C and 135 min, respectively. The microstructure of ADI under the optimal austempering process consists of ifne acicular ferrite and a smal amount of retained austenite, and the hardness, tensile strength, yield strength, elongation and impact toughness of the bars are HBW 476, 1670 MPa, 1428 MPa, 2.93%and 25.7 J, respectively.
文摘Electron beam welding (EBW) was applied to a 10-mm-thick plate cut from Ti-6246 compressor disk. The microstructural characteristics, microhardness and room temperature tensile properties were investigated. Microstructure observations indicated that there existed plenty of thin needle-like α platelets studding in the matrix of the columnar β grains in the as-welded fusion zone (FZ). Post-weld heat treat- ment (PWHT) led to the precipitation of small secondary α platelets in the β matrix in heat affected zone and FZ. The thickness and the density of α platelets increased as the temperature of PWHT increased from 545 to 645 C. The microhardness across the Ti-6246 EBWjoint exhibited a nonuniform distribution. The hardness increased with the decrease of distance to the weld center, and reached the maximum of 467 HV in FZ when PWHT was carried out at 595 C. All the weldments tested with tension were fractured at the base material (BM) and exhibited a ductile fracture mode. The major deformation barrier in BM was the platelet α/β interfaces, however, the major deformation barrier in FZ was found to be β grain boundaries and secondary α/β interfaces. The BM with thicker platelet α phases had lower strength than the other two zones in the joint, and the BM deformed first and led to fracture in this zone.
基金the National Science Foundation of China(No.51701010)Beijing Government Funds for the Constructive Project of Central Universities(No.353139535)Thanks to Gaomi Xiangyu Company(Shandong province,China)for the gravity casting.
文摘To investigate the effect of AlsMn4Gd phase on microstructural and mechanical properties of Mg-Al-Ca magnesium alloy,two Mg-2.5AbCa and Mg-2.5Al2Ca-0.1 Al8Mn4Gd alloys were designed and compared in this work.The results show that a small amount of Gd can significantly refine a-Mg grains and change the morphology of AUCa particles.Indeed,the formed Al8Mn4Gd phase could serve as a heterogeneous nucleation site for the a-Mg grains and AbCa particles.Furthermore,the introduction of Gd not only optimized the mechanical properties of Mg-Al-Ca alloy,but also facilitated the thermal deformation(such as hot rolling).