期刊文献+
共找到31篇文章
< 1 2 >
每页显示 20 50 100
Laser powder bed fusion of high-strength Sc/Zr-modified Al–Mg alloy:phase selection,microstructural/mechanical heterogeneity,and tensile deformation behavior 被引量:6
1
作者 Zihong Wang Xin Lin +6 位作者 Nan Kang Jing Chen Hua Tan Zhe Feng Zehao Qin Haiou Yang Weidong Huang 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2021年第36期40-56,共17页
Laser powder bed fusion(L-PBF)of Sc/Zr-modified Al-based alloys has recently become a promising method for developing a new generation of high-performance Al alloys.To clarify the modification roles of Sc/Zr elements,... Laser powder bed fusion(L-PBF)of Sc/Zr-modified Al-based alloys has recently become a promising method for developing a new generation of high-performance Al alloys.To clarify the modification roles of Sc/Zr elements,an Al–4.66Mg–0.48Mn–0.72Sc–0.33Zr(wt.%)alloy was processed using L-PBF.The effect of the local solidification condition of the molten pool on the precipitation behavior of primary Al_(3)(Sc,Zr)was analyzed based on time-dependent nucleation theory.It was found that primary Al_(3)(Sc,Zr)inevitably precipitated at the fusion boundary,while its precipitation could be effectively suppressed in the inner region of the molten pool.This subsequently induced the formation of a heterogeneousα-Al matrix.After direct aging,the heredity of solidification microstructure introduced heterogeneous secondary Al_(3)(Sc,Zr)precipitates withinα-Al matrix.Owing to the inverse relationship between grain boundary strengthening and precipitation strengthening,the direct-aged sample with dual heterogeneous structures exhibited reduced mechanical heterogeneity,resulting in lowered hetero-deformation-induced hardening.The low strain-hardening capability in the direct-aged sample promoted necking instability while inducing a large Lüders elongation,which effectively improved the tensile ductility. 展开更多
关键词 Additive manufacturing Al–Mg–Sc–Zr alloys Laser powder bed fusion Heterogeneous microstructure Deformation behavior
原文传递
Microstructural evolution and dynamic recrystallization mechanisms of additively manufactured TiAl alloy with heterogeneous microstructure during hot compression 被引量:3
2
作者 Hui TAO Hui-zhong LI +5 位作者 Jia-hui LI Li WANG Wei-wei HE Xiao-fen TAN Rui ZHOU Xiao-peng LIANG 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2024年第10期3208-3220,共13页
Microstructural evolution and dynamic recrystallization(DRX)mechanisms of a Ti-48Al-2Cr-2Nb(at.%)alloy prepared by selective electron beam melting(SEBM)during hot deformation at 1150℃and 0.1 s^(-1)were investigated b... Microstructural evolution and dynamic recrystallization(DRX)mechanisms of a Ti-48Al-2Cr-2Nb(at.%)alloy prepared by selective electron beam melting(SEBM)during hot deformation at 1150℃and 0.1 s^(-1)were investigated by hot compression tests,optical microscope(OM),scanning electron microscope(SEM),electron back-scattered diffraction(EBSD)and transmission electron microscope(TEM).The results show that the initial microstructure of the as-SEBMed alloy exhibits layers of coarseγgrains and fineγ+α_(2)+(α_(2)/γ)lamellar mixture grains alternately along the building direction.During the early stage of hot deformation,deformation twins tend to form within the coarse grains,facilitating subsequent deformation,and a small number of DRX grains appear in the fine-grained regions.With the increase of strain,extensive DRX grains are formed through different DRX mechanisms in both coarse and fine-grained regions,involving discontinuous dynamic recrystallization mechanism(DDRX)in the fine-grained regions and a coexistence of DDRX and continuous dynamic recrystallization(CDRX)in the coarsegrained regions. 展开更多
关键词 TiAl alloy selective electron beam melting heterogeneous microstructure discontinuous dynamic recrystallization(DDRX) continuous dynamic recrystallization(CDRX)
在线阅读 下载PDF
Engineering heterogeneous microstructures for enhanced strength and ductility in air-cooled Al−Mg−Si alloys
3
作者 Yi-han GAO Xin-xin ZHANG +7 位作者 Jing-zhe ZHOU Peng XU Zhi-jie XIN Jun-hua GAO Yan-hao SHI You LÜ Yu-fang ZHAO Jing-yang LI 《Transactions of Nonferrous Metals Society of China》 2025年第4期1017-1031,共15页
The heterogeneity ofα-Al(Fe,Mn)Si dispersoids andβ″precipitates was tuned to enhance the strength−ductility synergy of air-cooled Al−Mg−Si alloys.Scanning electron microscopy(SEM)and transmission electron microscop... The heterogeneity ofα-Al(Fe,Mn)Si dispersoids andβ″precipitates was tuned to enhance the strength−ductility synergy of air-cooled Al−Mg−Si alloys.Scanning electron microscopy(SEM)and transmission electron microscopy(TEM)were employed to elucidate the microstructural parameters of these two strengthening phases.The results show that the microstructural heterogeneity can be triggered by the absence of homogenization,resulting in the presence of dispersoid-free zones(DFZs)and dispersoid zones(DZs),in conjunction with bimodalβ″precipitates.Further analytical calculations,from the strengthening model,clarify that the strategically dispersedα-Al(Fe,Mn)Si andβ″particles create“soft”and“hard”domains within the alloy,resultantly improving the mechanical properties. 展开更多
关键词 Al−Mg−Si alloy microstructure heterogeneity DISPERSOID nanoprecipitate mechanical property
在线阅读 下载PDF
Strength and ductility optimization of HPDC AlSi8MgCuZn2 alloys by modifying pre-aging treatment
4
作者 Yuan-hang Jiang Hui-ting Zheng +1 位作者 Fei Liu Hai-dong Zhao 《China Foundry》 SCIE EI CAS CSCD 2024年第4期343-351,共9页
Considering the components produced by high pressure die casting(HPDC)process usually with ultra-large sizes and complex morphologies,high temperature solid solution treatment is not a suitable method to further impro... Considering the components produced by high pressure die casting(HPDC)process usually with ultra-large sizes and complex morphologies,high temperature solid solution treatment is not a suitable method to further improve their mechanical properties.In this study,two-stage aging treatment with different pre-aging times was designed and employed to further improve the mechanical properties of HPDC Al8SiMgCuZn alloy.The characteristics of precipitates were evaluated by a transmission electron microscope(TEM),and the precipitation strengthening mechanism was discussed.The results reveal that the strengthening is mainly contributed by the precipitation ofβ″phase after two-stage aging,and the number density and size of the precipitates are significantly depended on the pre-aging time.The number density of precipitates is increased with the pre-aging time prolonged from 0 h to 4 h,and then decreases with the further increase of pre-aging time from 4 h to 6 h.The precipitates with the highest density and smallest size are observed after pre-aging for 4 h.After pre-aged at 100℃for 4 h and then artificial aged at 200℃for 30 min,the yield strength of 207 MPa,ultimate tensile strength of 325 MPa and elongation of 7.6%are achieved. 展开更多
关键词 high pressure die cast aluminum alloy microstructural heterogeneity mechanical properties precipitation strengthening two-stage aging
在线阅读 下载PDF
Role of heterogenous microstructure and deformation behavior in achieving superior strength-ductility synergy in zinc fabricated via laser powder bed fusion 被引量:5
5
作者 Zhi Dong Changjun Han +7 位作者 Yanzhe Zhao Jinmiao Huang Chenrong Ling Gaoling Hu Yunhui Wang Di Wang Changhui Song Yongqiang Yang 《International Journal of Extreme Manufacturing》 SCIE EI CAS CSCD 2024年第4期225-245,共21页
Zinc(Zn)is considered a promising biodegradable metal for implant applications due to its appropriate degradability and favorable osteogenesis properties.In this work,laser powder bed fusion(LPBF)additive manufacturin... Zinc(Zn)is considered a promising biodegradable metal for implant applications due to its appropriate degradability and favorable osteogenesis properties.In this work,laser powder bed fusion(LPBF)additive manufacturing was employed to fabricate pure Zn with a heterogeneous microstructure and exceptional strength-ductility synergy.An optimized processing window of LPBF was established for printing Zn samples with relative densities greater than 99%using a laser power range of 80∼90 W and a scanning speed of 900 mm s−1.The Zn sample printed with a power of 80 W at a speed of 900 mm s−1 exhibited a hierarchical heterogeneous microstructure consisting of millimeter-scale molten pool boundaries,micrometer-scale bimodal grains,and nanometer-scale pre-existing dislocations,due to rapid cooling rates and significant thermal gradients formed in the molten pools.The printed sample exhibited the highest ductility of∼12.1%among all reported LPBF-printed pure Zn to date with appreciable ultimate tensile strength(∼128.7 MPa).Such superior strength-ductility synergy can be attributed to the presence of multiple deformation mechanisms that are primarily governed by heterogeneous deformation-induced hardening resulting from the alternative arrangement of bimodal Zn grains with pre-existing dislocations.Additionally,continuous strain hardening was facilitated through the interactions between deformation twins,grains and dislocations as strain accumulated,further contributing to the superior strength-ductility synergy.These findings provide valuable insights into the deformation behavior and mechanisms underlying exceptional mechanical properties of LPBF-printed Zn and its alloys for implant applications. 展开更多
关键词 laser powder bed fusion ZINC heterogeneous microstructure bimodal grains strength-ductility synergy
在线阅读 下载PDF
A novel immiscible high entropy alloy strengthened via L1_(2)-nanoprecipitate 被引量:1
6
作者 WANG Zheng-qin FAN Ming-yu +5 位作者 ZHANG Yang LI Jun-peng LIU Li-yuan HAN Ji-hong LI Xing-hao ZHANG Zhong-wu 《Journal of Central South University》 SCIE EI CAS CSCD 2024年第6期1808-1822,共15页
The low-cost Fe-Cu,Fe-Ni,and Cu-based high-entropy alloys exhibit a widespread utilization prospect.However,these potential applications have been limited by their low strength.In this study,a novel Fe_(31)Cu_(31)Ni_(... The low-cost Fe-Cu,Fe-Ni,and Cu-based high-entropy alloys exhibit a widespread utilization prospect.However,these potential applications have been limited by their low strength.In this study,a novel Fe_(31)Cu_(31)Ni_(28)Al_(4)Ti_(3)Co_(3) immiscible high-entropy alloy(HEA)was developed.After vacuum arc melting and copper mold suction casting,this HEA exhibits a unique phase separation microstructure,which consists of striped Cu-rich regions and Fe-rich region.Further magnification of the striped Cu-rich region reveals that it is composed of a Cu-rich dot-like phase and a Fe-rich region.The aging alloy is further strengthened by a L1_(2)-Ni_(3)(AlTi)nanoprecipitates,achieving excellent yield strength(1185 MPa)and uniform ductility(~8.8%).The differential distribution of the L1_(2) nanoprecipitate in the striped Cu-rich region and the external Fe-rich region increased the strength difference between these two regions,which increased the strain gradient and thus improved hetero-deformation induced(HDI)hardening.This work provides a new route to improve the HDI hardening of Fe-Cu alloys. 展开更多
关键词 heterogeneous microstructure precipitation strengthening high-entropy alloy phase separation mechanical property
在线阅读 下载PDF
Interfacial Heterogeneous Microstructure and Subsequent Machinability of 316L/CuSn10 Bimetallic Structure Manufactured by Laser Powder Bed Fusion 被引量:1
7
作者 Jie Chen Zhongpeng Zheng +2 位作者 Di Wang Guijun Bi Yuchao Bai 《Additive Manufacturing Frontiers》 2024年第3期100-112,共13页
Additively manufactured bimetallic structures combine the advantages of dissimilar materials and can achieve localized properties through a customized composition distribution.However,additively manufactured parts may... Additively manufactured bimetallic structures combine the advantages of dissimilar materials and can achieve localized properties through a customized composition distribution.However,additively manufactured parts may still lack the dimensional accuracy and surface integrity essential for precision mechanical assemblies that the post-machining process can address.Therefore,this study aims to systematically investigate the microstructure and machinability of 316L/CuSn10 bimetallic structures fabricated using laser powder bed fusion.The results show that the fusion zone of the bimetallic structure had refined grains of microscale size owing to the mixture of the primary elements of the bimetals,which resulted in the highest microhardness of 3.4 GPa.The difference in microstructure and microhardness between the single-material and fusion zones also causes significant differences in the cutting response during the ultraprecision process.The 316L stainless steel side exhibited the highest cutting force and more severe material accumulation in the chips.The cutting force drops when cutting through the fusion zone,with an observable fracture in the chips and separation of dissimilar materials on the machined grooves,indicating that the heterogeneous properties of additively manufactured 316L/CuSn10 bimetallic structures pose challenges to the improvement of surface quality.The simulation results also showed that stress accumulation occurred in the tool path through the fusion zone owing to the higher yield strength and hardness of stainless steel,indicating that lower cutting speeds and depths of cut are favorable for reducing cutting force and improving surface quality.This study provides deep insight into the microstructure evolution mechanism and a theoretical basis for improving the surface quality of additively manufactured bimetallic structures using an ultraprecision machining process. 展开更多
关键词 Laser powder bed fusion Bimetallic structure Heterogeneous microstructures Ultra-precision machining MACHINABILITY
在线阅读 下载PDF
Fe-based high-entropy alloy with excellent mechanical properties enabled by nanosized precipitates and heterogeneous grain distribution
8
作者 Heechan Jung Sangwon Lee +3 位作者 Taehyeok Kang Alireza Zargaran Pyuck-Pa Choi Seok Su Sohn 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2024年第14期71-81,共11页
High-entropy alloys(HEAs)consisting of CoCrFeNiAlTi systems,with a face-centered cubic(FCC)matrix reinforced by ordered L12 precipitates,have demonstrated exceptional strength-ductility combinations.However,the curren... High-entropy alloys(HEAs)consisting of CoCrFeNiAlTi systems,with a face-centered cubic(FCC)matrix reinforced by ordered L12 precipitates,have demonstrated exceptional strength-ductility combinations.However,the current compositional design of HEAs heavily relies on high Ni and Co contents,compro-mising the balance between properties and cost.Thus,it is crucial to optimize the cost-performance trade-offby fine-tuning the range of Fe,Co,and Ni,while maintaining excellent strength-ductility com-bination.In this study,we propose a novel Fe-based HEA with nanosized precipitates and a heteroge-neous grain distribution,achieving a strength-ductility combination comparable to state-of-the-art Ni-or Co-based HEAs.The alloy benefits from both precipitation hardening and hetero-deformation-induced strengthening attributed to the heterogeneous grain distribution,resulting in excellent yield strength of 1433 MPa,tensile strength of 1599 MPa,and ductility of 22%.The microstructural evolution and its in-fluence on mechanical properties are unraveled with respect to the observation of precipitate-dislocation interaction and hetero-deformation-induced stress(HDI stress)evaluation.This study suggests that the challenge of balancing properties and cost can be addressed through optimized compositional and mi-crostructural design. 展开更多
关键词 High-entropy alloys Precipitation Heterogeneous microstructure Mechanical property HDI stress
原文传递
Achieving ultra-high mechanical properties in metastable Co-free medium entropy alloy via hierarchically heterogeneous microstructure
9
作者 Qiuyu Gao Xinghua Zhang +7 位作者 Shilin Feng Zhenhua Han Chen Chen Tan Wang Shaojie Wu Yongfu Cai Fushan Li Ran Wei 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2024年第16期175-183,共9页
A new metastable dual-phase Fe59 Cr13 Ni18 Al10 medium entropy alloy(MEA)with hierarchically heteroge-neous microstructure from micro-to nano-scale was designed in this work.Partially recrystallized FCC phase and lots... A new metastable dual-phase Fe59 Cr13 Ni18 Al10 medium entropy alloy(MEA)with hierarchically heteroge-neous microstructure from micro-to nano-scale was designed in this work.Partially recrystallized FCC phase and lots of NiAl-rich B2 precipitates are obtained by annealing and aging treatment.The yield strength of the MEA at room temperature(298 K)and liquid nitrogen temperature(77 K)increased from∼910 MPa and∼1250 MPa in the annealed state,respectively,to∼1145 MPa and∼1520 MPa in the aged state,while the uniform elongation maintained more than 15%.The excellent mechanical properties of the MEA both at 298 and 77 K are attributed to the co-activation of multiple strengthening mech-anisms,including fine grain,dislocation,precipitation,transformation-induced plasticity,stacking faults,and nano-twins. 展开更多
关键词 Medium entropy alloy Precipitation strengthening Heterogeneous microstructure Transformation-induced plasticity Mechanical properties
原文传递
Tensile deformation behavior of triple heterogeneous microstructure comprising fine equiaxed/coarse equiaxed/columnar grains in AlCu/AlMgSc bimetal fabricated via dual-wire arc direct energy deposition
10
作者 Yinghui Zhou Xuewei Fang +5 位作者 Xin Lin Zengyun Jian Shixing Huang Yue Wu Jie Meng Wenzhe Yang 《Journal of Materials Science & Technology》 CSCD 2024年第26期160-177,共18页
In this study,an AlCu/AlMgSc bimetallic alloy is prepared using a dual-wire arc direct energy deposition method and a triple heterogeneous microstructure(fine/coarse equiaxed grains/columnar grains)is constructed.Addi... In this study,an AlCu/AlMgSc bimetallic alloy is prepared using a dual-wire arc direct energy deposition method and a triple heterogeneous microstructure(fine/coarse equiaxed grains/columnar grains)is constructed.Additionally,a quantitative comparative analysis of the deformation behavior of triple and dual heterogeneous microstructures during interrupted tensile testing is conducted,with emphasis on the effects of grain morphology and size on the tensile deformation mechanisms in the heterogeneous microstructure.Compared with the AlCu alloy with a double heterogeneous microstructure(equiaxed/columnar grain),the AlCu/AlMgSc bimetallic alloy exhibits a higher ultimate tensile strength of 301.4±7.9 MPa,a yield strength of 181.3±1.4 MPa,and an elongation of 9.7%±1.3%,which correspond to increases by 19.4%,21.2%,and 24.4%,respectively.Interrupted tensile testing is performed and a quasi-in-situ approach is employed to investigate the plastic deformation mechanisms of the triple heterogeneous microstructure during tensile deformation.The density of geometrically necessary dislocations(GNDs)in the fine equiaxed grains and the rate of GND accumulation during deformation,surpassed those observed in coarse equiaxed and columnar grains.Furthermore,in micrometer-sized equiaxed grains,the ability to accumulate GNDs decreases as the equiaxed grain size increases,and the equiaxed grains exhibit a higher capacity to accumulate GNDs compared with columnar grains.The triple heterogeneous microstructure provides a more favorable environment for trapping GNDs,thus resulting in enhanced strength and plastic deformation capabilities.This study offers guidance for the formulation and engineering application of heterogeneous microstructure alloys with diverse grain morphologies and multiple length scales.Additionally,novel approaches are introduced to enhance the strength and ductility of Al alloys. 展开更多
关键词 Dual-wire arc direct energy deposition AlCu/AlMgSc bimetallic alloy Triple heterogeneous microstructure Geometrically necessary dislocations Mechanical properties
原文传递
Investigation of beta fleck formation in Ti-17 alloy by directional solidification method 被引量:6
11
作者 Xuchen Yin Jianrong Liu +1 位作者 Qingjiang Wang Lei Wang 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2020年第13期36-43,共8页
Beta flecks are one of the most common defects occur in someα+βandβtitanium alloys.In this study,formation of beta flecks in Ti-17 alloy was investigated by directional solidification experiments.Samples were direc... Beta flecks are one of the most common defects occur in someα+βandβtitanium alloys.In this study,formation of beta flecks in Ti-17 alloy was investigated by directional solidification experiments.Samples were directionally solidified under a constant temperature gradient of 2×10^4 K/m and a wide range of withdrawal rates(R)from 3 mm/h to 150 mm/h.We find that macrostructure of the directionally solidified Ti-17 samples can be characterized by"four zones and two lines"after the heat treatment.Profile of the solid-liquid interface transits from planar to cellular to dendritic shape with solidification rate increasing from 3 mm/h to 150 mm/h.The critical rates for planar to cellular(Rc1)transition and cellular to dendritic(Rc2)transition can be well predicted based on the traditional solidification theory.Dark and light contrast areas in macrostructure are directly related to elemental segregation.Dark contrast areas are rich of Cr,Zr but lean of Mo,while no apparent segregation is found in light contrast areas and the mean level of Cr,Zr is lower and Mo is higher in this area than that in dark contrast areas.We conclude thatβ-flecks in Ti-17 titanium alloy are induced by segregation of alloying elements with k<1 and their shape and size are determined by solidification conditions.Based on the findings of the present article and other literatures,three types ofβ-flecks are proposed and their formation mechanisms are discussed. 展开更多
关键词 Titanium ALLOY Beta flecks Directional solidification Elemental segregation Microstructure heterogeneity
原文传递
Determining role of heterogeneous microstructure in lowering yield ratio and enhancing impact toughness in high-strength low-alloy steel 被引量:11
12
作者 Yi-shuang Yu Bin Hu +5 位作者 Min-liang Gao Zhen-jia Xie Xue-quan Rong Gang Han Hui Guo Cheng-jia Shang 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2021年第5期816-825,共10页
Here we present a novel approach of intercritical heat treatment for microstructure tailoring,in which intercritical annealing is introduced between conventional quenching and tempering.This induced a heterogeneous mi... Here we present a novel approach of intercritical heat treatment for microstructure tailoring,in which intercritical annealing is introduced between conventional quenching and tempering.This induced a heterogeneous microstructure consisting of soft intercritical ferrite and hard tempered martensite,resulting in a low yield ratio(YR)and high impact toughness in a high-strength low-alloy steel.The initial yielding and subsequent work hardening behavior of the steel during tensile deformation were modified by the presence of soft intercritical ferrite after intercritical annealing,in comparison to the steel with full martensitic microstructure.The increase in YR was related to the reduction in hardness difference between the soft and hard phases due to the precipitation of nano-carbides and the recovery of dislocations during tempering.The excellent low-temperature toughness was ascribed not only to the decrease in probability of microcrack initiation for the reduction of hardness difference between two phases,but also to the increase in resistance of microcrack propagation caused by the high density of high angle grain boundaries. 展开更多
关键词 heterogeneous microstructure yield ratio impact toughness intercritical heat treatment high-strength low-alloy steel
在线阅读 下载PDF
Ductile and high strength Cu fabricated by solid-state cold spray additive manufacturing 被引量:9
13
作者 Chaoyue Chen Yingchun Xie +9 位作者 Shuo Yin Wenya Li Xiaotao Luo Xinliang Xie Ruixin Zhao Chunming Deng Jiang Wang Hanlin Liao Min Liu Zhongming Ren 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2023年第3期234-243,共10页
In this work,pure Cu with excellent strength and ductility(UTS of 271 MPa,elongation to fracture of 43.5%,uniform elongation of 30%)was prepared using cold spray additive manufacturing(CSAM),realizing a breakthrough i... In this work,pure Cu with excellent strength and ductility(UTS of 271 MPa,elongation to fracture of 43.5%,uniform elongation of 30%)was prepared using cold spray additive manufacturing(CSAM),realizing a breakthrough in the field.An in-depth investigation was conducted to reveal the microstructure evolution,strengthening and ductilization mechanisms of the CSAM Cu,as well as the single splats.The results show that the CSAM Cu possesses a unique heterogeneous microstructure with a bimodal grain structure and extensive infinitely circulating ring-mounted distribution of twinning.Based on the single splat observation,the entire copper particle forms a gradient nano-grained(GNG)structure after high-speed impact deposition.The GNG-structured single splat serves as a unit to build the heterogeneous microstructure with bimodal grain distribution during the successive deposition in CSAM.The results also show that CSAM can achieve synergistic strengthening and ductilization by controlling the grain refinement and dislocation density.This work provides potential for CSAM technique in manufacturing various metallic parts with the desired combination of high strength and good ductility without additional post-treatments. 展开更多
关键词 Cold spray additive manufacturing Copper Heterogeneous microstructure Strength DUCTILITY
原文传递
Theoretical design and distribution control of precipitates and solute elements in Al−Zn−Mg−Cu alloys with heterostructure 被引量:8
14
作者 Liang-liang YUAN Ming-xing GUO +3 位作者 Yong YAN Wei-jun FENG Zan-yang LIU Lin-zhong ZHUANG 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2021年第11期3328-3341,共14页
In order to simultaneously improve strength and formability,an analytical model for the concentration distribution of precipitates and solute elements is established and used to theoretically design and control the he... In order to simultaneously improve strength and formability,an analytical model for the concentration distribution of precipitates and solute elements is established and used to theoretically design and control the heterogeneous microstructure of Al−Zn−Mg−Cu alloys.The results show that the dissolution of precipitates is mainly affected by particle size and heat treatment temperature,the heterogeneous distribution level of solute elements diffused in the alloy matrix mainly depends on the grain size,while the heat treatment temperature only has an obvious effect on the concentration distribution in the larger grains,and the experimental results of Al−Zn−Mg−Cu alloy are in good agreement with the theoretical model predictions of precipitates and solute element concentration distribution.Controlling the concentration distribution of precipitates and solute elements in Al−Zn−Mg−Cu alloys is the premise of accurately constructing heterogeneous microstructure in micro-domains,which can be used to significantly improve the formability of Al−Zn−Mg−Cu alloys with a heterostructure. 展开更多
关键词 Al−Zn−Mg−Cu alloys concentration distribution diffusion heterogeneous microstructure model
在线阅读 下载PDF
Heterogeneous Microstructure-Induced Mechanical Responses in Various Sub-Zones of EH420 Shipbuilding Steel Welded Joint Under High Heat Input Electro-Gas Welding 被引量:5
15
作者 Xu Xie Tan Zhao +2 位作者 Heming Zhao Song Li Cong Wang 《Acta Metallurgica Sinica(English Letters)》 SCIE EI CAS CSCD 2021年第10期1427-1433,共7页
Heterogeneous microstructure-induced mechanical responses in EH420 shipbuilding steel welded joint by electro-gas welding processed have been systematically studied by scanning electron microscopy,electron backscatter... Heterogeneous microstructure-induced mechanical responses in EH420 shipbuilding steel welded joint by electro-gas welding processed have been systematically studied by scanning electron microscopy,electron backscatter diffraction and mechanical testing.Comparing with the coarse-grained heat-affected zone(CGHAZ),the weld metal presents higher toughness(129.3 J vs.37.3 J)as it contains a large number of acicular ferrites with high-angle grain boundaries(frequency 79.2%)and special grain boundary∑3(frequency 55.3%).Moreover,coarse austenite grains in CGHAZ and slender martensite–austenite constituents between bainite laths may likely facilitate crack propagation.Polygonal ferrites and tempered pearlites formed at the junction of the fine-grained heat-affected zone and the intercritical heat-affected zone induced a softened zone with an average hardness of 185 HV0.5,which is the main reason for the occurrence of tensile fracture. 展开更多
关键词 Heterogeneous microstructure Mechanical properties Electro-gas welding High heat input Shipbuilding steel
原文传递
Superior strength-plasticity synergy in a heterogeneous lamellar Ti_(2)AlC/TiAl composite with unique interfacial microstructure 被引量:8
16
作者 Pei Liu Bo Hou +3 位作者 Aiqin Wang Jingpei Xie Zhenbo Wang Feng Ye 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2023年第28期21-32,共12页
Improving the plasticity of TiAl alloys at room temperature has been a longstanding challenge for the de-velopment of next-generation aerospace engines.By adopting the nacre-like architecture design strategy,we have o... Improving the plasticity of TiAl alloys at room temperature has been a longstanding challenge for the de-velopment of next-generation aerospace engines.By adopting the nacre-like architecture design strategy,we have obtained a novel heterogeneous lamellar Ti_(2)AlC/TiAl composite with superior strength-plasticity synergy,i.e.,compressive strength of∼2065 MPa and fracture strain of∼27%.A combination of micropil-lar compression and large-scale atomistic simulation has revealed that the superior strength-plasticity synergy is attributed to the collaboration of Ti_(2)AlC reinforcement,lamellar architecture and heteroge-neous interface.More specifically,multiple deformation modes in Ti_(2)AlC,i.e.,basal-plane dislocations,atomic-scale ripples and kink bands,could be activated during the compression,thus promoting the plas-tic deformation capability of composite.Meanwhile,the lamellar architecture could not only induce sig-nificant stress redistribution and crack deflection between Ti_(2)AlC and TiAl,but also generate high-density SFs and DTs interactions in TiAl,leading to an improved strength and strain hardening ability.In addi-tion,profuse unique Ti_(2)AlC(1¯10¯3)/TiAl(111)interfaces in the composite could dramatically contribute to the strength and plasticity due to the interface-mediated dislocation nucleation and obstruction mecha-nisms.These findings offer a promising paradigm for tailoring microstructure of TiAl matrix composites with extraordinary strength and plasticity at ambient temperature. 展开更多
关键词 Ti_(2)AlC/TiAl composite Heterogeneous lamellar microstructure Micropillar compression Interface-mediated deformation Strength-plasticity synergy
原文传递
Selective laser melting of bulk immiscible alloy with enhanced strength:Heterogeneous microstructure and deformation mechanisms 被引量:4
17
作者 Shengfeng Zhou Min Xie +3 位作者 Changyi Wu Yanliang Yi Dongchu Chen Lai-Chang Zhang 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2022年第9期81-87,共7页
To overcome the dimension limits of immiscible alloys produced by traditional techniques and enhance their mechanical properties,bulk Cu-Fe-based immiscible alloy with abundant nanotwins and stacking faults was succes... To overcome the dimension limits of immiscible alloys produced by traditional techniques and enhance their mechanical properties,bulk Cu-Fe-based immiscible alloy with abundant nanotwins and stacking faults was successfully produced by selective laser melting(SLM).The SLM-produced bulk immiscible alloy displays a heterogeneous microstructure characterized by micro-scaledγ-Fe particles dispersed in fineε-Cu matrix with a high fraction(~92%)of high-angle grain boundaries.Interestingly,abundant nanotwins and stacking faults are generated in the interior of nano-scaledγ-Fe particles embedded withinε-Cu matrix.The heterogeneous interface of soft domains(ε-Cu)and hard domains(γ-Fe)not only induces the geometrically necessary dislocations(GNDs)but also affects the dislocation propagation during plastic deformation.Therefore,the bimodal heterogeneous interface,and the resistance of nanotwins and stacking faults to the propagation of partial dislocation make the bulk immiscible alloy exhibit an enhanced strength of~590 MPa and a good ductility of~8.9%. 展开更多
关键词 Immiscible alloy Selective laser melting Heterogeneous microstructure NANOTWINS Stacking faults
原文传递
Analysis on deformation and texture formation mechanism of hot-deformed Nd-Fe-B magnets based on heterogeneous structure evolution 被引量:2
18
作者 Yuyang Tang Yuqing Li +5 位作者 Xiaochang Xu Ming Yue Weiqiang Liu Hongguo Zhang Qingmei Lu Weixing Xia 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2021年第21期28-35,共8页
In this paper, microstructure, micromagnetic structure, texture, together with magnetic properties of the hot-deformed(HD) Nd-Fe-B magnets were systematically studied to understand the deformation process and the form... In this paper, microstructure, micromagnetic structure, texture, together with magnetic properties of the hot-deformed(HD) Nd-Fe-B magnets were systematically studied to understand the deformation process and the formation mechanism of c-axis texture. The results show that the platelet grains are formed in the fine-grain regions at the initial stage of the deformation. As the amount of deformation increases, the proportion of platelet grains increases and arranges gradually, causing the formation of c-axis texture, till the grain merging occurres when the deformation is excessive. It should be noted that the rare earth-rich phase in the fine-grained region slowly diffuses to the coarse-grained region where only grain growth can be observed during deformation. The deformation mechanism and formation of c-axis texture in HD Nd-Fe-B magnets can be deduced to be accomplished by the processes of dissolution-precipitation diffusion, grain rotation and grain arrangement, based on the characterization of microstructure and texture evolution. Also, approaches to optimize the preparation process and magnetic properties of the hot-deformed Nd-Fe-B magnets were discussed. 展开更多
关键词 Hot-deformed Nd-Fe-B magnet Heterogeneous microstructure Deformation mechanism C-axis texture COERCIVITY
原文传递
Achieving high strength in laser powder-bed fusion processed AlFeCuZr alloy via dual-nanoprecipitations and grain boundary segregation 被引量:2
19
作者 Jing-Yu Xu Cheng Zhang +3 位作者 Li-Xue Liu Rong Guo Ming-Jun Sun Lin Liu 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2023年第6期56-66,共11页
Additive manufacturing of aluminum alloys has received significant attention in the aerospace industry;however,achieving sufficient high strength,especially at elevated temperatures,remains challenging.Here,a crack-fr... Additive manufacturing of aluminum alloys has received significant attention in the aerospace industry;however,achieving sufficient high strength,especially at elevated temperatures,remains challenging.Here,a crack-free and near-full dense Al-1Fe-0.6Cu-1.3Zr alloy was fabricated by the laser powder bed fusion(LPBF)technique.The Al-Fe-Cu-Zr alloy exhibits heterogeneous microstructures with two distinct zones.One is the so-called coarse-grain zones(CGZs)with an average grain size of 0.95μm,where(Al,Cu)Fe_(3) nanoparticles precipitate in the Al matrix and Fe and Cu cosegregate at the grain boundaries(GBs).The other is fine-grain zones(FGZs)with an average grain size of 0.45μm,where an Al 3 Zr nanoparti-cle precipitates in each of theα-Al grains(serves as the nuclei),and Fe-rich nanoprecipitates and Fe/Cu cosegregation appear at the GBs.As a result,the LPBF Al-Fe-Cu-Zr alloy,with these unique heteroge-neous structures,displays high strength at both room temperature and elevated temperatures,e.g.,with high yield strengths of 500 MPa at room temperature,and 163 MPa at 573 K,both are higher than those of additive manufactured Al-based alloys reported thus far.It is suggested that the high strength over a wide temperature range of the current LPBF Al alloy is mainly attributed to the combination of the precipitation strengthening mechanism and grain-boundary strengthening mechanism. 展开更多
关键词 Laser powder bed fusion Aluminum alloy Heterogeneous microstructure NANOPRECIPITATION High strength
原文传递
Inhomogeneity of microstructure and mechanical properties in the nugget of friction stir welded thick 7075 aluminum alloy joints 被引量:12
20
作者 Yuqing Mao Liming Ke +2 位作者 Yuhua Chen Fencheng Liu Li Xing 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2018年第1期228-236,共9页
In this study, 20 mm thick AA7075-T6 alloy plates were joined by friction stir welding. The microstructure and mechanical properties of the nugget zone along the thickness direction from the top to the bottom was inve... In this study, 20 mm thick AA7075-T6 alloy plates were joined by friction stir welding. The microstructure and mechanical properties of the nugget zone along the thickness direction from the top to the bottom was investigated. The results showed that the microstructure including the grain size, the degree of dynamic recrystallization, the misorientation angle distribution and the precipitation phase containing its size, type and content exhibited a gradient distribution along the thickness direction. The testing results of mechanical properties of the slices showed that the nugget was gradually weakened along the depth from the top to the bottom. The maximum ultimate tensile strength, yield strength and elongation of the slice in the nugget top-middle are obtained, which are 415 MPa, 255 MPa and 8.1%, respectively. 展开更多
关键词 AA7075 thick plate Friction stir welding Nugget heterogeneity Microstructure Mechanical properties
原文传递
上一页 1 2 下一页 到第
使用帮助 返回顶部