期刊文献+
共找到30篇文章
< 1 2 >
每页显示 20 50 100
Microstructural design in LaCe misch-metal substituted 2:14:1-type sintered magnets by dual-alloy method 被引量:2
1
作者 Kan Chen Shuai Guo +6 位作者 Hongliang Zhao Xiaodong Fan Fengchun Fan Guangfei Ding Renjie Chen Xiwen Zheng Aru Yan 《Journal of Rare Earths》 SCIE EI CAS CSCD 2021年第3期305-311,I0003,共8页
LaCe-based sintered magnets with different microstructural features and distinct rare earth elemental distribution were designed by dual-alloy method.The sample prepared by fine LaCe-containing powder and coarse LaCe-... LaCe-based sintered magnets with different microstructural features and distinct rare earth elemental distribution were designed by dual-alloy method.The sample prepared by fine LaCe-containing powder and coarse LaCe-free powder possesses higher remanence(~13.41 kGs),whereas another sample prepared by fine LaCe-free powder and coarse LaCe-containing powder possesses higher coercivity(~5.67 kOe).Additionally,these samples are with the same nominal compositions and their elemental distribution features are obviously different in matrix grains respectively.Their remanence difference is mainly affected by the saturation magnetization difference caused by the distribution variation of the rare earth elements at the matrix phase.The coercivity difference is affected by the component of the grain boundary phase between the adjacent grains and the distribution variation of the rare earth elements at the matrix phase.These findings may provide a new prospect for the utilization of LaCe mischmetal in 2:14:1-type permanent magnets. 展开更多
关键词 Misch-metal microstructural design Sintered magnet Rare earths
原文传递
Synergistic enhancement of strength and plasticity in CoCrFeNiMn high-entropy alloys by novel core−shell microstructure design
2
作者 Chong-yang LIU Xiao-song JIANG +2 位作者 Hong-liang SUN Zi-xuan WU Liu YANG 《Transactions of Nonferrous Metals Society of China》 2025年第10期3428-3442,共15页
The novel core−shell SiC@CoCrFeNiMn high-entropy alloy(HEA)matrix composites(SiC@HEA)were successfully prepared via mechanical ball milling and vacuum hot-pressing sintering(VHPS).After sintering,the microstructure wa... The novel core−shell SiC@CoCrFeNiMn high-entropy alloy(HEA)matrix composites(SiC@HEA)were successfully prepared via mechanical ball milling and vacuum hot-pressing sintering(VHPS).After sintering,the microstructure was composed of FCC solid solution,Cr_(23)C_(6) carbide phases,and Mn_(2)SiO_(4) oxy-silicon phase.The relative density,hardness,tensile strength,and elongation of SiC@HEA composites with 1.0 wt.%SiC were 98.5%,HV 358.0,712.3 MPa,and 36.2%,respectively.The core−shell structure had a significant deflecting effect on the cracks.This effect allowed the composites to effectively maintain the excellent plasticity of the matrix.As a result,the core−shell SiC@HEA composites obtained superior strength and plasticity with multiple mechanisms. 展开更多
关键词 high-entropy alloy SiC nanoparticles microstructure design core−shell structure tensile properties strength and plasticity synergy
在线阅读 下载PDF
Smooth topological design of material microstructures based on floating projection
3
作者 Zihao MENG Yiru REN 《Chinese Journal of Aeronautics》 2025年第9期477-488,共12页
Topology optimization stands as a pivotal technique in realizing periodic microstructure design.A novel approach is proposed,integrating the energy-based homogenization method with the Floating Projection Topology Opt... Topology optimization stands as a pivotal technique in realizing periodic microstructure design.A novel approach is proposed,integrating the energy-based homogenization method with the Floating Projection Topology Optimization(FPTO)method to achieve smooth topology design.The objective is to optimize the periodic microstructure to maximize the properties of specific materials,such as bulk modulus and shear modulus,or to achieve negative Poisson's ratio.Linear material interpolation is used to eliminate the nonlinear challenges and design dependence caused by material penalty.Furthermore,the three-field density representation technique is applied to augment length scales and solid/void characteristics.Through systematic analysis and numerical simulations,the impacts of various initial designs and optimization parameters on the optimization outcomes are investigated.The results demonstrate that the optimized periodic microstructures exhibit extreme performance with clear boundaries.The identification of appropriate optimization parameters is crucial for enhancing the extreme mechanical properties of material microstructures.It can provide valuable guidance for aerospace component design involving material microstructures and metamaterials. 展开更多
关键词 Energy-based homogenization method Floating projection Periodic microstructure design Smooth boundary Topology optimization
原文传递
Microstructural Topology Optimization for Periodic Beam-Like Structures Using Homogenization Method
4
作者 Jiao Jia Xin He +1 位作者 Zhenchen Liu Shiqing Wu 《Computer Modeling in Engineering & Sciences》 2025年第6期3215-3231,共17页
As primary load-bearing components extensively utilized in engineering applications,beam structures necessitate the design of their microstructural configurations to achieve lightweight objectives while satisfying div... As primary load-bearing components extensively utilized in engineering applications,beam structures necessitate the design of their microstructural configurations to achieve lightweight objectives while satisfying diverse mechanical performance requirements.Combining topology optimization with fully coupled homogenization beam theory,we provide a highly efficient design tool to access desirable periodic microstructures for beams.The present optimization framework comprehensively takes into account for key deformation modes,including tension,bending,torsion,and shear deformation,all within a unified formulation.Several numerical results prove that our method can be used to handle kinds of microstructure design for beam-like structures,e.g.,extreme tension(compression)-torsion stiffness,maximization of minimum critical buckling load,and minimization of structural compliance.When optimizing microstructures for macroscopic performance,we emphasize investigating the influence of shear stiffness on the optimized results.The novel chiral beam-like structures are fabricated and tested.The experimental results indicate that the optimized tension(compression)-torsion structure has excellent buffer characteristics,as compared with the traditional square tube.This proposed optimization framework can be further extended to other physical problems of Timoshenko beams. 展开更多
关键词 Microstructure design topology optimization periodic beam homogenization theory
在线阅读 下载PDF
Biomechanical Study of Different Scaffold Designs for Reconstructing a Traumatic Distal Femur Defect Using Patient-Specific Computational Modeling
5
作者 Hsien-Tsung Lu Ching-Chi Hsu +1 位作者 Qi-Quan Jian Wei-Ting Chen 《Computer Modeling in Engineering & Sciences》 2025年第2期1883-1898,共16页
Reconstruction of a traumatic distal femur defect remains a therapeutic challenge.Bone defect implants have been proposed to substitute the bone defect,and their biomechanical performances can be analyzed via a numeri... Reconstruction of a traumatic distal femur defect remains a therapeutic challenge.Bone defect implants have been proposed to substitute the bone defect,and their biomechanical performances can be analyzed via a numerical approach.However,the material assumptions for past computational human femur simulations were mainly homogeneous.Thus,this study aimed to design and analyze scaffolds for reconstructing the distal femur defect using a patient-specific finite element modeling technique.A three-dimensional finite element model of the human femur with accurate geometry and material distribution was developed using the finite element method and material mapping technique.An intact femur and a distal femur defect model treated with nine microstructure scaffolds and two solid scaffolds were investigated and compared under a single-leg stance loading.The results showed that the metal solid scaffold design could provide the most stable fixation for reconstructing the distal femur defect.However,the fixation stability was affected by various microstructure designs and pillar diameters.A microstructure scaffold can be designed to satisfy all the biomechanical indexes,opening up future possibilities for more stable reconstructions.A three-dimensional finite element model of the femur with real bone geometry and bone material distribution can be developed,and this patient-specific femur model can be used for studying other femoral fractures or injuries,paving the way for more comprehensive research in the field.Besides,this patient-specific finite element modeling technique can also be applied to developing other human or animal bone models,expanding the scope of biomechanical research. 展开更多
关键词 Patient-specific modeling distal femur bone defect microstructure design finite element analysis
暂未订购
Evaluating the Effects of Grain Anisotropy on the Effective Chemo-Mechanical Properties of Secondary Particles in Lithium-Ion Batteries
6
作者 Bisheng Hu Ying Zhao 《Acta Mechanica Solida Sinica》 2025年第3期415-425,共11页
The microstructure of positive electrode polycrystalline particles(secondary particles)directly affects their diffusion and mechanical properties.In this study,a quantitative evaluation of the effects of grain anisotr... The microstructure of positive electrode polycrystalline particles(secondary particles)directly affects their diffusion and mechanical properties.In this study,a quantitative evaluation of the effects of grain anisotropy on the overall diffusion and mechanical properties of secondary particles is conducted,which is based on a simplified 2D polycrystalline model with hexagonal anisotropic grains(primary particles)with different distributed orientations.The research results indicate that consistent grain orientation can promote the uniform distribution of lithium ions,while lower diffusion anisotropy can promote the diffusion of lithium ions along shorter paths,thereby improving the diffusion properties of secondary particles.Lower elastic anisotropy of grains and a grain orientation distribution with a 60°angle favor maintaining the macroscopic elastic isotropy of secondary particles.The study also found that when the number of grains is large enough and the orientation distribution is sufficiently random,secondary particles exhibit macroscopic diffusion isotropy and elastic isotropy. 展开更多
关键词 Lithium-ion batteries Grain anisotropy Microstructure design Chemo-mechanical coupling
原文传递
Topology Optimal Design of Material Microstructures Using Strain Energy-based Method 被引量:26
7
作者 Zhang Weihong Wang Fengwen Dai Gaoming Sun Shiping 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2007年第4期320-326,共7页
Sensitivity analysis and topology optimization of microstructures using strain energy-based method is presented. Compared with homogenization method, the strain energy-based method has advantages of higher computing e... Sensitivity analysis and topology optimization of microstructures using strain energy-based method is presented. Compared with homogenization method, the strain energy-based method has advantages of higher computing efficiency and simplified programming. Both the dual convex programming method and perimeter constraint scheme are used to optimize the 2D and 3D microstructures. Numerical results indicate that the strain energy-based method has the same effectiveness as that of homogenization method for orthotropic materials. 展开更多
关键词 strain energy-based method homogenization method microstructure design topology optimization
在线阅读 下载PDF
Composition Optimization and Microstructure Design in MOFs-Derived Magnetic Carbon-Based Microwave Absorbers:A Review 被引量:14
8
作者 Honghong Zhao Fengyuan Wang +3 位作者 Liru Cui Xianzhu Xu Xijiang Han Yunchen Du 《Nano-Micro Letters》 SCIE EI CAS CSCD 2021年第12期383-415,共33页
Magnetic carbon-based composites are the most attractive candidates for electromagnetic(EM)absorption because they can terminate the propagation of surplus EM waves in space by interacting with both electric and magne... Magnetic carbon-based composites are the most attractive candidates for electromagnetic(EM)absorption because they can terminate the propagation of surplus EM waves in space by interacting with both electric and magnetic branches.Metal-organic frameworks(MOFs)have demonstrated their great potential as sacrificing precursors of magnetic metals/carbon composites,because they provide a good platform to achieve high dispersion of magnetic nanoparticles in carbon matrix.Nevertheless,the chemical composition and microstructure of these composites are always highly dependent on their precursors and cannot promise an optimal EM state favorable for EM absorption,which more or less discount the superiority of MOFs-derived strategy.It is hence of great importance to develop some accompanied methods that can regulate EM properties of MOFs-derived magnetic carbon-based composites e ectively.This review comprehensively introduces recent advancements on EM absorption enhancement in MOFs-derived magnetic carbon-based composites and some available strategies therein.In addition,some challenges and prospects are also proposed to indicate the pending issues on performance breakthrough and mechanism exploration in the related field. 展开更多
关键词 Magnetic carbon-based composites Metal–organic frameworks Composition optimization Microstructure design EM absorption enhancement
在线阅读 下载PDF
Materials Design of Microstructure in Grain Boundary and Second Phase Particles 被引量:4
9
作者 Yaping ZONG and Liang ZUODepartment of Materials Science and Engineering, Northeastern University, Shenyang 110004, China 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2003年第2期97-101,共5页
A concept of microstructure design for materials or materials microstructure engineering is proposed. The argument was suggested based on literature review and. some our new research work on second phase strengthening... A concept of microstructure design for materials or materials microstructure engineering is proposed. The argument was suggested based on literature review and. some our new research work on second phase strengthening mechanisms and mechanical property modeling of a particulate reinforced metal matrix composite. Due to development of computer technology, it is possible now for us to establish the relationship between microstructures and properties systematically and quantitatively by analytical and numerical modeling in the research scope of computerization materials. Discussions and examples on intellectual optimization of microstructure are presented on two aspects: grain boundary engineering and optimal geometry of particulate reinforcements in two-phase materials. 展开更多
关键词 Microstructure design Particulate reinforcement Grain boundary engineering Strengthening mechanism Eshelby approach Numerical modelling
在线阅读 下载PDF
A LEVEL SET METHOD FOR MICROSTRUCTURE DESIGN OF COMPOSITE MATERIALS 被引量:1
10
作者 MeiYnlin WangXiaoming 《Acta Mechanica Solida Sinica》 SCIE EI 2004年第3期239-250,共12页
Based on a level set model and the homogenization theory, an optimization al- gorithm for ?nding the optimal con?guration of the microstructure with speci?ed properties is proposed, which extends current resea... Based on a level set model and the homogenization theory, an optimization al- gorithm for ?nding the optimal con?guration of the microstructure with speci?ed properties is proposed, which extends current research on the level set method for structure topology opti- mization. The method proposed employs a level set model to implicitly describe the material interfaces of the microstructure and a Hamilton-Jacobi equation to continuously evolve the ma- terial interfaces until an optimal design is achieved. Meanwhile, the moving velocities of level set are obtained by conducting sensitivity analysis and gradient projection. Besides, how to handle the violated constraints is also discussed in the level set method for topological optimization, and a return-mapping algorithm is constructed. Numerical examples show that the method exhibits outstanding ?exibility of handling topological changes and ?delity of material interface represen- tation as compared with other conventional methods in literatures. 展开更多
关键词 level set method HOMOGENIZATION gradient projection microstructures design
在线阅读 下载PDF
Design of elliptical underwater acoustic cloak with truss-latticed pentamode materials 被引量:1
11
作者 Yuanyuan Ge Xiaoning Liu Gengkai Hu 《Theoretical & Applied Mechanics Letters》 CAS CSCD 2022年第4期221-226,共6页
Pentamode acoustic cloak is promising for underwater sound control due to its solid nature and broadband efficiency,however its realization is only limited to simple cylindrical shape.In this work,we established a set... Pentamode acoustic cloak is promising for underwater sound control due to its solid nature and broadband efficiency,however its realization is only limited to simple cylindrical shape.In this work,we established a set of techniques for the microstructure design of elliptical pentamode acoustic cloak based on truss lattice model,including the inverse design of unit cell and algorithms for latticed cloak assembly.The designed cloak was numerically validated by the well wave concealing performance.The work proves that more general pentamode acoustic wave devices beyond simple cylindrical geometry are theoretically feasible,and sheds light on more practical design for waterborne sound manipulation. 展开更多
关键词 Elliptical acoustic cloak Pentamode material Microstructure design Truss lattice
在线阅读 下载PDF
Deep Reinforcement Learning for Multi-Phase Microstructure Design 被引量:1
12
作者 Jiongzhi Yang Srivatsa Harish +3 位作者 Candy Li Hengduo Zhao Brittney Antous Pinar Acar 《Computers, Materials & Continua》 SCIE EI 2021年第7期1285-1302,共18页
This paper presents a de-novo computational design method driven by deep reinforcement learning to achieve reliable predictions and optimum properties for periodic microstructures.With recent developments in 3-D print... This paper presents a de-novo computational design method driven by deep reinforcement learning to achieve reliable predictions and optimum properties for periodic microstructures.With recent developments in 3-D printing,microstructures can have complex geometries and material phases fabricated to achieve targeted mechanical performance.These material property enhancements are promising in improving the mechanical,thermal,and dynamic performance in multiple engineering systems,ranging from energy harvesting applications to spacecraft components.The study investigates a novel and efficient computational framework that integrates deep reinforcement learning algorithms into finite element-based material simulations to quantitatively model and design 3-D printed periodic microstructures.These algorithms focus on improving the mechanical and thermal performance of engineering components by optimizing a microstructural architecture to meet different design requirements.Additionally,the machine learning solutions demonstrated equivalent results to the physics-based simulations while significantly improving the computational time efficiency.The outcomes of the project show promise to the automation of the design and manufacturing of microstructures to enable their fabrication in large quantities with the utilization of the 3-D printing technology. 展开更多
关键词 Deep learning reinforcement learning microstructure design
在线阅读 下载PDF
Alloy Design of Gamma(TiAl)Alloys 被引量:1
13
作者 Young-Won KIM(UES, Inc., Dayton, OH 45432, USA) 《Acta Metallurgica Sinica(English Letters)》 SCIE EI CAS CSCD 1995年第Z1期319-328,共10页
Unbalanced properties for both fine-grained gamma and coarse-grained lamellar microstructures typically produced in gamma alloys are described. Efforts for the improvements are reviewed along with some experimental re... Unbalanced properties for both fine-grained gamma and coarse-grained lamellar microstructures typically produced in gamma alloys are described. Efforts for the improvements are reviewed along with some experimental results. Empirical improvements have been made in cast alloys, which have led gamma alloys to a viable materials technology and to the development of various application areas for gas turbine engines as well as automotive engines. Efforts to understand fundamental and applied aspects leading to the improvements are assessed for wrought alloys. Optimization of microstructures through process control,innovative heat treatments, alloy chemistry modification and their combinations have progressed in the endeavor. Similar efforts have just begun for cast alloys where work on fundamental understanding has been lagging. Future directions are suggested for further improvements and predicted for the development of higher temperature/performance alloys. 展开更多
关键词 gamma TiAl cast alloys wrought alloys designed microstructures...
在线阅读 下载PDF
A MICROMECHANICS ANALYSIS FOR THE MICROSTRUCTURE DESIGN OF A TWO-PHASE PSEUDOELASTIC COMPOSITE
14
作者 孙庆平 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 1994年第2期162-168,共7页
A micromechanics analysis on the possibility of designing a two-phase pseudoelastic composite is made for the case where ductile transformable shape mem- ory alloy plastic particles are imbedded coherently in an elast... A micromechanics analysis on the possibility of designing a two-phase pseudoelastic composite is made for the case where ductile transformable shape mem- ory alloy plastic particles are imbedded coherently in an elastic matrix. It is demon- strated that a pseudoelastic stress-strain loop in a macroscopic loading-unloading cy- cle can be obtained by microscopically stress induced forward and reverse martensitic transformations in the SMA particles. The relation between the macroscopic stress- strain response and the material parameters of the constituents of this composite is quantified through the micromechanics calculations, which reveals that the best duc- tility and thus the greatest energy absorption capacity of this novel microstructure can be obtained by the optimum material design. 展开更多
关键词 COMPOSITE optimum material design two-phase pseudoelastic composite microstructure design
在线阅读 下载PDF
Topology Optimization of Metamaterial Microstructures for Negative Poisson’s Ratio under Large Deformation Using a Gradient-Free Method
15
作者 Weida Wu Yiqiang Wang +1 位作者 Zhonghao Gao Pai Liu 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第5期2001-2026,共26页
Negative Poisson’s ratio(NPR)metamaterials are attractive for their unique mechanical behaviors and potential applications in deformation control and energy absorption.However,when subjected to significant stretching... Negative Poisson’s ratio(NPR)metamaterials are attractive for their unique mechanical behaviors and potential applications in deformation control and energy absorption.However,when subjected to significant stretching,NPR metamaterials designed under small strain assumption may experience a rapid degradation in NPR performance.To address this issue,this study aims to design metamaterials maintaining a targeted NPR under large deformation by taking advantage of the geometry nonlinearity mechanism.A representative periodic unit cell is modeled considering geometry nonlinearity,and its topology is designed using a gradient-free method.The unit cell microstructural topologies are described with the material-field series-expansion(MFSE)method.The MFSE method assumes spatial correlation of the material distribution,which greatly reduces the number of required design variables.To conveniently design metamaterials with desired NPR under large deformation,we propose a two-stage gradient-free metamaterial topology optimization method,which fully takes advantage of the dimension reduction benefits of the MFSE method and the Kriging surrogate model technique.Initially,we use homogenization to find a preliminary NPR design under a small deformation assumption.In the second stage,we begin with this preliminary design and minimize deviations in NPR from a targeted value under large deformation.Using this strategy and solution technique,we successfully obtain a group of NPR metamaterials that can sustain different desired NPRs in the range of[−0.8,−0.1]under uniaxial stretching up to 20% strain.Furthermore,typical microstructure designs are fabricated and tested through experiments.The experimental results show good consistency with our numerical results,demonstrating the effectiveness of the present gradientfree NPR metamaterial design strategy. 展开更多
关键词 Topology optimization microstructural design negative Poisson’s ratio large deformation
在线阅读 下载PDF
Strengthening Mechanisms and Mechanical Characteristics of Heterogeneous CNT/Al Composites by Finite Element Simulation
16
作者 Hui Feng Shu Yang +3 位作者 Shengyuan Yang Li Zhou Junfan Zhang Zongyi Ma 《Acta Metallurgica Sinica(English Letters)》 SCIE EI CAS CSCD 2024年第12期2106-2120,共15页
The refined explicit finite element scheme considering various strengthening mechanisms and damage modes is proposed for simulation of deformation processes and mechanical properties of carbon nanotube(CNT)-reinforced... The refined explicit finite element scheme considering various strengthening mechanisms and damage modes is proposed for simulation of deformation processes and mechanical properties of carbon nanotube(CNT)-reinforced bimodal-grained aluminum matrix nanocomposites.Firstly,the detailed microstructure model is established by constructing the geometry models of CNTs and grain boundaries,which automatically incorporates grain refinement strengthening and load transfer effect.Secondly,a finite element formulation based on the conventional theory of mechanical-based strain gradient plasticity is developed.Furthermore,the deformation and fracture modes for the nanocomposites with various contents and distributions of coarse grains(CGs)are explored based on the scheme.The results indicate that ductility of the composites first increases and then decreases as the content of CGs rises.Moreover,the dispersed distribution exhibits better ductility than concentrated one.Additionally,grain boundaries proved to be the weakest component within the micromodel.A series of interesting phenomena have been observed and discussed upon the refined simulation scheme.This work contributes to the design and further development of CNT/Al nanocomposites,and the proposed scheme can be extended to various bimodal metal composites. 展开更多
关键词 Mechanical properties Carbon nanotube(CNT) Bimodal metal matrix nanocomposites Refined explicit finite element simulation Microstructure design
原文传递
Effects of La_(2)O_(3) addition on microstructure development and physical properties of harder ZTA-CeO_(2) composites with sustainable high fracture toughness 被引量:3
17
作者 Zhwan Dilshad Ibrahim Sktani Nik Akmar Rejab +2 位作者 Abdul Fatah Zulkarnain Rosli Ali Arab Zainal Arifin Ahmad 《Journal of Rare Earths》 SCIE EI CAS CSCD 2021年第7期844-849,I0003,共7页
The influence of La_(2)O_(3) inclusion(0-3 wt%) on the micro structure,phase formation and mechanical properties of zirconia toughed alumina(ZTA) added with 5.0 wt% CeO_(2) was investigated.ZTA CeO_(2) composites were... The influence of La_(2)O_(3) inclusion(0-3 wt%) on the micro structure,phase formation and mechanical properties of zirconia toughed alumina(ZTA) added with 5.0 wt% CeO_(2) was investigated.ZTA CeO_(2) composites were sintered at 1600℃ for 4 h.The microstructure,phase formation,density,fracture toughness and hardness properties were characterised through FESEM,Microscopy Image Analysis Software and XRD diffractometer,Archimedes principle and Vickers indentation technique,respectively.The XRD,image processing and FESEM reveal the existence of LaAl_(11)O_(18).The addition of La_(2)O_(3) incites the sintering,microstructure refinement,densification of ZTA-CeO_(2) matrix and phase transformation.Hence,the hardness of ZTA-CeO_(2) ceramics is increased rapidly based on refinement of Al_(2)O_(3) grains,densification of ZTA-CeO_(2) composites and porosity reduction.It is observed that the fracture toughness is enhanced through in situ formation of elongated LaAl_(11)O_(18) grains.The addition of 0.7 wt% La_(2)O_(3) culminated in the achievement of the optimum findings for density(4.41 g/cm^(3)),porosity(0.46%),hardness(1792 HV) and fracture toughness(8.8 MPa·m^(1/2)).Nevertheless,excess La_(2)O_(3) is proven to be detrimental as it displays poor mechanical properties due to the poor compactness of numerous LaAl_(11)O_(18) grains,coarsening of Al_(2)O_(3) grains and decline in density. 展开更多
关键词 ZTA-CeO_(2) Ceramic composite microstructural design Fracture toughness Vickers hardness Rare earths
原文传递
INTERMETALLICS AS SUBSTITUTES FOR SUPERALLOYS 被引量:5
18
作者 J. Zhang D. Feng Z. Y. Zhong 《Acta Metallurgica Sinica(English Letters)》 SCIE EI CAS CSCD 2005年第4期463-467,共5页
The application advances of TiAl, Ti3Al and Ni3Al base aUoys were denumstrated by Central Iron and Steel Research Institute, China. The recent research progresses on improving the reliability of cast TiAI were mainly ... The application advances of TiAl, Ti3Al and Ni3Al base aUoys were denumstrated by Central Iron and Steel Research Institute, China. The recent research progresses on improving the reliability of cast TiAI were mainly presented and discussed. The characteristics of the self-oriented lamellar microstructure in cast TiAI were investigated in both as cast and as HlPed states. Based on the mechanical anisotropy of the cast lamellar microstructure, the component specific microstrueture design was proposed for a better performance and reliability of cast TiAl. 展开更多
关键词 INTERMETALLIC APPLICATION TiAl alloy microstructure design
在线阅读 下载PDF
Hierarchical microstructure and two-stage corrosion behavior of a high-performance near-eutectic Zn-Li alloy 被引量:4
19
作者 Zhen Li Zhang-Zhi Shi +3 位作者 Hai-Jun Zhang Hua-Fang Li Yun Feng Lu-Ning Wang 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2021年第21期50-65,共16页
In order to improve mechanical and corrosion properties of biodegradable pure Zn,a knowledge-based microstructure design is performed on Zn-Li alloy system composed of hard β-LiZn_(4) and soft Zn phases.Precipitation... In order to improve mechanical and corrosion properties of biodegradable pure Zn,a knowledge-based microstructure design is performed on Zn-Li alloy system composed of hard β-LiZn_(4) and soft Zn phases.Precipitation and multi-modal grain structure are designed to toughen β-LiZn_(4) while strengthen Zn,resulting in high strength and high ductility for both the phases.Needle-like secondary Zn precipitates form in β-LiZn4,while fine-scale networks of string-like β-LiZn4 precipitates form in Zn with a tri-modal grain structure.As a result,near-eutectic Zn-0.48 Li alloy with an outstanding combination of high strength and high ductility has been fabricated through hot-warm rolling,a novel fabrication process to realize the microstructure design.The as-rolled alloy has yield strength(YS) of 246 MPa,the ultimate tensile strength(UTS) of 395 MPa and elongation to failure(EL) of 47 %.Immersion test in simulated body fluid(SBF) for 30 days reveals that Li-rich products form preferentially at initial stage,followed by Zn-rich products with prolonged time.Aqueous insoluble Li_(2) CO_(3) forms a protective passivation film on the alloy surface,which suppresses the average corrosion rate from 81.2 μm/year at day one down dramatically to 18.2 μm/year at day five.Afterwards,the average corrosion rate increases slightly with decrease of Li2 CO_(3) content,which undulates around the clinical requirements on corrosion resistance(i.e.,20 μm/year) claimed for biodegradable metal stents. 展开更多
关键词 Zn alloy Microstructure design Mechanical properties Interfacial structure Corrosion passivation
原文传递
Applied Strain Field on Microstructure Optimization of Ti-Al-Nb Alloy Computer Simulated by Phase Field Approach 被引量:3
20
作者 Wei GUO Yaping ZONG +1 位作者 Gang WANG Liang ZUO Department of Materials Science and Engineeing,Northeastern University,Shenyang 110004, China 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2004年第3期245-248,共4页
The effects of applied tensile strain on the coherent α_2→O-phase transformation in Ti-Al-Nb alloys are explored bycomputer simulation using a phase-field method. The focus is on the influence of the applied strain ... The effects of applied tensile strain on the coherent α_2→O-phase transformation in Ti-Al-Nb alloys are explored bycomputer simulation using a phase-field method. The focus is on the influence of the applied strain direction onthe microstructure and volume fraction of the O-phase precipitates. It is found that altering applied strain directioncan modify microstructure of Ti-25Al-10~12Nb (at. pct) alloy during α_2→O-phase transformation effectively andfull laminate microstructure in the Ti-25Al-10Nb (at. pct) alloy can be realized by an applied strain only along thedirection 30°away from the α_2 phase <1010> in magnitude equivalent to the stress-free transformation strain. Thesimulation also shows that not only the magnitude of applied strain but also the applied strain direction influencesthe O-phase volume fraction and the effect of strain direction on the volume fraction is up to 25%. 展开更多
关键词 Phase field simulation Strain induced phase transformation Ti-Al-Nb alloy Computerization materials Microstructure evoutionv Precipitates geometry Microstructure design
在线阅读 下载PDF
上一页 1 2 下一页 到第
使用帮助 返回顶部