Accurate detection and picking of the P-phase onset time in noisy microseismic data from underground mines remains a big challenge. Reliable P-phase onset time picking is necessary for accurate source location needed ...Accurate detection and picking of the P-phase onset time in noisy microseismic data from underground mines remains a big challenge. Reliable P-phase onset time picking is necessary for accurate source location needed for planning and rescue operations in the event of failures. In this paper, a new technique based on the discrete stationary wavelet transform (DSWT)and higher order statist!cs, is proposed for processing noisy data from underground mines. The objectives of this method are to (1) Improve manual detection and tPicking of P-phase onset; and (ii) provide an automatic means of detecting and picking P-phase onset me accurately. The DSWT is first used to filter the signal over several scales. The manual P-phase onset detection and picking are then obtained by computing the signal energy across selected scales with frequency bands that capture the signal of interest. The automatic P-phase onset, on the other hand, is achieved by using skewness- and kurtosis-based criterion applied to selected scales in a time-frequency domain. The method was tested using synthetic and field data from an underground limestone mine. Results were compared with results obtained by using the short-term to long-term average (STA/LTA) ratio and that by Reference Ge et al. (2009). The results show that the me!hod provides a more reliable estimate of the P-phase onset arrival than the STA]LTA method when the signal to noise ratio is very low. Also, the results obtained from the field data matched accurately with the results from Reference Ge et al. (2009).展开更多
This paper selects some representative regions to obtain their G-R relation curves according to their seismicity characteristics,by using ML≥2.0 microseismicity data(1970~1993)in North China.The annual occurrence rat...This paper selects some representative regions to obtain their G-R relation curves according to their seismicity characteristics,by using ML≥2.0 microseismicity data(1970~1993)in North China.The annual occurrence rate of events of each magnitude can be inferred from the G-R relation.At the same tune,the actual annual occurrence rate of earthquakes of higher magnitudes can be calculated from historical earthquakes(1300-1993)recorded in the same region.It seems that both results are almost the same.Therefore,the rate of events of higher magnitudes can be obtained by using microseismicity data when the proper region is selected.However,two points should be noticed:(1)The method can only give the annual occurrence rate in a seismicity system and estimate the whole situation of the system.(2)When there is a very large earthquake in and near the period in which the microseismicity data are applied,the actual occurrence rate of the system,including this larger earthquake,cannot be obtained by this method.展开更多
文摘Accurate detection and picking of the P-phase onset time in noisy microseismic data from underground mines remains a big challenge. Reliable P-phase onset time picking is necessary for accurate source location needed for planning and rescue operations in the event of failures. In this paper, a new technique based on the discrete stationary wavelet transform (DSWT)and higher order statist!cs, is proposed for processing noisy data from underground mines. The objectives of this method are to (1) Improve manual detection and tPicking of P-phase onset; and (ii) provide an automatic means of detecting and picking P-phase onset me accurately. The DSWT is first used to filter the signal over several scales. The manual P-phase onset detection and picking are then obtained by computing the signal energy across selected scales with frequency bands that capture the signal of interest. The automatic P-phase onset, on the other hand, is achieved by using skewness- and kurtosis-based criterion applied to selected scales in a time-frequency domain. The method was tested using synthetic and field data from an underground limestone mine. Results were compared with results obtained by using the short-term to long-term average (STA/LTA) ratio and that by Reference Ge et al. (2009). The results show that the me!hod provides a more reliable estimate of the P-phase onset arrival than the STA]LTA method when the signal to noise ratio is very low. Also, the results obtained from the field data matched accurately with the results from Reference Ge et al. (2009).
基金This project was sponsored by the National Natural Science Foundation of China under the contract of No. 49574207
文摘This paper selects some representative regions to obtain their G-R relation curves according to their seismicity characteristics,by using ML≥2.0 microseismicity data(1970~1993)in North China.The annual occurrence rate of events of each magnitude can be inferred from the G-R relation.At the same tune,the actual annual occurrence rate of earthquakes of higher magnitudes can be calculated from historical earthquakes(1300-1993)recorded in the same region.It seems that both results are almost the same.Therefore,the rate of events of higher magnitudes can be obtained by using microseismicity data when the proper region is selected.However,two points should be noticed:(1)The method can only give the annual occurrence rate in a seismicity system and estimate the whole situation of the system.(2)When there is a very large earthquake in and near the period in which the microseismicity data are applied,the actual occurrence rate of the system,including this larger earthquake,cannot be obtained by this method.