The US 2024 general election ended with the Republican Party winning the presidential, House and Senate elections at the same time. In the presidential election, the Republican Party not only won more popular votes in...The US 2024 general election ended with the Republican Party winning the presidential, House and Senate elections at the same time. In the presidential election, the Republican Party not only won more popular votes in over 90% counties than in the 2020 general election, but also won seven highly contested swing States with greater edges. This also marks the first time since 2004 that the Republican Party has won a relative majority of popular votes in the presidential election.展开更多
Recently,charged solitons have been found in a two-dimensional CoCl_(2)/HOPG system,whose microscopic nature remains to be elusive.In this work,we investigate the charged solitons in monolayer CoCl_(2) using scanning ...Recently,charged solitons have been found in a two-dimensional CoCl_(2)/HOPG system,whose microscopic nature remains to be elusive.In this work,we investigate the charged solitons in monolayer CoCl_(2) using scanning tunneling microscopy(STM)and atomic force microscopy(AFM).Moreover,we study the electrical properties of the charged solitons at zero electric field by measuring local contact potential difference(LCPD)via Kelvin probe force microscopy(KPFM)using the Δf(V)method.The compensation voltage corresponding to the vertex of the parabola is obtained by fitting the quadratic relationship between Δf and sample bias.The results show that,without an external electric field,the solitons behave as negatively charged entities.Meanwhile,the LCPD mapping characterizes the spatial distribution of the potential at the charged solitons,which agrees well with those obtained from STM band bending measurements.展开更多
Optical microscopy promises researchers to soe most tiny substances directly.However,the resolution of conventional microscopy is resticted by the diffraction limit.This makes it a challenge to observe subcellular pro...Optical microscopy promises researchers to soe most tiny substances directly.However,the resolution of conventional microscopy is resticted by the diffraction limit.This makes it a challenge to observe subcellular processes happened in nanoscale.The development of super-resolution microscopy provides a solution to this challenge.Here,we briefly review several commonly used super-resolution techniques,explicating their basic principles and applications in biological science,especially in neuroscience.In addition,characteristics and limitations of each techrique are compared to provide a guidance for biologists to choose the most suitable tool.展开更多
2024 is a“super election year”with the biggest influence in the world since World War II.About 80 countries covering about 60%of the world's population hold national elections.The number and scale of elections a...2024 is a“super election year”with the biggest influence in the world since World War II.About 80 countries covering about 60%of the world's population hold national elections.The number and scale of elections are rare in history.The processes and results of many countries'elections are so dramatic,with a series of exchanges,offenses and defenses,which further highlights the trend of intensified political confrontation and social division around the world.展开更多
Stochastic optical reconstruction microscopy(STORM),as a typical technique of single-molecule localization microscopy(SMLM),has overcome the diffraction limit by randomly switching fluorophores between fluorescent and...Stochastic optical reconstruction microscopy(STORM),as a typical technique of single-molecule localization microscopy(SMLM),has overcome the diffraction limit by randomly switching fluorophores between fluorescent and dark states,allowing for the precise localization of isolated emission patterns and the super-resolution reconstruction from millions of localized positions of single fluorophores.A critical factor influencing localization precision is the photo-switching behavior of fluorophores,which is affected by the imaging buffer.The imaging buffer typically comprises oxygen scavengers,photo-switching reagents,and refractive index regulators.Oxygen scavengers help prevent photobleaching,photo-switching reagents assist in facilitating the conversion of fluorophores,and refractive index regulators are used to adjust the refractive index of the solution.The synergistic interaction of these components promotes stable blinking of fluorophores,reduces irreversible photobleaching,and thereby ensures high-quality super-resolution imaging.This review provides a comprehensive overview of the essential compositions and functionalities of imaging buffers used in STORM,serving as a valuable resource for researchers seeking to select appropriate imaging buffers for their experiments.展开更多
Hematologic malignancies are one of the most common malignant tumors caused by the clonal proliferation and differentiation of hematopoietic and lymphoid stem cells.The examination of bone marrow cells combined with i...Hematologic malignancies are one of the most common malignant tumors caused by the clonal proliferation and differentiation of hematopoietic and lymphoid stem cells.The examination of bone marrow cells combined with immunodeficiency typing is of great significance to the diagnostic type,treatment and prognosis of hematologic malignancies.Super-resolution fluorescence microscopy(SRM)is a special kind of optical microscopy technology,which breaks the resolution limit and was awarded the Nobel Prize in Chemistry in 2014.With the development of SRM,many related technologies have been applied to the diagnosis and treatment of clinical diseases.It was reported that a major type of SRM technique,single molecule localization microscopy(SMLM),is more sensitive than flow cytometry(FC)in detecting cell membrane antigens'expression,thus enabling better chances in detecting antigens on hematopoietic cells than traditional analytic tools.Furthermore,SRM may be applied to clinical pathology and may guide precision medicine and personalized medicine for clone hematopoietic cell diseases.In this paper,we mainly discuss the application of SRM in clone hematological malignancies.展开更多
Objective:Verrucous epidermal nevus(VEN),seborrheic keratosis(SK),verruca plana(VP),verruca vulgaris(VV),and nevus sebaceous(NS)are common verrucous proliferative skin diseases with similar clinical appearances,often ...Objective:Verrucous epidermal nevus(VEN),seborrheic keratosis(SK),verruca plana(VP),verruca vulgaris(VV),and nevus sebaceous(NS)are common verrucous proliferative skin diseases with similar clinical appearances,often posing diagnostic challenges.Dermoscopy and reflectance confocal microscopy(RCM)can aid in their differentiation,yet their specific features under these tools have not been systematically described.This study aims to summarize and analyze the dermoscopic and RCM features of VEN,SK,VP,VV,and NS.Methods:A total of 121 patients with histopathologically confirmed verrucous proliferative skin diseases were enrolled.Dermoscopy and RCM imaging was used to observe and analyze the microscopic features of these conditions.Results:Under dermoscopy,the 5 diseases displayed distinct characteristics:VEN typically showed gyriform structures;SK was characterized by gyriform structures,comedo-like openings,and milia-like cysts;VP and VV featured dotted vessels and frogspawn-like structures;NS presented as brownish-yellow globules.RCM revealed shared features such as hyperkeratosis and acanthosis across all 5 diseases.Specific features included gyriform structures and elongated rete ridges in VEN;pseudocysts and gyriform structures in SK;evenly distributed ring-like structures in VP;vacuolated cells and papillomatous proliferation in VV;and frogspawn-like structures in NS.Conclusion:These 5 verrucous proliferative skin conditions exhibit distinguishable features under both dermoscopy and RCM.The combination of these 2 noninvasive imaging modalities holds significant clinical value for the differential diagnosis of verrucous proliferative skin diseases.展开更多
The characteristics of nonmetallic inclusions formed during steel production have a significant influence on steel performance.In this paper,studies on inclusions using confocal scanning laser microscopy(CSLM)are revi...The characteristics of nonmetallic inclusions formed during steel production have a significant influence on steel performance.In this paper,studies on inclusions using confocal scanning laser microscopy(CSLM)are reviewed and summarized,particularly the col-lision of various inclusions,dissolution of inclusions in liquid slag,and reactions between inclusions and steel.Solid inclusions exhibited a high collision tendency,whereas pure liquid inclusions exhibited minimal collisions because of the small attraction force induced by their<90°contact angle with molten steel.The collision of complex inclusions in molten steel was not included in the scope of this study and should be evaluated in future studies.Higher CaO/Al_(2)O_(3)and CaO/SiO_(2)ratios in liquid slag promoted the dissolution of Al_(2)O_(3)-based in-clusions.The formation of solid phases in the slag should be prevented to improve dissolution of inclusions.To accurately simulate the dissolution of inclusions in liquid slag,in-situ observation of the dissolution of inclusions at the steel-slag interface is necessary.Using a combination of CSLM and scanning electron microscopy-energy dispersive spectroscopy,the composition and morphological evolution of the inclusions during their modification by the dissolved elements in steel were observed and analyzed.Although the in-situ observa-tion of MnS and TiN precipitations has been widely studied,the in-situ observation of the evolution of oxide inclusions in steel during so-lidification and heating processes has rarely been reported.The effects of temperature,heating and cooling rates,and inclusion character-istics on the formation of acicular ferrites(AFs)have been widely studied.At a cooling rate of 3-5 K/s,the order of AF growth rate in-duced by different inclusions,as reported in literature,is Ti-O<Ti-Ca-Zr-Al-O<Mg-O<Ti-Zr-Al-O<Mn-Ti-Al-O<Ti-Al-O<Zr-Ti-Al-O.Further comprehensive experiments are required to investigate the quantitative relationship between the formation of AFs and inclusions.展开更多
Full-color imaging is essential in digital pathology for accurate tissue analysis.Utilizing advanced optical modulation and phase retrieval algorithms,Fourier ptychographic microscopy(FPM)offers a powerful solution fo...Full-color imaging is essential in digital pathology for accurate tissue analysis.Utilizing advanced optical modulation and phase retrieval algorithms,Fourier ptychographic microscopy(FPM)offers a powerful solution for high-throughput digital pathology,combining high resolution,large field of view,and extended depth of field(DOF).However,the full-color capabilities of FPM are hindered by coherent color artifacts and reduced computational efficiency,which significantly limits its practical applications.Color-transferbased FPM(CFPM)has emerged as a potential solution,theoretically reducing both acquisition and reconstruction threefold time.Yet,existing methods fall short of achieving the desired reconstruction speed and colorization quality.In this study,we report a generalized dual-color-space constrained model for FPM colorization.This model provides a mathematical framework for model-based FPM colorization,enabling a closed-form solution without the need for redundant iterative calculations.Our approach,termed generalized CFPM(gCFPM),achieves colorization within seconds for megapixel-scale images,delivering superior colorization quality in terms of both colorfulness and sharpness,along with an extended DOF.Both simulations and experiments demonstrate that gCFPM surpasses state-of-the-art methods across all evaluated criteria.Our work offers a robust and comprehensive workflow for high-throughput full-color pathological imaging using FPM platforms,laying a solid foundation for future advancements in methodology and engineering.展开更多
High-resolution transmission electron microscopy(HRTEM)promises rapid atomic-scale dynamic structure imaging.Yet,the precision limitations of aberration parameters and the challenge of eliminating aberrations in Cs-co...High-resolution transmission electron microscopy(HRTEM)promises rapid atomic-scale dynamic structure imaging.Yet,the precision limitations of aberration parameters and the challenge of eliminating aberrations in Cs-corrected transmission electron microscopy constrain resolution.A machine learning algorithm is developed to determine the aberration parameters with higher precision from small,lattice-periodic crystal images.The proposed algorithm is then validated with simulated HRTEM images of graphene and applied to the experimental images of a molybdenum disulfide(MoS_(2))monolayer with 25 variables(14 aberrations)resolved in wide ranges.Using these measured parameters,the phases of the exit-wave functions are reconstructed for each image in a focal series of MoS_(2)monolayers.The images were acquired due to the unexpected movement of the specimen holder.Four-dimensional data extraction reveals time-varying atomic structures and ripple.In particular,the atomic evolution of the sulfur-vacancy point and line defects,as well as the edge structure near the amorphous,is visualized as the resolution has been improved from about 1.75?to 0.9 A.This method can help salvage important transmission electron microscope images and is beneficial for the images obtained from electron microscopes with average stability.展开更多
To investigate the mechanisms underlying the onset and progression of ischemic stroke,some methods have been proposed that can simultaneously monitor and create embolisms in the animal cerebral cortex.However,these me...To investigate the mechanisms underlying the onset and progression of ischemic stroke,some methods have been proposed that can simultaneously monitor and create embolisms in the animal cerebral cortex.However,these methods often require complex systems and the effect of age on cerebral embolism has not been adequately studied,although ischemic stroke is strongly age-related.In this study,we propose an optical-resolution photoacoustic microscopy-based visualized photothrombosis methodology to create and monitor ischemic stroke in mice simultaneously using a 532 nm pulsed laser.We observed the molding process in mice of different ages and presented age-dependent vascular embolism differentiation.Moreover,we integrated optical coherence tomography angiography to investigate age-associated trends in cerebrovascular variability following a stroke.Our imaging data and quantitative analyses underscore the differential cerebrovascular responses to stroke in mice of different ages,thereby highlighting the technique's potential for evaluating cerebrovascular health and unraveling age-related mechanisms involved in ischemic strokes.展开更多
Optical microscopy has become an indispensable tool for visualizing sub-cellular structures andbiological processes.However,scattering in biological tissues is a major obstacle that preventshigh-resolution images from...Optical microscopy has become an indispensable tool for visualizing sub-cellular structures andbiological processes.However,scattering in biological tissues is a major obstacle that preventshigh-resolution images from being obtained from deep regions of tissue.We review commontechniques,such as multiphoton microscopy(MPM)and optical coherence microscopy(OCM),for diffraction limited imaging beyond an imaging depth of 0.5 mm.Novel implementations havebeen emerging in recent years giving higher imaging speed,deeper penetration,and better imagequality.Focal modulation microscopy(FMM)is a novel method that combines confocal spatialfltering with focal modulation to reject out-of-focus background.FMM has demonstrated animaging depth comparable to those of MPM and OCM,near-real-time image acquisition,and thecapability for multiple contrast mechanisms.展开更多
Background:Glioblastoma(GBM)is a highly aggressive brain tumor characterized by aberrant angiogenesis and an immunosuppressive microenvironment.Pericytes are aberrantly recruited but their spatiotemporal roles and mol...Background:Glioblastoma(GBM)is a highly aggressive brain tumor characterized by aberrant angiogenesis and an immunosuppressive microenvironment.Pericytes are aberrantly recruited but their spatiotemporal roles and molecular changes remain unclear.This study investigated platelet-derived growth factor receptor beta-positive(Pdgfrb+)pericyte dynamics and reprogramming in GBM vasculature.Methods:We generated GL261-Luc and GL261-CFP glioblastoma cells via lentiviral transduction and established two transgenic models.(1)For pericyte labeling,Ai14 reporter mice was crossed with PDGFRβ-P2A-CreERT2mice for td Tomato-specific lineage tracing(PT mice).(2)For conditional ablation,we generated inducible Pdgfrb-expressing cell ablation models(PT mice was crossed with ROSA-DTA mice).An intravital imaging platform(FITC-dextran/CFP/td Tomato+two-photon microscopy)tracked pericytes,vessels,and tumor cells,while FACSsorted Pdgfrb+cells from GBM and normal brain were analyzed by LC-MS/MS proteomics.Results:Cre-mediated ablation of Pdgfrb-expressing cells revealed stage-dependent effects on GBM growth:early ablation inhibited progression while late ablation promoted it.Pericytes undergo dual spatial reorganization in GBM:regional enrichment with pre-sprouting accumulation at the tumor-brain interface,and focal positioning with preferential localization at vascular branch points.Concurrently,GBM vasculature displayed simplified branching,dilation,and pericyte remodeling(shorter processes,higher density).Proteomics revealed 1426 altered proteins,with upregulated proliferation pathways(e.g.,matrix metallopeptidase 14[Mmp14],lysyl oxidase like 2[Loxl2])and downregulated homeostasis functions(e.g.,transforming growth factor beta 1[Tgfb1]),validated by scRNA-seq in human GBM.Conclusions:This study demonstrates that during early GBM progression,pericytes actively drive tumor angiogenesis through molecular reprogramming toward proliferative and pro-angiogenic phenotypes,with the integrated imaging-proteomics framework revealing potential therapeutic targets for disrupting pericyte-mediated vascular remodeling.展开更多
Optical-resolution photoacoustic microscopy is a novel imaging technique that combines the advantages of optical and ultrasound imaging,enabling high-resolution visualization of biological tissues at the micrometer sc...Optical-resolution photoacoustic microscopy is a novel imaging technique that combines the advantages of optical and ultrasound imaging,enabling high-resolution visualization of biological tissues at the micrometer scale.However,the divergence of the excited Gaussian beam limits the depth-of-field of the system to less than 100μm,which hinders accurate three-dimensional imaging of living tissues and restrictsits applicability in biological research.Therefore,there is an urgent need for an effective method to enhance the depth-of-field without altering the hardware configuration.This paper presents a photoacoustic microscopy depth-of-field extension method and system based on three-dimensional continuity and sparsity deconvolution.This method utilizes a depth-varying point spread function and incorporates continuity and sparsity con-straints into the deconvolution process to mitigate the effect of background noise,enhancing the stability and accuracy of the depth-of-field extension.Experimental results using tungsten wire phantoms suggest that the depth-of-field of system can be extended to 650 pm,which is 7.2 times greater than conventional system,while improving the resolution of the defocused region by an average factor of 3.5.Furthermore,experiments on zebrafish and nude mouse ears with irregular topologies demonstrate that the proposed method successfully overcomes image blurring and the loss of structural information due to limited depth-of-field.All the results suggest that the system with higher lateral resolution and enhanced depth-of-field has significant potential for a wide range of practical biomedical applications.展开更多
Maintaining the s-polarization state of laser beams is important to achieve high modulation depth in a laser-interference-based super-resolution structured illumination microscope(SR-SIM).However,the imperfect optical...Maintaining the s-polarization state of laser beams is important to achieve high modulation depth in a laser-interference-based super-resolution structured illumination microscope(SR-SIM).However,the imperfect optical components can depolarize the laser beams hence degenerating the modulation depth.Here,we first presented a direct measurement method designed to estimate the modulation depth more precisely by shifting illumination patterns with equal phase steps.This measurement method greatly reduces the dependence of modulation depths on the samples,and then developed a polarization optimization method to achieve high modulation depth at all orientations by actively and quantitatively compensating for the additional phase difference using a combination of waveplate and a liquid crystal variable retarder(LCVR).Experimental results demonstrate that our method can achieve illumination patterns with modulation depth higher than 0.94 at three orientations with only one LCVR voltage,which enables isotropic resolution improvement.展开更多
A new scheme of super-resolution optical fluctuation imaging(SOFI)is proposed to broaden its application in the high-order cumulant reconstruction by optimizing blinking characteristics,eliminating noise in raw data a...A new scheme of super-resolution optical fluctuation imaging(SOFI)is proposed to broaden its application in the high-order cumulant reconstruction by optimizing blinking characteristics,eliminating noise in raw data and applying multi-resolution analysis in cumulant reconstruction.A motor-driven rotating mask optical modulation system is designed to adjust the excitation lightfield and allows for fast deployment.Active-modulated fluorescence fluctuation superresolution microscopy with multi-resolution analysis(AMF-MRA-SOFI)demonstrates enhanced resolution ability and reconstruction quality in experiments performed on sample of conventional dyes,achieving a resolution of 100 nm in the fourth order compared to conventional SOFI reconstruction.Furthermore,our approach combining expansion super-resolution achieved a resolution at-57 nm.展开更多
Holographic microscopy has emerged as a vital tool in biomedicine,enabling visualization of microscopic morphological features of tissues and cells in a label-free manner.Recently,deep learning(DL)-based image reconst...Holographic microscopy has emerged as a vital tool in biomedicine,enabling visualization of microscopic morphological features of tissues and cells in a label-free manner.Recently,deep learning(DL)-based image reconstruction models have demonstrated state-of-the-art performance in holographic image reconstruction.However,their utility in practice is still severely limited,as conventional training schemes could not properly handle out-of-distribution data.Here,we leverage backpropagation operation and reparameterization of the forward propagator to enable an adaptable image reconstruction model for histopathologic inspection.Only given with a training dataset of rectum tissue images captured from a single imaging configuration,our scheme consistently shows high reconstruction performance even with the input hologram of diverse tissue types at different pathological states captured under various imaging configurations.Using the proposed adaptation technique,we show that the diagnostic features of cancerous colorectal tissues,such as dirty necrosis,captured with 5×magnification and a numerical aperture(NA)of 0.1,can be reconstructed with high accuracy,whereas a given training dataset is strictly confined to normal rectum tissues acquired under the imaging configuration of 20×magnification and an NA of 0.4.Our results suggest that the DL-based image reconstruction approaches,with sophisticated adaptation techniques,could offer an extensively generalizable solution for inverse mapping problems in imaging.展开更多
The assembly behaviors of two low-symmetric carboxylic acid molecules(50-(6-carboxynaphthalen-2-yl)-[1,10:30,100-triphenyl]-3,400,5-tricarboxylic acid(CTTA)and 30,50-bis(6-carboxynaphthalen-2-yl)-[1,10-biphenyl]-3,5-d...The assembly behaviors of two low-symmetric carboxylic acid molecules(50-(6-carboxynaphthalen-2-yl)-[1,10:30,100-triphenyl]-3,400,5-tricarboxylic acid(CTTA)and 30,50-bis(6-carboxynaphthalen-2-yl)-[1,10-biphenyl]-3,5-dicarboxylic acid(BCBDA))containing naphthalene rings on graphite surfaces have been investigated using scanning tunneling microscopy(STM).The transformation of nanostructures induced by the second components(EDA and PEBP-C4)have been also examined.Both CTTA and BCBDA molecules self-assemble at the 1-heptanoic acid(HA)/HOPG interface,forming porous network structures.The dimer represents the most elementary building unit due to the formation of double hydrogen bonds.Moreover,the flipping of naphthalene ring results in the isomerization of BCBDA molecule.The introduction of carboxylic acid derivative EDA disrupts the dimer,which subsequently undergoes a structural conformation to form a novel porous structure.Furthermore,upon the addition of pyridine derivative PEBP-C4,N–H⋯O hydrogen bonds are the dominant forces driving the three coassembled structures.We have also conducted density functional theory(DFT)calculations to determine the molecular conformation and analyze the mechanisms underlying the formation of nanostructures.展开更多
The advancement of electron microscopy technology has driven the development of electron microscopes that can apply mechanical loading while observing samples,providing a valuable tool for In-Situ mechanical character...The advancement of electron microscopy technology has driven the development of electron microscopes that can apply mechanical loading while observing samples,providing a valuable tool for In-Situ mechanical characterization of materials.In response to the need to characterize the evolution of the mechanical behavior of structural materials,such as aerospace materials,in real cryogenic service environments,and to provide an experimental basis for improving their macroscopic cryogenic mechanical properties,the advancement of In-Situ characterization techniques capable of offering both cryogenic environments and mechanical loading has become imperative.There have been scholars using this technique to carry out cryogenic mechanical In-Situ studies of related materials,with experimental studies dominating in general,and a few reviews of mechanical characterization techniques mentioning cryogenic temperatures.In order to make it easier to conduct research using such characterization techniques and to further promote the development of related characterization techniques,this review compiles the previous work and summarizes the electron microscope-based In-Situ characterization techniques for cryogenic micro-and nanomechanics.These techniques primarily include transmission electron microscopy-based cryogenic tensile and indentation methods,as well as scanning electron microscopy-based cryogenic tensile,indentation,compression,and bending methods.Furthermore,the review outlines the prospective future development of In-Situ characterization techniques for cryogenic micro-and nanomechanics.展开更多
Deep learning(DL)is making significant inroads into biomedical imaging as it provides novel and powerful ways of accurately and efficiently improving the image quality of photoacoustic microscopy(PAM).Off-the-shelf DL...Deep learning(DL)is making significant inroads into biomedical imaging as it provides novel and powerful ways of accurately and efficiently improving the image quality of photoacoustic microscopy(PAM).Off-the-shelf DL models,however,do not necessarily obey the fundamental governing laws of PAM physical systems,nor do they generalize well to scenarios on which they have not been trained.In this work,a physics-embedded degeneration learning(PEDL)approach is proposed to enhance the image quality of PAM with a self-attention enhanced U-Net network,which obtains greater physical consistency,improves data efficiency,and higher adaptability.The proposed method is demonstrated on both synthetic and real datasets,including animal experiments in vivo(blood vessels of mouse's ear and brain).And the results show that compared with previous DL methods,the PEDL algorithm exhibits good performance in recovering PAM images qualitatively and quantitatively.It overcomes the challenges related to training data,accuracy,and robustness which a typical data-driven approach encounters,whose exemplary application envisions to provide a new perspective for existing DL tools of enhanced PAM.展开更多
文摘The US 2024 general election ended with the Republican Party winning the presidential, House and Senate elections at the same time. In the presidential election, the Republican Party not only won more popular votes in over 90% counties than in the 2020 general election, but also won seven highly contested swing States with greater edges. This also marks the first time since 2004 that the Republican Party has won a relative majority of popular votes in the presidential election.
基金supported by the National Key Research and Development Program of China(Grant Nos.2022YFA1403300 and 2019YFA0308404)the National Natural Science Foundation of China(Grant Nos.11427902,11991060,12074075,12474165,12274084,and 12241402)+5 种基金Shanghai Municipal Science and Technology Major Project(Grant No.2019SHZDZX01)Shanghai Municipal Natural Science Foundation(Grant No.22ZR1407400)Innovation Program for Quantum Science and Technology(Grant No.2024ZD0300104)Innovation Program of Shanghai Municipal Education Commission(Grant No.2023ZKZD03)Science and Technology Commission of Shanghai Municipality(Grant No.20JC1415900)China Postdoctoral Science Foundation(Grant No.KLH1512149).
文摘Recently,charged solitons have been found in a two-dimensional CoCl_(2)/HOPG system,whose microscopic nature remains to be elusive.In this work,we investigate the charged solitons in monolayer CoCl_(2) using scanning tunneling microscopy(STM)and atomic force microscopy(AFM).Moreover,we study the electrical properties of the charged solitons at zero electric field by measuring local contact potential difference(LCPD)via Kelvin probe force microscopy(KPFM)using the Δf(V)method.The compensation voltage corresponding to the vertex of the parabola is obtained by fitting the quadratic relationship between Δf and sample bias.The results show that,without an external electric field,the solitons behave as negatively charged entities.Meanwhile,the LCPD mapping characterizes the spatial distribution of the potential at the charged solitons,which agrees well with those obtained from STM band bending measurements.
基金support from National Basic Research Program of China (973 Program) (2015CB352005)National Natural Science Foundation of China (No.6142780065,31571110,81527901)+1 种基金Natural Science Foundation of Zhejiang Province of China (No.Y16F050002)the Fundamental Research Funds for the Central Universities.
文摘Optical microscopy promises researchers to soe most tiny substances directly.However,the resolution of conventional microscopy is resticted by the diffraction limit.This makes it a challenge to observe subcellular processes happened in nanoscale.The development of super-resolution microscopy provides a solution to this challenge.Here,we briefly review several commonly used super-resolution techniques,explicating their basic principles and applications in biological science,especially in neuroscience.In addition,characteristics and limitations of each techrique are compared to provide a guidance for biologists to choose the most suitable tool.
文摘2024 is a“super election year”with the biggest influence in the world since World War II.About 80 countries covering about 60%of the world's population hold national elections.The number and scale of elections are rare in history.The processes and results of many countries'elections are so dramatic,with a series of exchanges,offenses and defenses,which further highlights the trend of intensified political confrontation and social division around the world.
基金funded by the National Natural Science Foundation of China(No.62305041)the Natural Science Foundation of Liaoning Province(No.2023-MS-103)。
文摘Stochastic optical reconstruction microscopy(STORM),as a typical technique of single-molecule localization microscopy(SMLM),has overcome the diffraction limit by randomly switching fluorophores between fluorescent and dark states,allowing for the precise localization of isolated emission patterns and the super-resolution reconstruction from millions of localized positions of single fluorophores.A critical factor influencing localization precision is the photo-switching behavior of fluorophores,which is affected by the imaging buffer.The imaging buffer typically comprises oxygen scavengers,photo-switching reagents,and refractive index regulators.Oxygen scavengers help prevent photobleaching,photo-switching reagents assist in facilitating the conversion of fluorophores,and refractive index regulators are used to adjust the refractive index of the solution.The synergistic interaction of these components promotes stable blinking of fluorophores,reduces irreversible photobleaching,and thereby ensures high-quality super-resolution imaging.This review provides a comprehensive overview of the essential compositions and functionalities of imaging buffers used in STORM,serving as a valuable resource for researchers seeking to select appropriate imaging buffers for their experiments.
基金This work was supported by the Innovation Fund of WNLO(2018WNLOKF023)the Start-up Fund of Hainan University(KYQD(ZR)-20077).
文摘Hematologic malignancies are one of the most common malignant tumors caused by the clonal proliferation and differentiation of hematopoietic and lymphoid stem cells.The examination of bone marrow cells combined with immunodeficiency typing is of great significance to the diagnostic type,treatment and prognosis of hematologic malignancies.Super-resolution fluorescence microscopy(SRM)is a special kind of optical microscopy technology,which breaks the resolution limit and was awarded the Nobel Prize in Chemistry in 2014.With the development of SRM,many related technologies have been applied to the diagnosis and treatment of clinical diseases.It was reported that a major type of SRM technique,single molecule localization microscopy(SMLM),is more sensitive than flow cytometry(FC)in detecting cell membrane antigens'expression,thus enabling better chances in detecting antigens on hematopoietic cells than traditional analytic tools.Furthermore,SRM may be applied to clinical pathology and may guide precision medicine and personalized medicine for clone hematopoietic cell diseases.In this paper,we mainly discuss the application of SRM in clone hematological malignancies.
基金supported by the Project of Health Committee of Hunan Province(D202304128868),China.
文摘Objective:Verrucous epidermal nevus(VEN),seborrheic keratosis(SK),verruca plana(VP),verruca vulgaris(VV),and nevus sebaceous(NS)are common verrucous proliferative skin diseases with similar clinical appearances,often posing diagnostic challenges.Dermoscopy and reflectance confocal microscopy(RCM)can aid in their differentiation,yet their specific features under these tools have not been systematically described.This study aims to summarize and analyze the dermoscopic and RCM features of VEN,SK,VP,VV,and NS.Methods:A total of 121 patients with histopathologically confirmed verrucous proliferative skin diseases were enrolled.Dermoscopy and RCM imaging was used to observe and analyze the microscopic features of these conditions.Results:Under dermoscopy,the 5 diseases displayed distinct characteristics:VEN typically showed gyriform structures;SK was characterized by gyriform structures,comedo-like openings,and milia-like cysts;VP and VV featured dotted vessels and frogspawn-like structures;NS presented as brownish-yellow globules.RCM revealed shared features such as hyperkeratosis and acanthosis across all 5 diseases.Specific features included gyriform structures and elongated rete ridges in VEN;pseudocysts and gyriform structures in SK;evenly distributed ring-like structures in VP;vacuolated cells and papillomatous proliferation in VV;and frogspawn-like structures in NS.Conclusion:These 5 verrucous proliferative skin conditions exhibit distinguishable features under both dermoscopy and RCM.The combination of these 2 noninvasive imaging modalities holds significant clinical value for the differential diagnosis of verrucous proliferative skin diseases.
基金supported by the National Key R&D Program(No.2023YFB3709900)the National Nature Science Foundation of China(No.U22A20171)+2 种基金China Baowu Low Carbon Metallurgy Innovation Foundation(No.BWLCF202315)the High Steel Center(HSC)at North China University of TechnologyUniversity of Science and Technology Beijing,China.
文摘The characteristics of nonmetallic inclusions formed during steel production have a significant influence on steel performance.In this paper,studies on inclusions using confocal scanning laser microscopy(CSLM)are reviewed and summarized,particularly the col-lision of various inclusions,dissolution of inclusions in liquid slag,and reactions between inclusions and steel.Solid inclusions exhibited a high collision tendency,whereas pure liquid inclusions exhibited minimal collisions because of the small attraction force induced by their<90°contact angle with molten steel.The collision of complex inclusions in molten steel was not included in the scope of this study and should be evaluated in future studies.Higher CaO/Al_(2)O_(3)and CaO/SiO_(2)ratios in liquid slag promoted the dissolution of Al_(2)O_(3)-based in-clusions.The formation of solid phases in the slag should be prevented to improve dissolution of inclusions.To accurately simulate the dissolution of inclusions in liquid slag,in-situ observation of the dissolution of inclusions at the steel-slag interface is necessary.Using a combination of CSLM and scanning electron microscopy-energy dispersive spectroscopy,the composition and morphological evolution of the inclusions during their modification by the dissolved elements in steel were observed and analyzed.Although the in-situ observa-tion of MnS and TiN precipitations has been widely studied,the in-situ observation of the evolution of oxide inclusions in steel during so-lidification and heating processes has rarely been reported.The effects of temperature,heating and cooling rates,and inclusion character-istics on the formation of acicular ferrites(AFs)have been widely studied.At a cooling rate of 3-5 K/s,the order of AF growth rate in-duced by different inclusions,as reported in literature,is Ti-O<Ti-Ca-Zr-Al-O<Mg-O<Ti-Zr-Al-O<Mn-Ti-Al-O<Ti-Al-O<Zr-Ti-Al-O.Further comprehensive experiments are required to investigate the quantitative relationship between the formation of AFs and inclusions.
基金supported by the National Natural Science Foundation of China(Grant Nos.12104500 and 82430062)the Key Research and Development Projects of Shaanxi Province(Grant No.2023-YBSF-263),the Shenzhen Engineering Research Centre(Grant No.XMHT20230115004)the Shenzhen Science and Technology Innovation Commission(Grant No.KCXFZ20201221173207022).
文摘Full-color imaging is essential in digital pathology for accurate tissue analysis.Utilizing advanced optical modulation and phase retrieval algorithms,Fourier ptychographic microscopy(FPM)offers a powerful solution for high-throughput digital pathology,combining high resolution,large field of view,and extended depth of field(DOF).However,the full-color capabilities of FPM are hindered by coherent color artifacts and reduced computational efficiency,which significantly limits its practical applications.Color-transferbased FPM(CFPM)has emerged as a potential solution,theoretically reducing both acquisition and reconstruction threefold time.Yet,existing methods fall short of achieving the desired reconstruction speed and colorization quality.In this study,we report a generalized dual-color-space constrained model for FPM colorization.This model provides a mathematical framework for model-based FPM colorization,enabling a closed-form solution without the need for redundant iterative calculations.Our approach,termed generalized CFPM(gCFPM),achieves colorization within seconds for megapixel-scale images,delivering superior colorization quality in terms of both colorfulness and sharpness,along with an extended DOF.Both simulations and experiments demonstrate that gCFPM surpasses state-of-the-art methods across all evaluated criteria.Our work offers a robust and comprehensive workflow for high-throughput full-color pathological imaging using FPM platforms,laying a solid foundation for future advancements in methodology and engineering.
基金financial support from the National Natural Science Foundation of China(Grant No.61971201)。
文摘High-resolution transmission electron microscopy(HRTEM)promises rapid atomic-scale dynamic structure imaging.Yet,the precision limitations of aberration parameters and the challenge of eliminating aberrations in Cs-corrected transmission electron microscopy constrain resolution.A machine learning algorithm is developed to determine the aberration parameters with higher precision from small,lattice-periodic crystal images.The proposed algorithm is then validated with simulated HRTEM images of graphene and applied to the experimental images of a molybdenum disulfide(MoS_(2))monolayer with 25 variables(14 aberrations)resolved in wide ranges.Using these measured parameters,the phases of the exit-wave functions are reconstructed for each image in a focal series of MoS_(2)monolayers.The images were acquired due to the unexpected movement of the specimen holder.Four-dimensional data extraction reveals time-varying atomic structures and ripple.In particular,the atomic evolution of the sulfur-vacancy point and line defects,as well as the edge structure near the amorphous,is visualized as the resolution has been improved from about 1.75?to 0.9 A.This method can help salvage important transmission electron microscope images and is beneficial for the images obtained from electron microscopes with average stability.
基金supported by University of Macao,China,Nos.MYRG2022-00054-FHS and MYRG-GRG2023-00038-FHS-UMDF(to ZY)the Macao Science and Technology Development Fund,China,Nos.FDCT0048/2021/AGJ and FDCT0020/2019/AMJ and FDCT 0011/2018/A1(to ZY)Natural Science Foundation of Guangdong Province of China,No.EF017/FHS-YZ/2021/GDSTC(to ZY)。
文摘To investigate the mechanisms underlying the onset and progression of ischemic stroke,some methods have been proposed that can simultaneously monitor and create embolisms in the animal cerebral cortex.However,these methods often require complex systems and the effect of age on cerebral embolism has not been adequately studied,although ischemic stroke is strongly age-related.In this study,we propose an optical-resolution photoacoustic microscopy-based visualized photothrombosis methodology to create and monitor ischemic stroke in mice simultaneously using a 532 nm pulsed laser.We observed the molding process in mice of different ages and presented age-dependent vascular embolism differentiation.Moreover,we integrated optical coherence tomography angiography to investigate age-associated trends in cerebrovascular variability following a stroke.Our imaging data and quantitative analyses underscore the differential cerebrovascular responses to stroke in mice of different ages,thereby highlighting the technique's potential for evaluating cerebrovascular health and unraveling age-related mechanisms involved in ischemic strokes.
文摘Optical microscopy has become an indispensable tool for visualizing sub-cellular structures andbiological processes.However,scattering in biological tissues is a major obstacle that preventshigh-resolution images from being obtained from deep regions of tissue.We review commontechniques,such as multiphoton microscopy(MPM)and optical coherence microscopy(OCM),for diffraction limited imaging beyond an imaging depth of 0.5 mm.Novel implementations havebeen emerging in recent years giving higher imaging speed,deeper penetration,and better imagequality.Focal modulation microscopy(FMM)is a novel method that combines confocal spatialfltering with focal modulation to reject out-of-focus background.FMM has demonstrated animaging depth comparable to those of MPM and OCM,near-real-time image acquisition,and thecapability for multiple contrast mechanisms.
基金The National Key Research and Development Program of China,Grant/Award Number:2022YFF0710700Nonprofit Central Research Institute Fund of Chinese Academy of Medical Sciences,Grant/Award Number:2023-PT180-01。
文摘Background:Glioblastoma(GBM)is a highly aggressive brain tumor characterized by aberrant angiogenesis and an immunosuppressive microenvironment.Pericytes are aberrantly recruited but their spatiotemporal roles and molecular changes remain unclear.This study investigated platelet-derived growth factor receptor beta-positive(Pdgfrb+)pericyte dynamics and reprogramming in GBM vasculature.Methods:We generated GL261-Luc and GL261-CFP glioblastoma cells via lentiviral transduction and established two transgenic models.(1)For pericyte labeling,Ai14 reporter mice was crossed with PDGFRβ-P2A-CreERT2mice for td Tomato-specific lineage tracing(PT mice).(2)For conditional ablation,we generated inducible Pdgfrb-expressing cell ablation models(PT mice was crossed with ROSA-DTA mice).An intravital imaging platform(FITC-dextran/CFP/td Tomato+two-photon microscopy)tracked pericytes,vessels,and tumor cells,while FACSsorted Pdgfrb+cells from GBM and normal brain were analyzed by LC-MS/MS proteomics.Results:Cre-mediated ablation of Pdgfrb-expressing cells revealed stage-dependent effects on GBM growth:early ablation inhibited progression while late ablation promoted it.Pericytes undergo dual spatial reorganization in GBM:regional enrichment with pre-sprouting accumulation at the tumor-brain interface,and focal positioning with preferential localization at vascular branch points.Concurrently,GBM vasculature displayed simplified branching,dilation,and pericyte remodeling(shorter processes,higher density).Proteomics revealed 1426 altered proteins,with upregulated proliferation pathways(e.g.,matrix metallopeptidase 14[Mmp14],lysyl oxidase like 2[Loxl2])and downregulated homeostasis functions(e.g.,transforming growth factor beta 1[Tgfb1]),validated by scRNA-seq in human GBM.Conclusions:This study demonstrates that during early GBM progression,pericytes actively drive tumor angiogenesis through molecular reprogramming toward proliferative and pro-angiogenic phenotypes,with the integrated imaging-proteomics framework revealing potential therapeutic targets for disrupting pericyte-mediated vascular remodeling.
基金supported by the National Key R&D Program of China[Grant No.2022YFC2402400]the National Natural Science Foundation of China[Grant No.62275062]+2 种基金Project of Shandong Innovation and Startup Community of High-end Medical Apparatus and Instruments[Grant Nos.2023-SGTTXM-002 and 2024-SGTTXM-005]the Shandong Province Technology Innovation Guidance Plan(Central Leading Local Science and Technology Development Fund)[Grant No.YDZX2023115]the Taishan Scholar Special Funding Project of Shandong Province,and the Shandong Laboratory of Advanced Biomaterials and Medical Devices in Weihai[Grant No.ZL202402].
文摘Optical-resolution photoacoustic microscopy is a novel imaging technique that combines the advantages of optical and ultrasound imaging,enabling high-resolution visualization of biological tissues at the micrometer scale.However,the divergence of the excited Gaussian beam limits the depth-of-field of the system to less than 100μm,which hinders accurate three-dimensional imaging of living tissues and restrictsits applicability in biological research.Therefore,there is an urgent need for an effective method to enhance the depth-of-field without altering the hardware configuration.This paper presents a photoacoustic microscopy depth-of-field extension method and system based on three-dimensional continuity and sparsity deconvolution.This method utilizes a depth-varying point spread function and incorporates continuity and sparsity con-straints into the deconvolution process to mitigate the effect of background noise,enhancing the stability and accuracy of the depth-of-field extension.Experimental results using tungsten wire phantoms suggest that the depth-of-field of system can be extended to 650 pm,which is 7.2 times greater than conventional system,while improving the resolution of the defocused region by an average factor of 3.5.Furthermore,experiments on zebrafish and nude mouse ears with irregular topologies demonstrate that the proposed method successfully overcomes image blurring and the loss of structural information due to limited depth-of-field.All the results suggest that the system with higher lateral resolution and enhanced depth-of-field has significant potential for a wide range of practical biomedical applications.
基金supported by the National Natural Science Foundation of China[Grant Nos.62205367 and 62141506]the Suzhou Basic Research Pilot Project[Grant Nos.SSD2023006 and SJC2021013]the National Key Research and Development Program of China[Grant No.2023YFF1205700].
文摘Maintaining the s-polarization state of laser beams is important to achieve high modulation depth in a laser-interference-based super-resolution structured illumination microscope(SR-SIM).However,the imperfect optical components can depolarize the laser beams hence degenerating the modulation depth.Here,we first presented a direct measurement method designed to estimate the modulation depth more precisely by shifting illumination patterns with equal phase steps.This measurement method greatly reduces the dependence of modulation depths on the samples,and then developed a polarization optimization method to achieve high modulation depth at all orientations by actively and quantitatively compensating for the additional phase difference using a combination of waveplate and a liquid crystal variable retarder(LCVR).Experimental results demonstrate that our method can achieve illumination patterns with modulation depth higher than 0.94 at three orientations with only one LCVR voltage,which enables isotropic resolution improvement.
基金supported by the National Natural Science Foundation of China(62175034,62175036,32271510)the National Key R&D Program of China(2021YFF0502900)+2 种基金the Science and Technology Research Program of Shanghai(Grant No.19DZ2282100)the Shanghai Key Laboratory of Metasurfaces for Light Manipulation(23dz2260100)the Shanghai Engineering Technology Research Center of Hair Medicine(19DZ2250500).
文摘A new scheme of super-resolution optical fluctuation imaging(SOFI)is proposed to broaden its application in the high-order cumulant reconstruction by optimizing blinking characteristics,eliminating noise in raw data and applying multi-resolution analysis in cumulant reconstruction.A motor-driven rotating mask optical modulation system is designed to adjust the excitation lightfield and allows for fast deployment.Active-modulated fluorescence fluctuation superresolution microscopy with multi-resolution analysis(AMF-MRA-SOFI)demonstrates enhanced resolution ability and reconstruction quality in experiments performed on sample of conventional dyes,achieving a resolution of 100 nm in the fourth order compared to conventional SOFI reconstruction.Furthermore,our approach combining expansion super-resolution achieved a resolution at-57 nm.
基金supported by the Samsung Research Funding and Incubation Center of Samsung Electronics(Grant No.SRFC-IT2002-03)the Samsung Electronics Co.,Ltd.(Grant No.IO220908-02403-01)+2 种基金the National Research Foundation of Korea(NRF)grant funded by the Korean government(MSIT)(Grant Nos.NRF-RS-2021-NR060086 and NRF-RS-2023-00251628)the Bio&Medical Technology Development Program of the National Research Foundation funded by the Korean government(MSIT)(Grant No RS-2024-00397673)the KAIST-CERAGEM Next Generation Healthcare Research Center.
文摘Holographic microscopy has emerged as a vital tool in biomedicine,enabling visualization of microscopic morphological features of tissues and cells in a label-free manner.Recently,deep learning(DL)-based image reconstruction models have demonstrated state-of-the-art performance in holographic image reconstruction.However,their utility in practice is still severely limited,as conventional training schemes could not properly handle out-of-distribution data.Here,we leverage backpropagation operation and reparameterization of the forward propagator to enable an adaptable image reconstruction model for histopathologic inspection.Only given with a training dataset of rectum tissue images captured from a single imaging configuration,our scheme consistently shows high reconstruction performance even with the input hologram of diverse tissue types at different pathological states captured under various imaging configurations.Using the proposed adaptation technique,we show that the diagnostic features of cancerous colorectal tissues,such as dirty necrosis,captured with 5×magnification and a numerical aperture(NA)of 0.1,can be reconstructed with high accuracy,whereas a given training dataset is strictly confined to normal rectum tissues acquired under the imaging configuration of 20×magnification and an NA of 0.4.Our results suggest that the DL-based image reconstruction approaches,with sophisticated adaptation techniques,could offer an extensively generalizable solution for inverse mapping problems in imaging.
基金financially supported by the National Natural Science Foundation of China(No.22272039)the Strategic Priority Research Program of the Chinese Academy of Sciences(No.XDB36000000)+1 种基金the Youth Program of the Liaoning Education Department(No.LJKQZ20222280)the Jilin Chinese Academy of Sciences-Yanshen Technology Co.,Ltd.
文摘The assembly behaviors of two low-symmetric carboxylic acid molecules(50-(6-carboxynaphthalen-2-yl)-[1,10:30,100-triphenyl]-3,400,5-tricarboxylic acid(CTTA)and 30,50-bis(6-carboxynaphthalen-2-yl)-[1,10-biphenyl]-3,5-dicarboxylic acid(BCBDA))containing naphthalene rings on graphite surfaces have been investigated using scanning tunneling microscopy(STM).The transformation of nanostructures induced by the second components(EDA and PEBP-C4)have been also examined.Both CTTA and BCBDA molecules self-assemble at the 1-heptanoic acid(HA)/HOPG interface,forming porous network structures.The dimer represents the most elementary building unit due to the formation of double hydrogen bonds.Moreover,the flipping of naphthalene ring results in the isomerization of BCBDA molecule.The introduction of carboxylic acid derivative EDA disrupts the dimer,which subsequently undergoes a structural conformation to form a novel porous structure.Furthermore,upon the addition of pyridine derivative PEBP-C4,N–H⋯O hydrogen bonds are the dominant forces driving the three coassembled structures.We have also conducted density functional theory(DFT)calculations to determine the molecular conformation and analyze the mechanisms underlying the formation of nanostructures.
基金supported by the National Natural Science Foundation of China(52301177)。
文摘The advancement of electron microscopy technology has driven the development of electron microscopes that can apply mechanical loading while observing samples,providing a valuable tool for In-Situ mechanical characterization of materials.In response to the need to characterize the evolution of the mechanical behavior of structural materials,such as aerospace materials,in real cryogenic service environments,and to provide an experimental basis for improving their macroscopic cryogenic mechanical properties,the advancement of In-Situ characterization techniques capable of offering both cryogenic environments and mechanical loading has become imperative.There have been scholars using this technique to carry out cryogenic mechanical In-Situ studies of related materials,with experimental studies dominating in general,and a few reviews of mechanical characterization techniques mentioning cryogenic temperatures.In order to make it easier to conduct research using such characterization techniques and to further promote the development of related characterization techniques,this review compiles the previous work and summarizes the electron microscope-based In-Situ characterization techniques for cryogenic micro-and nanomechanics.These techniques primarily include transmission electron microscopy-based cryogenic tensile and indentation methods,as well as scanning electron microscopy-based cryogenic tensile,indentation,compression,and bending methods.Furthermore,the review outlines the prospective future development of In-Situ characterization techniques for cryogenic micro-and nanomechanics.
基金supported by National Natural Science Foundation of China(62227818,12204239,62275121)Youth Foundation of Jiangsu Province(BK20220946)+1 种基金Fundamental Research Funds for the Central Universities(30923011024)Open Research Fund of Jiangsu Key Laboratory of Spectral Imaging&Intelligent Sense(JSGP202201).
文摘Deep learning(DL)is making significant inroads into biomedical imaging as it provides novel and powerful ways of accurately and efficiently improving the image quality of photoacoustic microscopy(PAM).Off-the-shelf DL models,however,do not necessarily obey the fundamental governing laws of PAM physical systems,nor do they generalize well to scenarios on which they have not been trained.In this work,a physics-embedded degeneration learning(PEDL)approach is proposed to enhance the image quality of PAM with a self-attention enhanced U-Net network,which obtains greater physical consistency,improves data efficiency,and higher adaptability.The proposed method is demonstrated on both synthetic and real datasets,including animal experiments in vivo(blood vessels of mouse's ear and brain).And the results show that compared with previous DL methods,the PEDL algorithm exhibits good performance in recovering PAM images qualitatively and quantitatively.It overcomes the challenges related to training data,accuracy,and robustness which a typical data-driven approach encounters,whose exemplary application envisions to provide a new perspective for existing DL tools of enhanced PAM.