期刊文献+
共找到38篇文章
< 1 2 >
每页显示 20 50 100
Ultrabright quantum dots assisted in vivo NIR-II fluorescence microscopic imaging for brain metastases in triple-negative breast cancer
1
作者 Yuxiang Gao Chi Zhang +5 位作者 Lijun Zhu Zhong Du Rong Ma Le Guo Nuernisha Alifu Xueliang Zhang 《Journal of Innovative Optical Health Sciences》 2025年第3期87-98,共12页
Triple-negative breast cancer (TNBC) is an aggressive and often fatal disease, especially since the brain metastasis of TNBC has been a particularly severe manifestation. However, brain metastasis in TNBC at early sta... Triple-negative breast cancer (TNBC) is an aggressive and often fatal disease, especially since the brain metastasis of TNBC has been a particularly severe manifestation. However, brain metastasis in TNBC at early stages often lacks noticeable symptoms, making it challenging to detect. Near-infrared II (NIR-II) fluorescence microscopic imaging obtains long wavelength, which enables reduced scattering, high spatial resolution and minimal autofluorescence, it is also a favorable imaging method for tumor diagnosis. PbS@CdS quantum dots (QDs) are one of the popular NIR-II fluorescence nanoprobes for well brightness. In this study, NIR-II emissive PbS@CdS QDs were utilized and further encapsulated with thiol-terminated poly(ethylene oxide) (SH-PEG, MW = 5000) to form PbS@CdS@PEG QDs nanoparticles (NPs). The obtained PbS@CdS@PEG QDs NPs were then characterized and further studied in detail. The PbS@CdS@PEG QDs NPs had large absorption spectra, exhibited strong NIR-II fluorescence emission at approximately 1300nm, and possessed good NIR-II fluorescence properties. Then, the mice model of early-stage brain metastases of TNBC was established, and the PbS@CdS@PEG QDs NPs were injected into the tumor-bearing mice for NIR-II fluorescence microscopic bioimaging. The brain vessels and tumors of the living mice were detected with high spatial resolution under the NIR-II fluorescence microscopic imaging system with irradiation of 808nm laser. The tumor tissues were further restricted and prepared as thin slices. The NIR-II fluorescence signals were collected from the tumor slices with high spatial resolution and signal-to-background ratio (SBR). Thus, the PbS@CdS@PEG QDs NPs-assisted NIR-II fluorescence microscopic system can effectively achieve targeting brain metastases of TNBC imaging, offering a novel and promising approach for TNBC-specific diagnosis. 展开更多
关键词 NIR-II fluorescence microscopic imaging in vivo imaging fluorescent nanoprobes PbS@CdS quantum dots
原文传递
High-resolution and wide-field microscopic imaging with a monolithic meta-doublet under annular illumination
2
作者 Jiacheng Sun Wenjing Shen +10 位作者 Junyi Wang Rongtao Yu Jian Li Chunyu Huang Xin Ye Zhaoyu Cheng Jiefu Yu Peng Wang Chen Chen Shining Zhu Tao Li 《Advanced Photonics》 2025年第4期117-125,共9页
Metalenses have exhibited significant promise across various applications due to their ultrathin,lightweight,and flat architecture,which allows for integration with microelectronic devices.However,their overall imagin... Metalenses have exhibited significant promise across various applications due to their ultrathin,lightweight,and flat architecture,which allows for integration with microelectronic devices.However,their overall imaging capabilities,particularly in microscopy,are hindered by substantial off-axis aberrations that limit both the field of view(FOV)and resolution.To address these issues,we introduce a meta-microscope that utilizes a metalens doublet incorporated with annular illumination,enabling wide FOV and high-resolution imaging in a compact design.The metalens-doublet effectively mitigates off-axis aberrations,whereas annular illumination boosts resolution.To validate this design,we constructed and tested the meta-microscope system,attaining a record resolution of 310 nm(for metalens image)with a 150μm FOV at 470 nm wavelength.Moreover,by utilizing the integration of metasurface,we implemented a compact prototype achieving an impressive 1-mm FOV with a resolution of 620 nm.Our experimental results demonstrate high-quality microscopic bio-images that are comparable to those obtained from traditional microscopes within a compact prototype,highlighting its potential applications in portable and convenient settings,such as biomedical imaging,mobile monitoring,and outdoor research. 展开更多
关键词 metalens-doublet microscopic imaging field of view high resolution
原文传递
Spatial-spectral identication of abnormal leukocytes based on microscopic hyperspectral imaging technology 被引量:3
3
作者 Xueqi Hu Jiahua Ou +5 位作者 Mei Zhou Menghan Hu Li Sun Song Qiu Qingli Li Junhao Chu 《Journal of Innovative Optical Health Sciences》 SCIE EI CAS 2020年第2期44-56,共13页
Screening and diagnosing of abnormal Leukocytes are crucial for the diagnosis of immune diseases and Acute Lymphoblastic Leukemia(ALL).As the deterioration of abnormal leukocytes is mainly due to the changes in the ch... Screening and diagnosing of abnormal Leukocytes are crucial for the diagnosis of immune diseases and Acute Lymphoblastic Leukemia(ALL).As the deterioration of abnormal leukocytes is mainly due to the changes in the chromatin distribution,which signicantly affects the absorption and reflection of light,the spectral feature is proved to be important for leukocytes classication and identication.This paper proposes an accurate identication method for healthy and abnormal leukocytes based on microscopic hyperspectral imaging(HSI)technology which combines the spectral information.The segmentation of nucleus and cytoplasm is obtained by the morphological watershed algorithm.Then,the spectral features are extracted and combined with the spatial features.Based on this,the support vector machine(SVM)is applied for classication ofve types of leukocytes and abnormal leukocytes.Compared with different classication methods,the proposed method utilizes spectral features which highlight the differences between healthy leukocytes and abnormal leukocytes,improving the accuracy in the classication and identication of leukocytes.This paper only selects one subtype of ALL for test,and the proposed method can be applied for detection of other leukemia in the future. 展开更多
关键词 LEUKOCYTE microscopic hyperspectral imaging nucleus segmentation Acute Lymphoblastic Leukemia.
原文传递
Improving signal strength of tree rings for paleoclimate reconstruction by micro-hyperspectral imaging
4
作者 Yinghao Sun Teng Fei +3 位作者 Yonghong Zheng Yonggai Zhuang Lingjun Wang Meng Bian 《Geo-Spatial Information Science》 CSCD 2024年第5期1657-1674,共18页
In dendroclimatology,tree ring chronology is ordinarily established to reveal the fluctuation law of climate change on the interannual,interdecadal,and centennial scales.However,since traditional dendrochronology can ... In dendroclimatology,tree ring chronology is ordinarily established to reveal the fluctuation law of climate change on the interannual,interdecadal,and centennial scales.However,since traditional dendrochronology can only use one variable(tree ring width)to reflect environmentally related information,this causes the richer information recorded in the tree rings to be discarded.In this study,we examined the potential of hyperspectral chronological indices(shortened as“hyperspectral index/indices”)with samples collected in Shennongjia woodland in central China.The correlation analysis of the tree ring series on different samples indicated that hyperspectral indices outperform the traditional width index in chronology statistics including Signal-to-noise Ratio(SNR)and Expressed Population Signal(EPS).The reliability test shows that hyperspectral chronologies have more periods reaching the threshold of EPS or Subsample Signal Strength(SSS)>0.85,which means that hyperspectral chronologies provide more reliable periods for accurate climate reconstruction.Based on this,chronologies built by the three dendroclimatic indices were used to reconstruct the average temperature changes in Shennongjia over the last 103 years.The reconstruction results indicate that in our study area,the traditional width index model failed the split-sample calibration test and exhibited a low reconstruction accuracy,while the hyperspectral index model has a higher explained variance of 46.4%(p<0.01),compared to the width index(21.4%)and the grayscale index(38.3%).Our research results show that hyperspectral indices have greater potential for climate reconstruction in regions with lower susceptibility to climate stress.This is attributed to their ability to effectively extract subtle climate signals from the spectral variations on the surface of tree rings.Such ring spectral changes may be caused by complex and currently unknown responses of the trees to the climate. 展开更多
关键词 Common signal strength hyperspectral indices microscopic hyperspectral imaging past climate reconstruction tree ring width
原文传递
Recent advances in nonlinear optics for bio‐imaging applications 被引量:9
5
作者 Silu Zhang Liwei Liu +5 位作者 Sheng Ren Zilin Li Yihua Zhao Zhigang Yang Rui Hu Junle Qu 《Opto-Electronic Advances》 2020年第10期13-30,共18页
Nonlinear optics,which is a subject for studying the interaction between intense light and materials,has great impact on various research fields.Since many structures in biological tissues exhibit strong nonlinear opt... Nonlinear optics,which is a subject for studying the interaction between intense light and materials,has great impact on various research fields.Since many structures in biological tissues exhibit strong nonlinear optical effects,nonlinear optics has been widely applied in biomedical studies.Especially in the aspect of bio-imaging,nonlinear optical techniques can provide rapid,label-free and chemically specific imaging of biological samples,which enable the investigation of biological processes and analysis of samples beyond other microscopy techniques.In this review,we focus on the introduction of nonlinear optical processes and their applications in bio-imaging as well as the recent advances in this filed.Our perspective of this field is also presented. 展开更多
关键词 nonliner optics microscopic imaging BIO-imaging LABEL-FREE chemical specific
在线阅读 下载PDF
3D Jones-matrix thesiography of biological fluid facies
6
作者 Alexander Ushenko Iryna Soltys +8 位作者 Alexander Dubolazov Yuriy Ushenko Viacheslav Bilookyi Olexander Bilookyi Olexandra Litvinenko Ivan Mikirin Jun Zheng Zhebo Chen Lin Bin 《Journal of Innovative Optical Health Sciences》 2025年第2期76-93,共18页
A new polarization–interference biomedical diagnostic three-dimensional(3D)Jones-matrix technology with digital Fourier reconstruction of layered maps of optical anisotropy(thesiograms)of dehydrated films(facies)of b... A new polarization–interference biomedical diagnostic three-dimensional(3D)Jones-matrix technology with digital Fourier reconstruction of layered maps of optical anisotropy(thesiograms)of dehydrated films(facies)of biological fluids of human organs is presented and experimentally tested.An original model of layered phase scanning of polycrystalline architectonics of supramolecular networks of biological fluid facies is proposed for the purpose of theoretical justification and prognostic use of the obtained results.On its basis,algorithms of Jones-matrix reconstruction of thesiograms of birefringence and dichroism of facies of synovial fluid,bile and blood are found.As a result,layered thesiograms of linear and circular birefringence and dichroism of facies with different spatial–angular architectonics of supramolecular networks are experimentally obtained for the first time.Within the framework of statistical analysis of experimental data,new objective markers(asymmetry and excess of optical anisotropy parameter distributions)for diagnostics of pathological changes in the optical anisotropy of biological fluid facies were defined and clinically tested.As a result,an excellent level of balanced accuracy of the developed polarization–interference Jones-matrix method of layer-by-layer reconstruction of thesiograms of polycrystalline supramolecular networks in differential diagnostics of bile facies(cholelithiasis),synovial fluid(reactive synovitis–septic arthritis)and whole blood(follicular adenoma–papillary thyroid cancer)was achieved. 展开更多
关键词 POLARIZATION INTERFERENCE FOURIER microscopic image optical anisotropy facies of biological liquids statistical moments
原文传递
Assessing pathological features of breast cancer via the multimodal information of multiphoton and Raman imaging
7
作者 高冰然 陈希文 +4 位作者 张宝萍 Ivan A.Bratchenko 陈建新 王爽 许思源 《Chinese Physics B》 SCIE EI CAS CSCD 2023年第11期151-160,共10页
For unveiling the pathological evolution of breast cancer, nonlinear multiphoton microscopic(MPM) and confocal Raman microspectral imaging(CRMI) techniques were both utilized to address the structural and constitution... For unveiling the pathological evolution of breast cancer, nonlinear multiphoton microscopic(MPM) and confocal Raman microspectral imaging(CRMI) techniques were both utilized to address the structural and constitutional characteristics of healthy(H), ductal carcinoma in situ(DCIS), and invasive ductal carcinoma(IDC) tissues. MPM-based techniques,including two-photon excited fluorescence(TPEF) and second harmonic generation(SHG), visualized label-free and the fine structure of breast tissue. Meanwhile, CRMI not only presented the chemical images of investigated samples with the K-mean cluster analysis method(KCA), but also pictured the distribution of components in the scanned area through univariate imaging. MPM images illustrated that the cancer cells first arranged around the basement membrane of the duct,then proliferated to fill the lumens of the duct, and finally broke through the basement membrane to infiltrate into the stroma.Although the Raman imaging failed to visualize the cell structure with high resolution, it explained spectroscopically the gradual increase of nucleic acid and protein components inside the ducts as cancer cells proliferated, and displayed the distribution pattern of each biological component during the evolution of breast cancer. Thus, the combination of MPM and CRMI provided new insights into the on-site pathological diagnosis of malignant breast cancer, also ensured technical support for the development of multimodal optical imaging techniques for precise histopathological analysis. 展开更多
关键词 nonlinear multiphoton microscopic imaging Raman microspectral imaging breast cancer
原文传递
Application of X-ray Powder Diffraction Method in Microscopic Image and Rock Identification Technology Combined with Microscopic Image
8
作者 HAN Lingfei 《外文科技期刊数据库(文摘版)自然科学》 2020年第1期010-014,共8页
In order to accurately identify the rock, it is necessary to study the identification method of the rock. The rock identification method, the thin slice microscopic image technique, the electron probe analysis method ... In order to accurately identify the rock, it is necessary to study the identification method of the rock. The rock identification method, the thin slice microscopic image technique, the electron probe analysis method or the X-ray powder crystal diffraction method cannot accurately determine the rock. An X-ray powder diffraction method combined with thin-film microscopic image technique and rock identification method was proposed. The X-ray powder diffraction method was combined with the thin-film microscopic image technique to identify the rock, and the microscopic image technique was used to determine the rock. The particle size, structure, shape, mineral color and structure, determine the type of rock, and then determine the mineral and mineral content of the rock by X-ray powder diffraction method, name the rock, and complete the identification of the rock. The experimental results show that the X-ray powder diffraction method or the thin-film microscopic image technique can not accurately determine the rock and combine the X-ray powder diffraction method with the thin-film microscopic image technology to identify the rock. Improve the accuracy of rock identification results. 展开更多
关键词 X-ray powder diffraction thin section microscopic imaging technique rock identification
原文传递
Deep learning of rock microscopic images for intelligent lithology identification: Neural network comparison and selection 被引量:13
9
作者 Zhenhao Xu Wen Ma +1 位作者 Peng Lin Yilei Hua 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2022年第4期1140-1152,共13页
An intelligent lithology identification method is proposed based on deep learning of the rock microscopic images.Based on the characteristics of rock images in the dataset,we used Xception,MobileNet_v2,Inception_ResNe... An intelligent lithology identification method is proposed based on deep learning of the rock microscopic images.Based on the characteristics of rock images in the dataset,we used Xception,MobileNet_v2,Inception_ResNet_v2,Inception_v3,Densenet121,ResNet101_v2,and ResNet-101 to develop microscopic image classification models,and then the network structures of seven different convolutional neural networks(CNNs)were compared.It shows that the multi-layer representation of rock features can be represented through convolution structures,thus better feature robustness can be achieved.For the loss function,cross-entropy is used to back propagate the weight parameters layer by layer,and the accuracy of the network is improved by frequent iterative training.We expanded a self-built dataset by using transfer learning and data augmentation.Next,accuracy(acc)and frames per second(fps)were used as the evaluation indexes to assess the accuracy and speed of model identification.The results show that the Xception-based model has the optimum performance,with an accuracy of 97.66%in the training dataset and 98.65%in the testing dataset.Furthermore,the fps of the model is 50.76,and the model is feasible to deploy under different hardware conditions and meets the requirements of rapid lithology identification.This proposed method is proved to be robust and versatile in generalization performance,and it is suitable for both geologists and engineers to identify lithology quickly. 展开更多
关键词 Deep learning Rock microscopic images Automatic classification Lithology identification
在线阅读 下载PDF
Automatic Leukaemia Segmentation Approach for Blood Cancer Classification Using Microscopic Images 被引量:1
10
作者 Anuj Sharma Deepak Prashar +2 位作者 Arfat Ahmad Khan Faizan Ahmed Khan Settawit Poochaya 《Computers, Materials & Continua》 SCIE EI 2022年第11期3629-3648,共20页
Leukaemia is a type of blood cancer that is caused by undeveloped White Blood Cells(WBC),and it is also called a blast blood cell.In the marrow of human bones,leukaemia is developed and is responsible for blood cell g... Leukaemia is a type of blood cancer that is caused by undeveloped White Blood Cells(WBC),and it is also called a blast blood cell.In the marrow of human bones,leukaemia is developed and is responsible for blood cell generation with leukocytes and WBC,and if any cell gets blasted,then it may become a cause of death.Therefore,the diagnosis of leukaemia in its early stages helps greatly in the treatment along with saving human lives.Subsequently,in terms of detection,image segmentation techniques play a vital role,and they turn out to be the important image processing steps for the extraction of feature patterns from the Acute Lymphoblastic Leukaemia(ALL)type of blood cancer.Moreover,the image segmentation technique focuses on the division of cells by segmenting a microscopic image into background and cancer blood cell nucleus,which is well-known as the Region Of Interest(ROI).As a result,in this article,we attempt to build a segmentation technique capable of solving blood cell nucleus segmentation issues using four distinct scenarios,including K-means,FCM(Fuzzy Cmeans),K-means with FFA(Firefly Algorithm),and FCM with FFA.Also,we determine the most effective method of blood cell nucleus segmentation,which we subsequently use for the Leukaemia classification model.Finally,using the Convolution Neural Network(CNN)as a classifier,we developed a leukaemia cancer classification model from the microscopic images.The proposed system’s classification accuracy is tested using the CNN to test the model on the ALL-IDB dataset and equate it to the current state of the art.In terms of experimental analysis,we observed that the accuracy of the model is near to 99%,and it is far better than other existing models that are designed to segment and classify the types of leukaemia cancer in terms of ALL. 展开更多
关键词 LEUKAEMIA blood cell nucleus image segmentation HOG descriptor K-MEANS FCM CNN microscopic images
在线阅读 下载PDF
Spatial-Spectral Joint Network for Cholangiocarcinoma Microscopic Hyperspectral Image Classification 被引量:1
11
作者 Xiaoqi Huang Xueyu Zhang +2 位作者 Mengmeng Zhang Meng Lyu Wei Li 《Journal of Beijing Institute of Technology》 EI CAS 2023年第5期586-599,共14页
Accurate histopathology classification is a crucial factor in the diagnosis and treatment of Cholangiocarcinoma(CCA).Hyperspectral images(HSI)provide rich spectral information than ordinary RGB images,making them more... Accurate histopathology classification is a crucial factor in the diagnosis and treatment of Cholangiocarcinoma(CCA).Hyperspectral images(HSI)provide rich spectral information than ordinary RGB images,making them more useful for medical diagnosis.The Convolutional Neural Network(CNN)is commonly employed in hyperspectral image classification due to its remarkable capacity for feature extraction and image classification.However,many existing CNN-based HSI classification methods tend to ignore the importance of image spatial context information and the interdependence between spectral channels,leading to unsatisfied classification performance.Thus,to address these issues,this paper proposes a Spatial-Spectral Joint Network(SSJN)model for hyperspectral image classification that utilizes spatial self-attention and spectral feature extraction.The SSJN model is derived from the ResNet18 network and implemented with the non-local and Coordinate Attention(CA)modules,which extract long-range dependencies on image space and enhance spatial features through the Branch Attention(BA)module to emphasize the region of interest.Furthermore,the SSJN model employs Conv-LSTM modules to extract long-range depen-dencies in the image spectral domain.This addresses the gradient disappearance/explosion phenom-ena and enhances the model classification accuracy.The experimental results show that the pro-posed SSJN model is more efficient in leveraging the spatial and spectral information of hyperspec-tral images on multidimensional microspectral datasets of CCA,leading to higher classification accuracy,and may have useful references for medical diagnosis of CCA. 展开更多
关键词 self-attention microscopic hyperspectral images image classification Conv-LSTM
在线阅读 下载PDF
Optical micro-scanning location calibration of thermal microscope imaging system
12
作者 关丛荣 高美静 +1 位作者 金伟其 王吉晖 《Journal of Beijing Institute of Technology》 EI CAS 2013年第2期250-255,共6页
A method of micro-scanning location adaptive calibration was proposed, which was real- ized by the digital image micro-displacement estimation. With geometric calculation, this calibration method used the displacement... A method of micro-scanning location adaptive calibration was proposed, which was real- ized by the digital image micro-displacement estimation. With geometric calculation, this calibration method used the displacement estimation of two thermal microscope images to get the size and direc- tion of each scanning location calibration angle. And each location calibration process was repeated according to the offset given by the system beforehand. The comparison experiments of sequence oversampling reconstruction before and after the micro-scanning location calibration were done. The results showed that the calibration method effectively improved the thermal microscope imaging qual- ity. 展开更多
关键词 thermal microscope imaging micro-scanning location calibration oversampling recon- struction
在线阅读 下载PDF
Oversample Reconstruction Based on a Strong Inter-Diagonal Matrix for an Optical Microscanning Thermal Microscope Imaging System
13
作者 Meijing Gao Ailing Tan +3 位作者 Jie Xu Weiqi Jin Zhenlong Zu Ming Yang 《Journal of Beijing Institute of Technology》 EI CAS 2018年第1期65-73,共9页
Based on a strong inter-diagonal matrix and Taylor series expansions,an oversample reconstruction method was proposed to calibrate the optical micro-scanning error. The technique can obtain regular 2 ×2 microscan... Based on a strong inter-diagonal matrix and Taylor series expansions,an oversample reconstruction method was proposed to calibrate the optical micro-scanning error. The technique can obtain regular 2 ×2 microscanning undersampling images from the real irregular undersampling images,and can then obtain a high spatial oversample resolution image. Simulations and experiments show that the proposed technique can reduce optical micro-scanning error and improve the system's spatial resolution. The algorithm is simple,fast and has low computational complexity. It can also be applied to other electro-optical imaging systems to improve their spatial resolution and has a widespread application prospect. 展开更多
关键词 optical microscanning strong inter-diagonal matrix oversample reconstruction thermal microscope imaging system
在线阅读 下载PDF
Compound eyes-on-a-chip for large field-of-view imaging and dynamic target positioning
14
作者 Jiayi WAN Weijian ZHONG +3 位作者 Yuqing LIU Changxu LI Dongdong HAN Yonglai ZHANG 《Science China(Technological Sciences)》 2025年第10期255-265,共11页
Compound eyes(CEs),renowned for their extraordinary visual capabilities,offer significant potential for advanced micro-optical systems.However,their applications in wide field-of-view(FOV)imaging and dynamic tracking,... Compound eyes(CEs),renowned for their extraordinary visual capabilities,offer significant potential for advanced micro-optical systems.However,their applications in wide field-of-view(FOV)imaging and dynamic tracking,for instance,microscopic particle image velocimetry(μ-PIV)for microfluidics,remain constrained by limited spatial resolution.We present a compound eye-on-a-chip(CEoC)system integrating a seven-ommatidium CE with a microfluidic platform.When fabricated via femtosecond laser two-photon polymerization(TPP),the CE exhibits exceptional surface smoothness(<4 nm roughness)and achieves wide-FOV imaging(>120°)with submicrometer resolution.Through quantitative calibration using TPP-fabricated microstructures,we established precise 3D spatial positioning capabilities.Proof-of-conceptμ-PIV experiments using fluorescent microparticles successfully reconstructed high-speed trajectories(10 mm/s)from real-time CE-captured images.This integrated CEoC system has promising potential for advancing microfluidic analysis and optofluidic manipulation technologies. 展开更多
关键词 compound eye 3D imaging large field-of-view imaging microscopic particle image velocimetry CE-on-a-chip system
原文传递
Future Manufacturing with AI-Driven Particle Vision Analysis in the Microscopic World
15
作者 Guangyao Chen Fengqi You 《Engineering》 2025年第9期68-84,共17页
Recent advances in artificial intelligence(AI)have led to the development of sophisticated algorithms that significantly improve image analysis capabilities.This combination of AI and microscopic imaging is transformi... Recent advances in artificial intelligence(AI)have led to the development of sophisticated algorithms that significantly improve image analysis capabilities.This combination of AI and microscopic imaging is transforming the way we interpret and analyze imaging data,simplifying complex tasks and enabling innovative experimental methods previously thought impossible.In smart manufacturing,these improvements are especially impactful,increasing precision and efficiency in production processes.This review examines the convergence of AI with particle image analysis,an area we refer to as“particle vision analysis(PVA).”We offer a detailed overview of how this technology integrates into and impacts various fields within the physical sciences and materials sectors,where it plays a crucial role in both innovation and operational improvements.We explore four key areas of advancement-namely,particle classification,detection,segmentation,and object tracking-along with a look into the emerging field of augmented microscopy.This paper also underscores the vital role of the existing datasets and implementations that support these applications,which provide essential insights and resources that drive continuous research and development in this fast-evolving field.Our thorough analysis aims to outline the transformative potential of AI-driven PVA in improving precision in future manufacturing at the microscopic scale and thereby preparing the ground for significant technological progress and broad industrial applications in nanomanufacturing,biomanufacturing,and pharmaceutical manufacturing.This exploration not only highlights the advantages of integrating AI into conventional manufacturing processes but also anticipates the rise of next-generation smart manufacturing,which is set to revolutionize industry standards and operational practices. 展开更多
关键词 Particle vision analysis AI-driven microscopic imaging Smart manufacturing
在线阅读 下载PDF
A Leukocyte image fast scanning based on max–min distance clustering 被引量:1
16
作者 Yapin Wang Yiping Cao 《Journal of Innovative Optical Health Sciences》 SCIE EI CAS 2016年第6期50-57,共8页
A leukocyte image fast scanning method based on max min distance clustering is proposed.Because of the lower proportion and uneven distribution of leukocytes in human peripheral blood,there will not be any leukocyte i... A leukocyte image fast scanning method based on max min distance clustering is proposed.Because of the lower proportion and uneven distribution of leukocytes in human peripheral blood,there will not be any leukocyte in lager quantity of the captured images if we directly scan the blood smear along an ordinary zigzag scanning routine with high power(100^(x))objective.Due to the larger field of view of low power(10^(x))objective,the captured low power blood smear images can be used to locate leukocytes.All of the located positions make up a specific routine,if we scan the blood smear along this routine with high power objective,there will be definitely leukocytes in almost all of the captured images.Considering the number of captured images is still large and some leukocytes may be redundantly captured twice or more,a leukocyte clustering method based on max-min distance clustering is developed to reduce the total number of captured images as well as the number of redundantly captured leukocytes.This method can improve the scanning eficiency obviously.The experimental results show that the proposed method can shorten scanning time from 8.0-14.0min to 2.54.0 min while extracting 110 nonredundant individual high power leukocyte images. 展开更多
关键词 Leukocyte image fast scanning scanning routine max-min distance clustering window clustering microscopic imaging image segmentation
原文传递
An online identity authentication method for blood smear
17
作者 Xiaozhen Feng Yiping Cao +1 位作者 Kuang Peng Cheng Chen 《Journal of Innovative Optical Health Sciences》 SCIE EI CAS 2016年第6期1-11,共11页
Blood smear test is the basic method of blood cytology and is also a standard medical test that can help diagnose various conditions and diseases.Morphological examination is the gold stan-dard to determine pathologic... Blood smear test is the basic method of blood cytology and is also a standard medical test that can help diagnose various conditions and diseases.Morphological examination is the gold stan-dard to determine pathological changes in blood cell morphology.In the biology and medicine automation trend,blood smears'automated management and analysis is very necessary.An online blood smear automatic microscopic image detection system has been constructed.It includes an online blood smear automatic producing part and a blood smear automatic micro-scopic image detection part.Online identity authentication is at the core of the system.The identifiers printed online always present dot matrix digit code(DMDC)whose stroke is not continuous.Considering the particularities of DMDC and the complexities of online application environment,an online identity authentication method for blood smear with heterological theory is proposed.By synthesizing the certain regional features according to the heterological theory,high identification accuracy and high speed have been guaranteed with few features required.In the experiment,the suficient correct matches bet ween the tube barcode and the identification result verified its feasibility and validity. 展开更多
关键词 Blood smear digit identification identity authentication feature identification blood smear detection microscopic imaging
原文传递
电针改善糖尿病肾病模型小鼠肾微血管损伤 被引量:4
18
作者 向继琴 魏文静 +6 位作者 廖美华 张可兴 周颖琪 张文捷 唐纯志 许能贵 陶蓉蓉 《World Journal of Acupuncture-Moxibustion》 CAS CSCD 2023年第3期262-272,共11页
Objective:Renal microvascular injury,as the result of diabetic toxicity,plays a vital role in the pathogenesis of diabetic kidney disease(DKD)during diabetes progression.Here,we investigated whether electroacupuncture... Objective:Renal microvascular injury,as the result of diabetic toxicity,plays a vital role in the pathogenesis of diabetic kidney disease(DKD)during diabetes progression.Here,we investigated whether electroacupuncture(EA)could ameliorate renal microvascular impairment to prevent DKD and its underlying mechanism.Methods:The male db/db mice with Leprdb mutation were used as the model of type 2 diabetes mellitusinduced DKD and treated with EA at"Zusanli(ST36)"and"Weiwanxiashu(EX-B3)"acupoints for 4 weeks.Age-matched wild-type mice were used as control group.Renal protection of EA was evaluated by mouse urine production,water consumption,renal index and tubules dilation.Two-photon microscope imaging was applied to visualize renal microvascular blood flow in vivo.Immunostaining and western blot analysis were used to detect the glomerular alternations and inflammatory signaling.Results:EA significantly attenuated renal dysfunction in db/db mice.The protective effect of EA on renal microvascular recovery was observed both in function and structure analysis.Firstly,EA restored the renal microvascular blood flow in db/db mice.Then,glomerular hypertrophy and glomerular barrier destruction were suppressed after EA,as respectively demonstrated by the reduction of glomerular dilation,Collagen IV and Claudin-1 deposits.In mechanism,EA suppressed the diabetes-induced inflammatory response in renal microvessels,presenting as the downregulation of inflammatory cytokines interleukin-1β(IL-1β)and tumor necrosis factor(TNF-α),intercellular cell adhesion molecule-1(ICAM-1)activation,and macrophage infiltration after EA treatment.Conclusion:These findings indicated the benefits of EA against renal microvascular impairment and DKD progression,which was associated with the action of anti-inflammation,and supported EA as a promising modality for DKDmanagement. 展开更多
关键词 Diabetic kidney disease ELECTROACUPUNCTURE ACUPUNCTURE Renal microvascular injury Inflammation Two-photon microscope imaging
原文传递
First-principles Study on Geometric and Electronic Structures of Si(111)-√7× √3-In Surface Reconstruction
19
作者 商波 袁岚峰 杨金龙 《Chinese Journal of Chemical Physics》 SCIE CAS CSCD 2012年第4期403-408,I0003,共7页
In order to determine the structures of Si(111)-√7 √3-In surfaces and to understand their electronic properties, we construct six models of both hexagonal and rectangular types and perform first-principles calcula... In order to determine the structures of Si(111)-√7 √3-In surfaces and to understand their electronic properties, we construct six models of both hexagonal and rectangular types and perform first-principles calculations. Their scanning tunneling microscopic images and work functions are simulated and compared with experimental results. In this way, the hex-H3' and rect-T1 models are identified as the experimental configurations for the hexagonal and rectangular types, respectively. The structural evolution mechanism of the In/Si(lll) surface with indium coverage around 1.0 monolayer is discussed. The 4×1 and -√7× √3 phases are suggested to have two different types of evolution mechanisms, consistent with experimental results. 展开更多
关键词 Surface reconstruction Si(111)-√7× √3In Density functional theory Scanning tunnueling microscopic image
在线阅读 下载PDF
3D digital image microscope system-assisted vasovasostomy and vasoepididymostomy in rats 被引量:4
20
作者 Peng Li Na-Chuan Liu +12 位作者 Er-Lei Zhi Chen-Cheng Yao Zhi-Liang Zhao Zhi-Yong Yu Qi-Meng Li Yu-Hua Huang Jie-Chang Ju Wen-Bin Huang Husanjan Rozi Zhi-Yong Ji San-Wei Guo Ru-Hui Tian Zheng Li 《Asian Journal of Andrology》 SCIE CAS CSCD 2021年第4期396-399,共4页
Optimal vision and ergonomics are essential factors contributing to the achievement of good results during microsurgery.The three-dimensional(3D)digital image microscope system with a better 3D depth of field can rele... Optimal vision and ergonomics are essential factors contributing to the achievement of good results during microsurgery.The three-dimensional(3D)digital image microscope system with a better 3D depth of field can release strain on the surgeon's neck and back,which can improve outcomes in microsurgery.We report a randomized prospective study of vasoepididymostomy and vasovasostomy using a 3D digital image microscope system(3D-DIM)in rats.A total of 16 adult male rats were randomly divided into two groups of 8 each:the standard operating microscope(SOM)group and the 3D-DIM group.The outcomes measured included the operative time,real-time postoperative mechanical patency,and anastomosis leakage.Furthermore,a user-friendly microscope score was designed to evaluate the ergonomic design and equipment characteristics of the microscope.There were no differences in operative time between the two groups.The real-time postoperative mechanical patency rates were 100.0%for both groups.The percentage of vasoepididymostomy anastomosis leakage was 16.7%in the SOM group and 25.0%in the 3D-DIM group;however,no vasovasostomy anastomosis leakage was found in either group.In terms of the ergonomic design,the 3D-DIM group obtained better scores based on the surgeon's feelings;in terms of the equipment characteristics,the 3D-DIM group had lower scores for clarity and higher scores for flexibility and adaptivity.Based on our randomized prospective study in a rat model,we believe that the 3D-DIM can improve surgeon comfort without compromising outcomes in male infertility reconstructive microsurgery,so the 3D-DIM might be widely used in the future. 展开更多
关键词 MICROSURGERY three-dimensional digital image microscope system VASOEPIDIDYMOSTOMY VASOVASOSTOMY
原文传递
上一页 1 2 下一页 到第
使用帮助 返回顶部