【目的】探究温拌沥青混合料黏附机理,拓展温拌沥青与集料黏附性研究方法。【方法】使用原子力显微镜(atomic force microscope,AFM)测得分别加入Sasobit类温拌剂H01(质量分数分别为1.0%、3.0%、5.0%)和表面活性剂类温拌剂H02(质量分数...【目的】探究温拌沥青混合料黏附机理,拓展温拌沥青与集料黏附性研究方法。【方法】使用原子力显微镜(atomic force microscope,AFM)测得分别加入Sasobit类温拌剂H01(质量分数分别为1.0%、3.0%、5.0%)和表面活性剂类温拌剂H02(质量分数分别为0.3%、0.5%、0.7%)的温拌沥青试样黏附力,并经JKR(Johnson-Kendall-Roberts)模型和表面能理论将其转换为沥青表面能,计算沥青-花岗岩和沥青-玄武岩体系的无水、有水黏附功,并与水煮试验、水稳定性试验结果进行对比分析;对基于AFM测得的温拌沥青退针力曲线进行积分,得到黏附性指标G,并将其与沥青表面能进行相关性拟合。【结果】两类温拌剂的加入均降低了温拌沥青-集料体系的黏附功,温拌沥青-花岗岩体系的无水黏附功比温拌沥青-玄武岩体系的大,有水黏附功则相反;基于AFM求解得到的H01温拌沥青-玄武岩体系黏附功的变化趋势与水稳定性试验结果相同,而H02温拌沥青-玄武岩体系的则相反;黏附性指标G与沥青表面能之间具有较好的相关性。【结论】相比温拌沥青-玄武岩体系,温拌沥青-花岗岩体系更容易发生水损害;基于AFM求解沥青-玄武岩体系黏附功的方法适用于Sasobit类温拌沥青,不适用于表面活性剂类温拌沥青;本文提出的黏附性指标G为评价温拌沥青-集料体系黏附性提供了新的量化指标。展开更多
Three kinds of titanium surface especially the HA surface are analyzed. Titanium was treated by 3 kinds of methods that were acid & alkali, calcic solution and apathe solution. Samples were observed by optic micros...Three kinds of titanium surface especially the HA surface are analyzed. Titanium was treated by 3 kinds of methods that were acid & alkali, calcic solution and apathe solution. Samples were observed by optic microscope and atomic force microscope ( AFM ) . The typical surface morphology of the acid and alkali group is little holes, and on the two HA surface the tiny protuberances is typical. The surface treated by apatite solution was smoother than the two formers. The rough surface treated with acid and alkali was propitious to Ca^+ , P^- and proteins' adhesion, and the relatively smooth HA surface was of benefit to the cell adhesion.展开更多
原子力显微镜(Atomic Force Microscope,AFM)是纳米科技研究领域的一种重要工具。作为一种近场成像仪器,参数的选择对样品成像的效果有着很大的影响,不当的参数甚至可能造成样品的损坏。通过采用控制变量法,并以均方根粗糙度作为评判标...原子力显微镜(Atomic Force Microscope,AFM)是纳米科技研究领域的一种重要工具。作为一种近场成像仪器,参数的选择对样品成像的效果有着很大的影响,不当的参数甚至可能造成样品的损坏。通过采用控制变量法,并以均方根粗糙度作为评判标准,改变AFM各项扫描参数,研究了AFM中不同参数的调整对于样品扫描图像的影响。结果表明,振幅阈值、扫描速率、积分增益三项参数对于测量样品表面粗糙度均有较大影响,通过适当改变扫描参数,可以有效提升AFM的样品扫描质量。展开更多
DNA/octadecylamine(ODA) monolayers were transferred onto silicon substrates and the morphologies of the monolayers were investigated by Atomic Force Microscope(AFM). AFM images show that the morphologies of DNA dissol...DNA/octadecylamine(ODA) monolayers were transferred onto silicon substrates and the morphologies of the monolayers were investigated by Atomic Force Microscope(AFM). AFM images show that the morphologies of DNA dissolved in pure water are very different from those of DNA dissolved in the NaCl solution. When DNA molecules are dissovled in pure water, they will form ball-like structure in the monolayer. When the DNA molecules are dissolved in NaCl solution, they will form bunch lines. This DNA line offers a valuable template to direct the formation of unique inorganic nanomaterials.展开更多
原子力显微镜(atomic force microscope,AFM)是纳米尺度线宽成像和测量的重要工具.但系统的非线性和控制器参数选择的多样性导致AFM控制的不确定性,影响了AFM测量结果的精确性和重复性.为克服这个缺点,分析了AFM的测量原理和工作模式的...原子力显微镜(atomic force microscope,AFM)是纳米尺度线宽成像和测量的重要工具.但系统的非线性和控制器参数选择的多样性导致AFM控制的不确定性,影响了AFM测量结果的精确性和重复性.为克服这个缺点,分析了AFM的测量原理和工作模式的特点,在此基础上提出了一种新的工作模式——补偿模式.在这种工作模式中,结合了扫描器和悬臂梁的位置信息而得到被测试样表面的形貌图像.与恒力接触模式相比,在补偿模式下,AFM能够在高速度下以更好的精确性和重复性进行成像和测量.仿真和实验结果证明了这种新工作模式的可行性和适用性.实验结果说明该工作模式可以提高扫描速度16倍或减小均方根误差到约1/5.展开更多
Applications of Atomic Force Microscopy (AFM) in optical disc technology are summarized. AFM is ideally suited to the characterization of nanometerscale pit and bump structures in CD/DVD manufacturing, so the relati...Applications of Atomic Force Microscopy (AFM) in optical disc technology are summarized. AFM is ideally suited to the characterization of nanometerscale pit and bump structures in CD/DVD manufacturing, so the relationship between production variables and pits/bumps geometry as well as relations between pits/bumps geometry and electrical performance of discs can be established to perform direct quality control of CD/DVD manufacturing. Applications of AFM in optical disc technology mainly fall into three parts: qualitative analysis of topography of discs/stampers, semiquantitative analysis of pits/bumps geometry of discs/stampers and length analysis of data marks on bump with statistics technology. Qualitative analysis of topography of discs/stampers and semiquantitative analysis of pits/bumps geometry of discs/stampers are chiefly oriented to the measurements of high error rate at beginning of play, pit morphology and block error rate, track pitch variations, pit depth monitoring as well as bump morphology and its surface roughness. It is discovered that the efficiency of the cooling channels of the mold has deteriorated, resulting in the discs being separated from the stamper while they are too soft due to inadequate cooling in the area where high error rate and block error rate are frequently produced. Length analysis of data marks with statistics technology is aimed at the analysis of track pitch and pitch variation, bump length (offset, deviation, asymmetry) and AFM jitter, bump width and width variation, bump height and height variation as well as side wall angle (slope) and slope variation. Statistical analysis of AFM images yields important information about optical disc microstructure and in turn provides information about the performance of the manufacturing process. It is very useful to analyze geometric parameters by considering the fundamental length groups of the data marks. The obtained results demonstrate that AFM have particular advantages in the quality control of discs/stampers manufacturing.展开更多
文摘【目的】探究温拌沥青混合料黏附机理,拓展温拌沥青与集料黏附性研究方法。【方法】使用原子力显微镜(atomic force microscope,AFM)测得分别加入Sasobit类温拌剂H01(质量分数分别为1.0%、3.0%、5.0%)和表面活性剂类温拌剂H02(质量分数分别为0.3%、0.5%、0.7%)的温拌沥青试样黏附力,并经JKR(Johnson-Kendall-Roberts)模型和表面能理论将其转换为沥青表面能,计算沥青-花岗岩和沥青-玄武岩体系的无水、有水黏附功,并与水煮试验、水稳定性试验结果进行对比分析;对基于AFM测得的温拌沥青退针力曲线进行积分,得到黏附性指标G,并将其与沥青表面能进行相关性拟合。【结果】两类温拌剂的加入均降低了温拌沥青-集料体系的黏附功,温拌沥青-花岗岩体系的无水黏附功比温拌沥青-玄武岩体系的大,有水黏附功则相反;基于AFM求解得到的H01温拌沥青-玄武岩体系黏附功的变化趋势与水稳定性试验结果相同,而H02温拌沥青-玄武岩体系的则相反;黏附性指标G与沥青表面能之间具有较好的相关性。【结论】相比温拌沥青-玄武岩体系,温拌沥青-花岗岩体系更容易发生水损害;基于AFM求解沥青-玄武岩体系黏附功的方法适用于Sasobit类温拌沥青,不适用于表面活性剂类温拌沥青;本文提出的黏附性指标G为评价温拌沥青-集料体系黏附性提供了新的量化指标。
文摘Three kinds of titanium surface especially the HA surface are analyzed. Titanium was treated by 3 kinds of methods that were acid & alkali, calcic solution and apathe solution. Samples were observed by optic microscope and atomic force microscope ( AFM ) . The typical surface morphology of the acid and alkali group is little holes, and on the two HA surface the tiny protuberances is typical. The surface treated by apatite solution was smoother than the two formers. The rough surface treated with acid and alkali was propitious to Ca^+ , P^- and proteins' adhesion, and the relatively smooth HA surface was of benefit to the cell adhesion.
文摘原子力显微镜(Atomic Force Microscope,AFM)是纳米科技研究领域的一种重要工具。作为一种近场成像仪器,参数的选择对样品成像的效果有着很大的影响,不当的参数甚至可能造成样品的损坏。通过采用控制变量法,并以均方根粗糙度作为评判标准,改变AFM各项扫描参数,研究了AFM中不同参数的调整对于样品扫描图像的影响。结果表明,振幅阈值、扫描速率、积分增益三项参数对于测量样品表面粗糙度均有较大影响,通过适当改变扫描参数,可以有效提升AFM的样品扫描质量。
文摘DNA/octadecylamine(ODA) monolayers were transferred onto silicon substrates and the morphologies of the monolayers were investigated by Atomic Force Microscope(AFM). AFM images show that the morphologies of DNA dissolved in pure water are very different from those of DNA dissolved in the NaCl solution. When DNA molecules are dissovled in pure water, they will form ball-like structure in the monolayer. When the DNA molecules are dissolved in NaCl solution, they will form bunch lines. This DNA line offers a valuable template to direct the formation of unique inorganic nanomaterials.
文摘原子力显微镜(atomic force microscope,AFM)是纳米尺度线宽成像和测量的重要工具.但系统的非线性和控制器参数选择的多样性导致AFM控制的不确定性,影响了AFM测量结果的精确性和重复性.为克服这个缺点,分析了AFM的测量原理和工作模式的特点,在此基础上提出了一种新的工作模式——补偿模式.在这种工作模式中,结合了扫描器和悬臂梁的位置信息而得到被测试样表面的形貌图像.与恒力接触模式相比,在补偿模式下,AFM能够在高速度下以更好的精确性和重复性进行成像和测量.仿真和实验结果证明了这种新工作模式的可行性和适用性.实验结果说明该工作模式可以提高扫描速度16倍或减小均方根误差到约1/5.
文摘Applications of Atomic Force Microscopy (AFM) in optical disc technology are summarized. AFM is ideally suited to the characterization of nanometerscale pit and bump structures in CD/DVD manufacturing, so the relationship between production variables and pits/bumps geometry as well as relations between pits/bumps geometry and electrical performance of discs can be established to perform direct quality control of CD/DVD manufacturing. Applications of AFM in optical disc technology mainly fall into three parts: qualitative analysis of topography of discs/stampers, semiquantitative analysis of pits/bumps geometry of discs/stampers and length analysis of data marks on bump with statistics technology. Qualitative analysis of topography of discs/stampers and semiquantitative analysis of pits/bumps geometry of discs/stampers are chiefly oriented to the measurements of high error rate at beginning of play, pit morphology and block error rate, track pitch variations, pit depth monitoring as well as bump morphology and its surface roughness. It is discovered that the efficiency of the cooling channels of the mold has deteriorated, resulting in the discs being separated from the stamper while they are too soft due to inadequate cooling in the area where high error rate and block error rate are frequently produced. Length analysis of data marks with statistics technology is aimed at the analysis of track pitch and pitch variation, bump length (offset, deviation, asymmetry) and AFM jitter, bump width and width variation, bump height and height variation as well as side wall angle (slope) and slope variation. Statistical analysis of AFM images yields important information about optical disc microstructure and in turn provides information about the performance of the manufacturing process. It is very useful to analyze geometric parameters by considering the fundamental length groups of the data marks. The obtained results demonstrate that AFM have particular advantages in the quality control of discs/stampers manufacturing.