Accurately simulating mesoscale convective systems(MCSs)is essential for predicting global precipitation patterns and extreme weather events.Despite the ability of advanced models to reproduce MCS climate statistics,c...Accurately simulating mesoscale convective systems(MCSs)is essential for predicting global precipitation patterns and extreme weather events.Despite the ability of advanced models to reproduce MCS climate statistics,capturing extreme storm cases over complex terrain remains challenging.This study utilizes the Global–Regional Integrated Forecast System(GRIST)with variable resolution to simulate an eastward-propagating MCS event.The impact of three microphysics schemes,including two single-moment schemes(WSM6,Lin)and one double-moment scheme(Morrison),on the model sensitivity of MCS precipitation simulations is investigated.The results demonstrate that while all the schemes capture the spatial distribution and temporal variation of MCS precipitation,the Morrison scheme alleviates overestimated precipitation compared to the Lin and WSM6 schemes.The ascending motion gradually becomes weaker in the Morrison scheme during the MCS movement process.Compared to the runs with convection parameterization,the explicit-convection setup at 3.5-km resolution reduces disparities in atmospheric dynamics due to microphysics sensitivity in terms of vertical motions and horizontal kinetic energy at the high-wavenumber regimes.The explicit-convection setup more accurately captures the propagation of both main and secondary precipitation centers during the MCS development,diminishing the differences in both precipitation intensity and propagation features between the Morrison and two single-moment schemes.These findings underscore the importance of microphysics schemes for global nonhydrostatic modeling at the kilometer scale.The role of explicit convection for reducing model uncertainty is also outlined.展开更多
Numerical models play an important role in convective-scale forecasting,and dual-polarization radar observations can provide detailed microphysical data.In this study,we implement a direct assimilation operator for du...Numerical models play an important role in convective-scale forecasting,and dual-polarization radar observations can provide detailed microphysical data.In this study,we implement a direct assimilation operator for dual-polarization radar data using the hydrometeor background error covariance(HBEC)in the China Meteorological Administration MESO-scale weather forecasting system(CMA-MESO,formerly GRAPES-MESO)and conducted assimilation and forecasting experiments with X-band and S-band dual-polarization radar data on two cases.The results indicate that the direct assimilation of dual-polarization radar data enhanced the microphysical fields and the thermodynamic structure of convective systems to some extent based on the HBEC,thereby improving precipitation forecasts.Among the sensitivity tests of microphysical parameterization schemes,including the LIUMA scheme,the THOMPSON scheme,and the WSM6scheme(WRF Single-Moment 6-class),we find that the greatest improvement in the equivalent potential temperature,relative humidity,wind,and accumulated precipitation forecasts occurred in the experiment using the WSM6 scheme,as the distribution of solid precipitation particles was closer to the hydrometeor classification algorithm from the dualpolarization radar observations in our cases.展开更多
Hydrometeor variables (cloud water and cloud ice mixing ratios) are added into the WRF three-dimensional variational assimilation system as additional control variables to directly analyze hydrometeors by assimilati...Hydrometeor variables (cloud water and cloud ice mixing ratios) are added into the WRF three-dimensional variational assimilation system as additional control variables to directly analyze hydrometeors by assimilating cloud observations. In addition, the background error covariance matrix of hydrometeors is modeled through a control variable transform, and its characteristics discussed in detail. A suite of experiments using four microphysics schemes (LIN, SBU-YLIN, WDM6 and WSM6) are performed with and without assimilating satellite cloud liquid/ice water path. We find analysis of hydrometeors with cloud assimilation to be significantly improved, and the increment and distribution of hydrometeors are consistent with the characteristics of background error covariance. Diagnostic results suggest that the forecast with cloud assimilation represents a significant improvement, especially the ability to forecast precipitation in the first seven hours. It is also found that the largest improvement occurs in the experiment using the WDM6 scheme, since the assimilated cloud information can sustain for longer in this scheme. The least improvement, meanwhile, appears in the experiment using the SBU-YLIN scheme.展开更多
The basic structure and cloud features of Typhoon Nida(2016) are simulated using a new microphysics scheme(Liuma) within the Weather Research and Forecasting(WRF) model. Typhoon characteristics simulated with the Lium...The basic structure and cloud features of Typhoon Nida(2016) are simulated using a new microphysics scheme(Liuma) within the Weather Research and Forecasting(WRF) model. Typhoon characteristics simulated with the Liuma microphysics scheme are compared with observations and those simulated with a commonly-used microphysics scheme(WSM6). Results show that using different microphysics schemes does not significantly alter the track of the typhoon but does significantly affect the intensity and the cloud structure of the typhoon. Results also show that the vertical distribution of cloud hydrometeors and the horizontal distribution of peripheral rainband are affected by the microphysics scheme. The mixing ratios of rain water and graupel correlate highly with the vertical velocity component and equivalent potential temperature at the typhoon eye-wall region. According to the simulation with WSM 6 scheme,it is likely that the very low typhoon central pressure results from the positive feedback between hydrometeors and typhoon intensity. As the ice-phase hydrometeors are mostly graupel in the Liuma microphysics scheme, further improvement in this aspect is required.展开更多
Representation of cloud microphysical processes is one of the key aspects of numerical models.An improved double-moment bulk cloud microphysics scheme(named IMY)was created based on the standard Milbrandt-Yau(MY)schem...Representation of cloud microphysical processes is one of the key aspects of numerical models.An improved double-moment bulk cloud microphysics scheme(named IMY)was created based on the standard Milbrandt-Yau(MY)scheme in the Weather Research and Forecasting(WRF)model for the East Asian monsoon region(EAMR).In the IMY scheme,the shape parameters of raindrops,snow particles,and cloud droplet size distributions are variables instead of fixed constants.Specifically,the shape parameters of raindrop and snow size distributions are diagnosed from their respective shape-slope relationships.The shape parameter for the cloud droplet size distribution depends on the total cloud droplet number concentration.In addition,a series of minor improvements involving detailed cloud processes have also been incorporated.The improved scheme was coupled into the WRF model and tested on two heavy rainfall cases over the EAMR.The IMY scheme is shown to reproduce the overall spatial distribution of rainfall and its temporal evolution,evidenced by comparing the modeled results with surface gauge observations.The simulations also successfully capture the cloud features by using satellite and ground-based radar observations as a reference.The IMY has yielded simulation results on the case studies that were comparable,and in ways superior to MY,indicating that the improved scheme shows promise.Although the simulations demonstrated a positive performance evaluation for the IMY scheme,continued experiments are required to further validate the scheme with different weather events.展开更多
This study examines the effects of cumulus parameterizations and microphysics schemes on the track forecast of typhoon Nabi using the Weather Research Forecast model. The study found that the effects of cumulus parame...This study examines the effects of cumulus parameterizations and microphysics schemes on the track forecast of typhoon Nabi using the Weather Research Forecast model. The study found that the effects of cumulus parameterizations on typhoon track forecast were comparatively strong and the typhoon track forecast of Kain-Fritsch (KF) was superior to that of Betts-Miller (BM). When KF was selected, the simulated results would be improved if microphysics schemes were selected than otherwise. The results from Ferrier, WSM6, and Lin were very close to those in the best track. KF performed well with the simulations of the western extension and eastern contraction changes of a North Pacific high as well as the distribution and strength of the typhoon wind field.展开更多
Evaluating and understanding the accuracy of cloud microphysical(MP) schemes in numerical weather prediction(NWP) models is crucial for assimilating satellite radiance data under cloudy conditions. This study leverage...Evaluating and understanding the accuracy of cloud microphysical(MP) schemes in numerical weather prediction(NWP) models is crucial for assimilating satellite radiance data under cloudy conditions. This study leverages surface observations, radar reflectivity data, and Himawari-8 satellite radiance data from both water vapor and window channels to assess the performance of four prevalent cloud MP schemes: WSM6, WDM6, Thompson, and Morrison, as implemented in the Weather Research and Forecasting(WRF) model. The assessment focuses on two typical heavy rain events in South China: a warm-sector torrential rainfall(WSTR) event and a squall line(SL) event. The findings reveal that the cloud MP schemes exhibit varying levels of accuracy across the two events. Notably, for the WSTR event, the WDM6scheme shows the closest alignment with observed rainfall in terms of precipitation forecast. In contrast, the Thompson scheme outperforms the others during the SL event. The simulation of infrared(IR) radiance data from cloud and rain areas remains a significant challenge, particularly for ice clouds, which exhibit greater forecast uncertainty compared to water clouds. Identifying the optimal scheme for describing the full cloud process during rainfall events remains challenging among the evaluated MP schemes. Specifically, the WDM6 scheme stands out in forecasting clear skies and water clouds,while the Morrison and Thompson schemes are found to be more adept at predicting ice clouds. The discrepancies observed between the accuracy of precipitation forecast and cloud prediction highlight the need for further research to identify an MP scheme that effectively balances precipitation forecast with accurate cloudy radiative transfer(RT) simulation for data assimilation(DA). This research offers valuable insights into the selection of cloud microphysics parameterization schemes for all-sky radiance assimilation, particularly under diverse rainfall processes.展开更多
This study incorporated the Weather Research and Forecasting(WRF) model double-moment 6-class(WDM6) microphysics scheme into the mesoscale version of the Global/Regional Assimilation and Pr Ediction System(GRAPES...This study incorporated the Weather Research and Forecasting(WRF) model double-moment 6-class(WDM6) microphysics scheme into the mesoscale version of the Global/Regional Assimilation and Pr Ediction System(GRAPES_Meso). A rainfall event that occurred during 3–5 June 2015 around Beijing was simulated by using the WDM6, the WRF single-moment 6-class scheme(WSM6), and the NCEP 5-class scheme, respectively. The results show that both the distribution and magnitude of the rainfall simulated with WDM6 were more consistent with the observation. Compared with WDM6, WSM6 simulated larger cloud liquid water content, which provided more water vapor for graupel growth, leading to increased precipitation in the cold-rain processes. For areas with the warmrain processes, the sensitivity experiments using WDM6 showed that an increase in cloud condensation nuclei(CCN)number concentration led to enhanced CCN activation ratio and larger cloud droplet number concentration(Nc) but decreased cloud droplet effective diameter. The formation of more small-size cloud droplets resulted in a decrease in raindrop number concentration(Nr), inhibiting the warm-rain processes, thus gradually decreasing the amount of precipitation. For areas mainly with the cold-rain processes, the overall amount of precipitation increased; however, it gradually decreased when the CCN number concentration reached a certain magnitude. Hence, the effect of CCN number concentration on precipitation exhibits significant differences in different rainfall areas of the same precipitation event.展开更多
The impact of different cloud microphysics parameterization schemes on the intensity and structure of the Super-strong Typhoon Rammasun(1409)in 2014 is investigated using the Weather Research and Forecasting model ver...The impact of different cloud microphysics parameterization schemes on the intensity and structure of the Super-strong Typhoon Rammasun(1409)in 2014 is investigated using the Weather Research and Forecasting model version 3.4 with eight cloud microphysics parameterization schemes.Results indicate that the uncertainty of cloud microphysics schemes results in typhoon forecast uncertainties,which increase with forecast time.Typhoon forecast uncertainty primarily affects intensity predictions,with significant differences in predicted typhoon intensity using various cloud microphysics schemes.Typhoon forecast uncertainty also affects the predicted typhoon structure.Greater typhoon intensity is accompanied by smaller vortex width,tighter vortex structure,stronger wind in the middle and lower troposphere,greater height of the strong wind region,smaller thickness of the eyewall and the outward extension of the eyewall,and a warmer warm core at upper levels of the eye.The differences among the various cloud microphysics schemes lead to different amounts and distributions of water vapor and hydrometeors in clouds.Different hydrometeors have different vertical distributions.In the radial direction,the maxima for the various hydrometeors forecast by a single cloud microphysics scheme are collocated with each other and with the center of maximum precipitation.When the hydrometeor concentration is high and hydrometeors exist at lower altitudes,more precipitation often occurs.Both the vertical and horizontal winds are the strongest at the location of maximum precipitation.Results also indicate that typhoon intensities forecast by cloud microphysics schemes containing graupel processes are noticeably greater than those forecast by schemes without graupel processes.Among the eight cloud microphysics schemes investigated,typhoon intensity forecasts using the WRF Single-Moment 6-class and Thompson schemes are the most accurate.展开更多
Enhancing the ability of the WRF model in simulating a large area covering the West Pacific Ocean, China's Mainland, and the East Indian Ocean is very important to improve prediction of the East Asian monsoon clim...Enhancing the ability of the WRF model in simulating a large area covering the West Pacific Ocean, China's Mainland, and the East Indian Ocean is very important to improve prediction of the East Asian monsoon climate. The objective of this study is to identify a reasonable configuration of physical parameterization schemes to simulate the precipitation and temperature in this large area. The Mellor-Yamada-Janjic (MYJ) and Yonsei University (YSU) PBL schemes, the WSM3 and WSM5 microphysics schemes, and the Betts-Miller-Janjic (BMJ) and Tiedtke cumulus schemes are compared through simulation of the regional climate of summer 2008. All cases exhibit a similar spatial distribution of temperature as observed, and the spatial correlation coefficients are all higher than 0.95. The cases combining MY J, WSM3/WSM5, and BMJ have the smallest biases of temperature. The choice of PBL scheme has a significant effect on precipitation in such a large area. The cases with MYJ reproduce a better distribution of rain belts, while YSU strongly overestimates the precipitation intensity. The precipitation simulated using WSM3 is similar to that using WSM5. The BMJ cumulus scheme combined with the MYJ PBL scheme has a smaller bias of precipitation. However, the Tiedtke scheme reproduces the precipitation pattern better, especially over the ITCZ.展开更多
A two-moment bulk stratiform microphysics scheme, including recently developed physically-based droplet activation/ice nucleation parameterizations has been implemented into the Grid-point Atmospheric Model of IAP LA...A two-moment bulk stratiform microphysics scheme, including recently developed physically-based droplet activation/ice nucleation parameterizations has been implemented into the Grid-point Atmospheric Model of IAP LASG (GAMIL) as an effort to enhance the model's capability to simulate aerosol indirect effects. Unlike the previous one-moment cloud microphysics scheme, the new scheme produces a reasonable rep- resentation of cloud particle size and number concentration. This scheme captures the observed spatial variations in cloud droplet number concentrations. Simulated ice crystal number concentrations in cirrus clouds qualitatively agree with in situ observations. The longwave and shortwave cloud forcings are in better agreement with observations. Sensitivity tests show that the column cloud droplet number concentrations calculated from two different droplet activation parameterizations are similar. However, ice crystal number concentration in mixed-phased clouds is sensitive to different heterogeneous ice nucleation formulations. The simulation with high ice crystal number concentration in mixed-phase clouds has less liquid water path and weaker cloud forcing. ~rthermore, ice crystal number concentration in cirrus clouds is sensitive to different ice nucleation parameterizations. Sensitivity tests also suggest that the impact of pre-existing ice crystals on homogeneous freezing in old clouds should be taken into account.展开更多
Idealized supercell storms are simulated with two aerosol-aware bulk microphysics schemes(BMSs),the Thompson and the Chen-Liu-Reisner(CLR),using the Weather Research and Forecast(WRF)model.The objective of this study ...Idealized supercell storms are simulated with two aerosol-aware bulk microphysics schemes(BMSs),the Thompson and the Chen-Liu-Reisner(CLR),using the Weather Research and Forecast(WRF)model.The objective of this study is to investigate the parameterizations of aerosol effects on cloud and precipitation characteristics and assess the necessity of introducing aerosols into a weather prediction model at fine grid resolution.The results show that aerosols play a decisive role in the composition of clouds in terms of the mixing ratios and number concentrations of liquid and ice hydrometeors in an intense supercell storm.The storm consists of a large amount of cloud water and snow in the polluted environment,but a large amount of rainwater and graupel instead in the clean environment.The total precipitation and rain intensity are suppressed in the CLR scheme more than in the Thompson scheme in the first three hours of storm simulations.The critical processes explaining the differences are the auto-conversion rate in the warm-rain process at the beginning of storm intensification and the low-level cooling induced by large ice hydrometeors.The cloud condensation nuclei(CCN)activation and auto-conversion processes of the two schemes exhibit considerable differences,indicating the inherent uncertainty of the parameterized aerosol effects among different BMSs.Beyond the aerosol effects,the fall speed characteristics of graupel in the two schemes play an important role in the storm dynamics and precipitation via low-level cooling.The rapid intensification of storms simulated with the Thompson scheme is attributed to the production of hail-like graupel.展开更多
Comparative evaluation of cloud microphysics schemes has always been a focal point of meteorological research.Existing cloud microphysics schemes still face uncertainties.This study focuses on a cold vortex-induced he...Comparative evaluation of cloud microphysics schemes has always been a focal point of meteorological research.Existing cloud microphysics schemes still face uncertainties.This study focuses on a cold vortex-induced heavy rainfall event in Northeast China in July 2023,using the operational China Meteorological Administration Mesoscale Model(CMA-MESO)to conduct comparative retrospective experiments with the single-moment microphysics scheme WSM6(namely the Weather Research and Forecasting model Single Moment 6-class scheme)and the double-moment scheme called LIUMA.The goal is to evaluate the forecasting capabilities of the schemes for cold vortex-induced heavy rainfall.The results show that both schemes could generally reproduce this heavy rainfall event;however,the LIUMA scheme's precipitation time series exhibited a correlation coefficient of 0.75 and a root mean square error(RMSE)of 0.67 mm h-1,which are closer to observations compared to WSM6's values of 0.70 and 1.15 mm h-1,respectively.It is found that WSM6 overestimated precipitation intensity more significantly.Additionally,the raindrop size distributions(RSDs)from LIUMA are more consistent with the observations.The net latent heat peak in WSM6 is 2.2×10^(-4) K s^(-1),higher than that of LIUMA of 2.0×10^(-4) K s^(-1).The stronger latent heating in WSM6 enhanced dynamic effects,leading to more vigorous convection and overestimated precipitation intensity.The mixing ratios of ice-phase and liquid-phase hydrometeors simulated by LIUMA are higher than those by WSM6,with overestimation of ice-phase particles being particularly pronounced.This may be one of the reasons why the LIUMA simulated radar reflectivity is significantly stronger than the observations.The main differences between the two schemes lie in the representation of ice-phase processes and the interactions between ice-phase and liquid-phase particles,and a more detailed evaluation of these processes will require advanced cloud observation techniques.The results obtained from this study help better understand and further improve the CMA-MESO operational model performance in forecasting heavy rainfall.展开更多
This paper studied a snow event over North China on 21 February 2017,using aircraft in-situ data,a Lagrangian analysis tool,and WRF simulations with different microphysical schemes to investigate the supercooled layer...This paper studied a snow event over North China on 21 February 2017,using aircraft in-situ data,a Lagrangian analysis tool,and WRF simulations with different microphysical schemes to investigate the supercooled layer of warm conveyor belts(WCBs).Based on the aircraft data,we found a fine vertical structure within clouds in the WCB and highlighted a 1-2 km thin supercooled liquid water layer with a maximum Liquid Water Content(LWC) exceeding0.5 g kg^(-1) during the vertical aircraft observation.Although the main features of thermodynamic profiles were essentially captured by both modeling schemes,the microphysical quantities exhibited large diversity with different microphysics schemes.The conventional Morrison two-moment scheme showed remarkable agreement with in-situ observations,both in terms of the thermodynamic structure and the supercooled liquid water layer.However,the microphysical structure of the WCB clouds,in terms of LWC and IWC,was not apparent in HUJI fast bin scheme.To reduce such uncertainty,future work may focus on improving the representation of microphysics in bin schemes with in-situ data and using similar assumptions for all schemes to isolate the impact of physics.展开更多
This study investigates the capabilities of a non-hydrostatic global,variable-resolution model in simulating tropical cyclone precipitation,with historically significant Typhoon Fitow(1323)as a case study.Employing th...This study investigates the capabilities of a non-hydrostatic global,variable-resolution model in simulating tropical cyclone precipitation,with historically significant Typhoon Fitow(1323)as a case study.Employing three grid settings(24 km,60−10 km,60−3 km)and two microphysical parameterization schemes(WSM6 and Thompson),the study investigates the influence of grid resolution and microphysical parameterization on precipitation simulation.The simulated precipitation intensity and spatial distribution of high-resolution grids exhibit better agreement with the observations compared to the coarse-resolution grids.Specifically,the 60−3 km grid setting shows the greatest improvement in spatial correlation with observed precipitation data compared to the 24 km grid.Through the analysis of the thermal dynamic field,the high-resolution grid configuration more effectively simulates indicators for strong convective weather events,such as convective available potential energy(CAPE),helicity,and nonadiabatic heating.Analysis of TRMM satellite observations reveals that the high-resolution grid simulation results more accurately capture the distribution characteristics of hydrometeor mixing ratio compared to the coarse-resolution grids.Differences in hydrometeor content within convective clouds are more pronounced across grid resolutions than in stratiform clouds,even with the same parameterization scheme.Additionally,at the same resolution,the disparity in ice-phase particle content between the two schemes is much greater than the disparity in liquid-phase particle content.It is also noteworthy that the WSM6 scheme delivers superior performance compared to the Thompson scheme.In summary,this study demonstrates that refining model resolution has a more significant impact on precipitation intensity than the selection of physical parameterization scheme.The Model for Prediction Across Scales(MPAS),using a high-resolution variable-resolution grid,can be effectively used for typhoon precipitation simulation research.展开更多
The improvement of the accuracy of simulated cloud-related variables,such as the cloud fraction,in global climate models(GCMs)is still a challenging problem in climate modeling.In this study,the influence of cloud mic...The improvement of the accuracy of simulated cloud-related variables,such as the cloud fraction,in global climate models(GCMs)is still a challenging problem in climate modeling.In this study,the influence of cloud microphysics schemes(one-moment versus two-moment schemes)and cloud overlap methods(observation-based versus a fixed vertical decorrelation length)on the simulated cloud fraction was assessed in the BCC_AGCM2.0_CUACE/Aero.Compared with the fixed decorrelation length method,the observation-based approach produced a significantly improved cloud fraction both globally and for four representative regions.The utilization of a two-moment cloud microphysics scheme,on the other hand,notably improved the simulated cloud fraction compared with the one-moment scheme;specifically,the relative bias in the global mean total cloud fraction decreased by 42.9%–84.8%.Furthermore,the total cloud fraction bias decreased by 6.6%in the boreal winter(DJF)and 1.64%in the boreal summer(JJA).Cloud radiative forcing globally and in the four regions improved by 0.3%−1.2% and 0.2%−2.0%,respectively.Thus,our results showed that the interaction between clouds and climate through microphysical and radiation processes is a key contributor to simulation uncertainty.展开更多
Based on a successful simulation of Typhoon Haikui(2012) using WRF(Weather Research & Forecasting)model with the WSM6 microphysics scheme, a high-resolution model output is presented and analyzed in this study. To...Based on a successful simulation of Typhoon Haikui(2012) using WRF(Weather Research & Forecasting)model with the WSM6 microphysics scheme, a high-resolution model output is presented and analyzed in this study. To understand the cause of the average gridded rainfall stability and increases after Haikui's landfall, this research examines the fields of the physical terms as well as the vapor and condensate distributions and budgets, including their respective changes during the landing process. The environmental vapor supply following the typhoon landfall has no significant difference from that before the landfall. Although Haikui's secondary circulation weakens, this circulation is not conducive to typhoon rainfall stability or increases, although the amounts of the six kinds of water substances(vapor,cloud water, cloud ice, snow, rain, and graupel) increase in the outer region of the typhoon. This reallocation of water substances is essential to the maintenance of rainfall. The six kinds of water substances are classified as vapor, clouds(cloud water and ice) and precipitation(snow, rain, and graupel) to diagnose their budgets. This sorting reveals that the changes in the budgets of different kinds of water substances, caused by the reduced mixing ratios of snow and ice, the water consumption of clouds, and the transformation of graupel, induce increased concentrations of precipitation fallout,which occur closer to the ground after typhoon landfall. In addition, this pattern is an efficient way for Haikui's rainfall to remain stable after its landfall. Thus, the allocation and budget analyses of water substances are meaningful when forecasting the typhoon rainfall stability and increases after landfall.展开更多
The horizontal resolution of global numerical weather prediction models is continuously developing. However, due to the imperfect precipitation simulation/forecast of these models, the demand for considering riming pa...The horizontal resolution of global numerical weather prediction models is continuously developing. However, due to the imperfect precipitation simulation/forecast of these models, the demand for considering riming particles in cloud microphysical schemes in these models is increasing. This study employed the latest versions of global atmospheric reanalysis data (ERA5), the satellite retrieval data of the Global Precipitation Observation Program (GPM),and station precipitation observations to explore the impacts of adding graupel to the cloud microphysical scheme in the China Meteorological Administration-Global Forecast System (CMA-GFS) on summer regional precipitation simulations in four Chinese climate zones. The results verify that the new graupel scheme can enable CMA-GFS to decently predict global graupel distribution, especially in tropical and midlatitude regions. The addition of graupel in the cloud microphysics increases the precipitation simulation in North China, while that in Southwest China is weakened and dispersed. Moreover, graupel scheme increases the precipitation simulations of almost all magnitudes.The increase in light rain is obvious, and the absolute value of heavy rain is strengthened. This may be because graupel quickly melts into rain after falling out of the zero-temperature layer due to its large mass and fast falling speed, increasing surface precipitation. In summary, the addition of graupel in the cloud microphysical scheme can improve CMA-GFS’s underestimation of strong precipitation.展开更多
This study simulated FY-2 D satellite infrared brightness images based on the WRF and RTTOV models. The effects of prediction errors in WRF micro-and macroscale cloud variables on FY-2 D infrared brightness temperatur...This study simulated FY-2 D satellite infrared brightness images based on the WRF and RTTOV models. The effects of prediction errors in WRF micro-and macroscale cloud variables on FY-2 D infrared brightness temperature accuracy were analyzed. The principle findings were as follows. In the T+0–48 h simulation time, the root mean square errors of the simulated brightness temperatures were within the range 10–27 K, i.e., better than the range of 20–40 K achieved previously. In the T+0–24 h simulation time, the correlation coefficients between the simulated and measured brightness temperatures for all four channels were >0.5. The simulation performance of water channel IR3 was stable and the best. The four types of cloud microphysical scheme considered all showed that the simulated values of brightness temperature in clouds were too high and that the distributions of cloud systems were incomplete, especially in typhoon areas. The performance of the THOM scheme was considered best, followed in descending order by the WSM6, WDM6, and LIN schemes. Compared with observed values, the maximum deviation appeared in the range 253–273 K for all schemes. On the microscale, the snow water mixing ratio of the THOM scheme was much bigger than that of the other schemes. Improving the production efficiency or increasing the availability of solid water in the cloud microphysical scheme would provide slight benefit for brightness temperature simulations. On the macroscale, the cloud amount obtained by the scheme used in this study was small. Improving the diagnostic scheme for cloud amount, especially high-level cloud, could improve the accuracy of brightness temperature simulations. These results could provide an intuitive reference for forecasters and constitute technical support for the creation of simulated brightness temperature images for the FY-4 satellite.展开更多
基金supported by the National Natural Science Foundation of China(Grant No.42305169)the Basic Research Fund of CAMS(Grant No.2023Y001)the National Key Scientific and Technological Infrastructure project“Earth System Numerical Simulation Facility”(Earth Lab)。
文摘Accurately simulating mesoscale convective systems(MCSs)is essential for predicting global precipitation patterns and extreme weather events.Despite the ability of advanced models to reproduce MCS climate statistics,capturing extreme storm cases over complex terrain remains challenging.This study utilizes the Global–Regional Integrated Forecast System(GRIST)with variable resolution to simulate an eastward-propagating MCS event.The impact of three microphysics schemes,including two single-moment schemes(WSM6,Lin)and one double-moment scheme(Morrison),on the model sensitivity of MCS precipitation simulations is investigated.The results demonstrate that while all the schemes capture the spatial distribution and temporal variation of MCS precipitation,the Morrison scheme alleviates overestimated precipitation compared to the Lin and WSM6 schemes.The ascending motion gradually becomes weaker in the Morrison scheme during the MCS movement process.Compared to the runs with convection parameterization,the explicit-convection setup at 3.5-km resolution reduces disparities in atmospheric dynamics due to microphysics sensitivity in terms of vertical motions and horizontal kinetic energy at the high-wavenumber regimes.The explicit-convection setup more accurately captures the propagation of both main and secondary precipitation centers during the MCS development,diminishing the differences in both precipitation intensity and propagation features between the Morrison and two single-moment schemes.These findings underscore the importance of microphysics schemes for global nonhydrostatic modeling at the kilometer scale.The role of explicit convection for reducing model uncertainty is also outlined.
基金sponsored by the National Natural Science Foundation of China(U2442601 and U2442218)the High Performance Computing Platform of Nanjing University of Information Science&Technology(NUIST)for their support of this work。
文摘Numerical models play an important role in convective-scale forecasting,and dual-polarization radar observations can provide detailed microphysical data.In this study,we implement a direct assimilation operator for dual-polarization radar data using the hydrometeor background error covariance(HBEC)in the China Meteorological Administration MESO-scale weather forecasting system(CMA-MESO,formerly GRAPES-MESO)and conducted assimilation and forecasting experiments with X-band and S-band dual-polarization radar data on two cases.The results indicate that the direct assimilation of dual-polarization radar data enhanced the microphysical fields and the thermodynamic structure of convective systems to some extent based on the HBEC,thereby improving precipitation forecasts.Among the sensitivity tests of microphysical parameterization schemes,including the LIUMA scheme,the THOMPSON scheme,and the WSM6scheme(WRF Single-Moment 6-class),we find that the greatest improvement in the equivalent potential temperature,relative humidity,wind,and accumulated precipitation forecasts occurred in the experiment using the WSM6 scheme,as the distribution of solid precipitation particles was closer to the hydrometeor classification algorithm from the dualpolarization radar observations in our cases.
基金jointly sponsored by the 973 Program(Grant No.2013CB430102)the National Natural Science Foundation of China(Grant No.41675102)+1 种基金the Open Project Program of the Key Laboratory of Meteorological Disaster of the Ministry of Education,NUIST(KLME 1311)the Priority Academic Program Development of Jiangsu Higher Education Institutions(PAPD)
文摘Hydrometeor variables (cloud water and cloud ice mixing ratios) are added into the WRF three-dimensional variational assimilation system as additional control variables to directly analyze hydrometeors by assimilating cloud observations. In addition, the background error covariance matrix of hydrometeors is modeled through a control variable transform, and its characteristics discussed in detail. A suite of experiments using four microphysics schemes (LIN, SBU-YLIN, WDM6 and WSM6) are performed with and without assimilating satellite cloud liquid/ice water path. We find analysis of hydrometeors with cloud assimilation to be significantly improved, and the increment and distribution of hydrometeors are consistent with the characteristics of background error covariance. Diagnostic results suggest that the forecast with cloud assimilation represents a significant improvement, especially the ability to forecast precipitation in the first seven hours. It is also found that the largest improvement occurs in the experiment using the WDM6 scheme, since the assimilated cloud information can sustain for longer in this scheme. The least improvement, meanwhile, appears in the experiment using the SBU-YLIN scheme.
基金Ministry of Science and Technology of China(2017YFC1501406)National Key Research and Development Plan Program of China(2017YFA0604500)CMA Youth Founding Program(Q201706&NWPC-QNJJ-201702)
文摘The basic structure and cloud features of Typhoon Nida(2016) are simulated using a new microphysics scheme(Liuma) within the Weather Research and Forecasting(WRF) model. Typhoon characteristics simulated with the Liuma microphysics scheme are compared with observations and those simulated with a commonly-used microphysics scheme(WSM6). Results show that using different microphysics schemes does not significantly alter the track of the typhoon but does significantly affect the intensity and the cloud structure of the typhoon. Results also show that the vertical distribution of cloud hydrometeors and the horizontal distribution of peripheral rainband are affected by the microphysics scheme. The mixing ratios of rain water and graupel correlate highly with the vertical velocity component and equivalent potential temperature at the typhoon eye-wall region. According to the simulation with WSM 6 scheme,it is likely that the very low typhoon central pressure results from the positive feedback between hydrometeors and typhoon intensity. As the ice-phase hydrometeors are mostly graupel in the Liuma microphysics scheme, further improvement in this aspect is required.
基金the National Natural Science Foundation of China(Grant No.42075083)National Key Research and Development Program of China(Grant No.2019YFC1510400)+1 种基金Guangdong Major Project of Basic and Applied Basic Research(Grant No.2020B0301030004)the Second Tibetan Plateau Scientific Expe-dition and Research(STEP)program(2019QZKK010402)。
文摘Representation of cloud microphysical processes is one of the key aspects of numerical models.An improved double-moment bulk cloud microphysics scheme(named IMY)was created based on the standard Milbrandt-Yau(MY)scheme in the Weather Research and Forecasting(WRF)model for the East Asian monsoon region(EAMR).In the IMY scheme,the shape parameters of raindrops,snow particles,and cloud droplet size distributions are variables instead of fixed constants.Specifically,the shape parameters of raindrop and snow size distributions are diagnosed from their respective shape-slope relationships.The shape parameter for the cloud droplet size distribution depends on the total cloud droplet number concentration.In addition,a series of minor improvements involving detailed cloud processes have also been incorporated.The improved scheme was coupled into the WRF model and tested on two heavy rainfall cases over the EAMR.The IMY scheme is shown to reproduce the overall spatial distribution of rainfall and its temporal evolution,evidenced by comparing the modeled results with surface gauge observations.The simulations also successfully capture the cloud features by using satellite and ground-based radar observations as a reference.The IMY has yielded simulation results on the case studies that were comparable,and in ways superior to MY,indicating that the improved scheme shows promise.Although the simulations demonstrated a positive performance evaluation for the IMY scheme,continued experiments are required to further validate the scheme with different weather events.
基金National Basic Research Program of China (2009CB421502)National Natural Science Foundation of China (40475018)Research and Development Program of KMA of Korea (NIMR-2010-B-6)
文摘This study examines the effects of cumulus parameterizations and microphysics schemes on the track forecast of typhoon Nabi using the Weather Research Forecast model. The study found that the effects of cumulus parameterizations on typhoon track forecast were comparatively strong and the typhoon track forecast of Kain-Fritsch (KF) was superior to that of Betts-Miller (BM). When KF was selected, the simulated results would be improved if microphysics schemes were selected than otherwise. The results from Ferrier, WSM6, and Lin were very close to those in the best track. KF performed well with the simulations of the western extension and eastern contraction changes of a North Pacific high as well as the distribution and strength of the typhoon wind field.
基金Guangdong Province Natural Science Foundation Youth Science Fund (2021A1515110944)。
文摘Evaluating and understanding the accuracy of cloud microphysical(MP) schemes in numerical weather prediction(NWP) models is crucial for assimilating satellite radiance data under cloudy conditions. This study leverages surface observations, radar reflectivity data, and Himawari-8 satellite radiance data from both water vapor and window channels to assess the performance of four prevalent cloud MP schemes: WSM6, WDM6, Thompson, and Morrison, as implemented in the Weather Research and Forecasting(WRF) model. The assessment focuses on two typical heavy rain events in South China: a warm-sector torrential rainfall(WSTR) event and a squall line(SL) event. The findings reveal that the cloud MP schemes exhibit varying levels of accuracy across the two events. Notably, for the WSTR event, the WDM6scheme shows the closest alignment with observed rainfall in terms of precipitation forecast. In contrast, the Thompson scheme outperforms the others during the SL event. The simulation of infrared(IR) radiance data from cloud and rain areas remains a significant challenge, particularly for ice clouds, which exhibit greater forecast uncertainty compared to water clouds. Identifying the optimal scheme for describing the full cloud process during rainfall events remains challenging among the evaluated MP schemes. Specifically, the WDM6 scheme stands out in forecasting clear skies and water clouds,while the Morrison and Thompson schemes are found to be more adept at predicting ice clouds. The discrepancies observed between the accuracy of precipitation forecast and cloud prediction highlight the need for further research to identify an MP scheme that effectively balances precipitation forecast with accurate cloudy radiative transfer(RT) simulation for data assimilation(DA). This research offers valuable insights into the selection of cloud microphysics parameterization schemes for all-sky radiance assimilation, particularly under diverse rainfall processes.
基金Supported by the National Key Project(2016YFC0203306)National Natural Science Foundation of China(41590874)+2 种基金National(Key)973 Program(2014CB441201)Chinese Academy of Meteorological Sciences’ Project(2017Z001)Key Project of Air Pollution Cause and Control(DQGG0104)
文摘This study incorporated the Weather Research and Forecasting(WRF) model double-moment 6-class(WDM6) microphysics scheme into the mesoscale version of the Global/Regional Assimilation and Pr Ediction System(GRAPES_Meso). A rainfall event that occurred during 3–5 June 2015 around Beijing was simulated by using the WDM6, the WRF single-moment 6-class scheme(WSM6), and the NCEP 5-class scheme, respectively. The results show that both the distribution and magnitude of the rainfall simulated with WDM6 were more consistent with the observation. Compared with WDM6, WSM6 simulated larger cloud liquid water content, which provided more water vapor for graupel growth, leading to increased precipitation in the cold-rain processes. For areas with the warmrain processes, the sensitivity experiments using WDM6 showed that an increase in cloud condensation nuclei(CCN)number concentration led to enhanced CCN activation ratio and larger cloud droplet number concentration(Nc) but decreased cloud droplet effective diameter. The formation of more small-size cloud droplets resulted in a decrease in raindrop number concentration(Nr), inhibiting the warm-rain processes, thus gradually decreasing the amount of precipitation. For areas mainly with the cold-rain processes, the overall amount of precipitation increased; however, it gradually decreased when the CCN number concentration reached a certain magnitude. Hence, the effect of CCN number concentration on precipitation exhibits significant differences in different rainfall areas of the same precipitation event.
基金National Natural Science Foundation of China(41575108,41475082,42075012)。
文摘The impact of different cloud microphysics parameterization schemes on the intensity and structure of the Super-strong Typhoon Rammasun(1409)in 2014 is investigated using the Weather Research and Forecasting model version 3.4 with eight cloud microphysics parameterization schemes.Results indicate that the uncertainty of cloud microphysics schemes results in typhoon forecast uncertainties,which increase with forecast time.Typhoon forecast uncertainty primarily affects intensity predictions,with significant differences in predicted typhoon intensity using various cloud microphysics schemes.Typhoon forecast uncertainty also affects the predicted typhoon structure.Greater typhoon intensity is accompanied by smaller vortex width,tighter vortex structure,stronger wind in the middle and lower troposphere,greater height of the strong wind region,smaller thickness of the eyewall and the outward extension of the eyewall,and a warmer warm core at upper levels of the eye.The differences among the various cloud microphysics schemes lead to different amounts and distributions of water vapor and hydrometeors in clouds.Different hydrometeors have different vertical distributions.In the radial direction,the maxima for the various hydrometeors forecast by a single cloud microphysics scheme are collocated with each other and with the center of maximum precipitation.When the hydrometeor concentration is high and hydrometeors exist at lower altitudes,more precipitation often occurs.Both the vertical and horizontal winds are the strongest at the location of maximum precipitation.Results also indicate that typhoon intensities forecast by cloud microphysics schemes containing graupel processes are noticeably greater than those forecast by schemes without graupel processes.Among the eight cloud microphysics schemes investigated,typhoon intensity forecasts using the WRF Single-Moment 6-class and Thompson schemes are the most accurate.
基金funded by the National Natural Science Foundation of China[General Project,grant number 41275108]the Strategic Priority Research Program of the Chinese Academy of Sciences[grant number XDA11010404]
文摘Enhancing the ability of the WRF model in simulating a large area covering the West Pacific Ocean, China's Mainland, and the East Indian Ocean is very important to improve prediction of the East Asian monsoon climate. The objective of this study is to identify a reasonable configuration of physical parameterization schemes to simulate the precipitation and temperature in this large area. The Mellor-Yamada-Janjic (MYJ) and Yonsei University (YSU) PBL schemes, the WSM3 and WSM5 microphysics schemes, and the Betts-Miller-Janjic (BMJ) and Tiedtke cumulus schemes are compared through simulation of the regional climate of summer 2008. All cases exhibit a similar spatial distribution of temperature as observed, and the spatial correlation coefficients are all higher than 0.95. The cases combining MY J, WSM3/WSM5, and BMJ have the smallest biases of temperature. The choice of PBL scheme has a significant effect on precipitation in such a large area. The cases with MYJ reproduce a better distribution of rain belts, while YSU strongly overestimates the precipitation intensity. The precipitation simulated using WSM3 is similar to that using WSM5. The BMJ cumulus scheme combined with the MYJ PBL scheme has a smaller bias of precipitation. However, the Tiedtke scheme reproduces the precipitation pattern better, especially over the ITCZ.
基金supported by the National Natural Science Funds of China(Grant No.41205071)the Ministry of Science and Technology of China for the National Basic Research Program of China(973 Program:Grant No.2011CB309704)the funding support from the U.S.Department of Energy(DOE),Office of Science,Earth System Modeling Program
文摘A two-moment bulk stratiform microphysics scheme, including recently developed physically-based droplet activation/ice nucleation parameterizations has been implemented into the Grid-point Atmospheric Model of IAP LASG (GAMIL) as an effort to enhance the model's capability to simulate aerosol indirect effects. Unlike the previous one-moment cloud microphysics scheme, the new scheme produces a reasonable rep- resentation of cloud particle size and number concentration. This scheme captures the observed spatial variations in cloud droplet number concentrations. Simulated ice crystal number concentrations in cirrus clouds qualitatively agree with in situ observations. The longwave and shortwave cloud forcings are in better agreement with observations. Sensitivity tests show that the column cloud droplet number concentrations calculated from two different droplet activation parameterizations are similar. However, ice crystal number concentration in mixed-phased clouds is sensitive to different heterogeneous ice nucleation formulations. The simulation with high ice crystal number concentration in mixed-phase clouds has less liquid water path and weaker cloud forcing. ~rthermore, ice crystal number concentration in cirrus clouds is sensitive to different ice nucleation parameterizations. Sensitivity tests also suggest that the impact of pre-existing ice crystals on homogeneous freezing in old clouds should be taken into account.
基金supported by the National Key Research and Development Program of China(Grant Nos.2016YFE0109700 and 2017YFC150190X)Research Program from Science and Technology Committee of Shanghai(Grant No.19dz1200101)National Science Foundation of China(Grant Nos.41575101 and 41975133)。
文摘Idealized supercell storms are simulated with two aerosol-aware bulk microphysics schemes(BMSs),the Thompson and the Chen-Liu-Reisner(CLR),using the Weather Research and Forecast(WRF)model.The objective of this study is to investigate the parameterizations of aerosol effects on cloud and precipitation characteristics and assess the necessity of introducing aerosols into a weather prediction model at fine grid resolution.The results show that aerosols play a decisive role in the composition of clouds in terms of the mixing ratios and number concentrations of liquid and ice hydrometeors in an intense supercell storm.The storm consists of a large amount of cloud water and snow in the polluted environment,but a large amount of rainwater and graupel instead in the clean environment.The total precipitation and rain intensity are suppressed in the CLR scheme more than in the Thompson scheme in the first three hours of storm simulations.The critical processes explaining the differences are the auto-conversion rate in the warm-rain process at the beginning of storm intensification and the low-level cooling induced by large ice hydrometeors.The cloud condensation nuclei(CCN)activation and auto-conversion processes of the two schemes exhibit considerable differences,indicating the inherent uncertainty of the parameterized aerosol effects among different BMSs.Beyond the aerosol effects,the fall speed characteristics of graupel in the two schemes play an important role in the storm dynamics and precipitation via low-level cooling.The rapid intensification of storms simulated with the Thompson scheme is attributed to the production of hail-like graupel.
基金Supported by the Open Project Fund of China Meteorological Administration Basin Heavy Rainfall Key Laboratory(2023BHR-Y12)National Key Research and Development Program of China(2023YFC3007700 and 2023YFC3007702)+4 种基金Key Scientific and Technology Research and Development Program of Jilin Province(20220203199SF and 20240304119SF)National Natural Science Foundation of China(42405014 and U2342212)Liaoning Provincial Natural Science Foundation of China(2024-BS-305)Joint Research Project for Meteorological Capacity Improvement(24NLTSQ007)National and Provincial Coordinated Research and Development Project of Numerical Weather Prediction of CMA(TCYF2024GS006)。
文摘Comparative evaluation of cloud microphysics schemes has always been a focal point of meteorological research.Existing cloud microphysics schemes still face uncertainties.This study focuses on a cold vortex-induced heavy rainfall event in Northeast China in July 2023,using the operational China Meteorological Administration Mesoscale Model(CMA-MESO)to conduct comparative retrospective experiments with the single-moment microphysics scheme WSM6(namely the Weather Research and Forecasting model Single Moment 6-class scheme)and the double-moment scheme called LIUMA.The goal is to evaluate the forecasting capabilities of the schemes for cold vortex-induced heavy rainfall.The results show that both schemes could generally reproduce this heavy rainfall event;however,the LIUMA scheme's precipitation time series exhibited a correlation coefficient of 0.75 and a root mean square error(RMSE)of 0.67 mm h-1,which are closer to observations compared to WSM6's values of 0.70 and 1.15 mm h-1,respectively.It is found that WSM6 overestimated precipitation intensity more significantly.Additionally,the raindrop size distributions(RSDs)from LIUMA are more consistent with the observations.The net latent heat peak in WSM6 is 2.2×10^(-4) K s^(-1),higher than that of LIUMA of 2.0×10^(-4) K s^(-1).The stronger latent heating in WSM6 enhanced dynamic effects,leading to more vigorous convection and overestimated precipitation intensity.The mixing ratios of ice-phase and liquid-phase hydrometeors simulated by LIUMA are higher than those by WSM6,with overestimation of ice-phase particles being particularly pronounced.This may be one of the reasons why the LIUMA simulated radar reflectivity is significantly stronger than the observations.The main differences between the two schemes lie in the representation of ice-phase processes and the interactions between ice-phase and liquid-phase particles,and a more detailed evaluation of these processes will require advanced cloud observation techniques.The results obtained from this study help better understand and further improve the CMA-MESO operational model performance in forecasting heavy rainfall.
基金jointly supported by the China National Science Foundation under Grant Nos.41875172 and 42075192。
文摘This paper studied a snow event over North China on 21 February 2017,using aircraft in-situ data,a Lagrangian analysis tool,and WRF simulations with different microphysical schemes to investigate the supercooled layer of warm conveyor belts(WCBs).Based on the aircraft data,we found a fine vertical structure within clouds in the WCB and highlighted a 1-2 km thin supercooled liquid water layer with a maximum Liquid Water Content(LWC) exceeding0.5 g kg^(-1) during the vertical aircraft observation.Although the main features of thermodynamic profiles were essentially captured by both modeling schemes,the microphysical quantities exhibited large diversity with different microphysics schemes.The conventional Morrison two-moment scheme showed remarkable agreement with in-situ observations,both in terms of the thermodynamic structure and the supercooled liquid water layer.However,the microphysical structure of the WCB clouds,in terms of LWC and IWC,was not apparent in HUJI fast bin scheme.To reduce such uncertainty,future work may focus on improving the representation of microphysics in bin schemes with in-situ data and using similar assumptions for all schemes to isolate the impact of physics.
基金financially supported by the National Key Research and Development Program of China(No.2021YFC3000802)supported by the ECNU Multifunctional Platform for Innovation(001).
文摘This study investigates the capabilities of a non-hydrostatic global,variable-resolution model in simulating tropical cyclone precipitation,with historically significant Typhoon Fitow(1323)as a case study.Employing three grid settings(24 km,60−10 km,60−3 km)and two microphysical parameterization schemes(WSM6 and Thompson),the study investigates the influence of grid resolution and microphysical parameterization on precipitation simulation.The simulated precipitation intensity and spatial distribution of high-resolution grids exhibit better agreement with the observations compared to the coarse-resolution grids.Specifically,the 60−3 km grid setting shows the greatest improvement in spatial correlation with observed precipitation data compared to the 24 km grid.Through the analysis of the thermal dynamic field,the high-resolution grid configuration more effectively simulates indicators for strong convective weather events,such as convective available potential energy(CAPE),helicity,and nonadiabatic heating.Analysis of TRMM satellite observations reveals that the high-resolution grid simulation results more accurately capture the distribution characteristics of hydrometeor mixing ratio compared to the coarse-resolution grids.Differences in hydrometeor content within convective clouds are more pronounced across grid resolutions than in stratiform clouds,even with the same parameterization scheme.Additionally,at the same resolution,the disparity in ice-phase particle content between the two schemes is much greater than the disparity in liquid-phase particle content.It is also noteworthy that the WSM6 scheme delivers superior performance compared to the Thompson scheme.In summary,this study demonstrates that refining model resolution has a more significant impact on precipitation intensity than the selection of physical parameterization scheme.The Model for Prediction Across Scales(MPAS),using a high-resolution variable-resolution grid,can be effectively used for typhoon precipitation simulation research.
基金supported by the National Key R&D Program of China(2017YFA0603502)(Key)National Natural Science Foundation of China(91644211)S&T Development Fund of CAMS(2021KJ004).
文摘The improvement of the accuracy of simulated cloud-related variables,such as the cloud fraction,in global climate models(GCMs)is still a challenging problem in climate modeling.In this study,the influence of cloud microphysics schemes(one-moment versus two-moment schemes)and cloud overlap methods(observation-based versus a fixed vertical decorrelation length)on the simulated cloud fraction was assessed in the BCC_AGCM2.0_CUACE/Aero.Compared with the fixed decorrelation length method,the observation-based approach produced a significantly improved cloud fraction both globally and for four representative regions.The utilization of a two-moment cloud microphysics scheme,on the other hand,notably improved the simulated cloud fraction compared with the one-moment scheme;specifically,the relative bias in the global mean total cloud fraction decreased by 42.9%–84.8%.Furthermore,the total cloud fraction bias decreased by 6.6%in the boreal winter(DJF)and 1.64%in the boreal summer(JJA).Cloud radiative forcing globally and in the four regions improved by 0.3%−1.2% and 0.2%−2.0%,respectively.Thus,our results showed that the interaction between clouds and climate through microphysical and radiation processes is a key contributor to simulation uncertainty.
基金National Natural Science Foundation of China(41275002,41175054)Key Program of National Natural Science Foundation of China(41230421)
文摘Based on a successful simulation of Typhoon Haikui(2012) using WRF(Weather Research & Forecasting)model with the WSM6 microphysics scheme, a high-resolution model output is presented and analyzed in this study. To understand the cause of the average gridded rainfall stability and increases after Haikui's landfall, this research examines the fields of the physical terms as well as the vapor and condensate distributions and budgets, including their respective changes during the landing process. The environmental vapor supply following the typhoon landfall has no significant difference from that before the landfall. Although Haikui's secondary circulation weakens, this circulation is not conducive to typhoon rainfall stability or increases, although the amounts of the six kinds of water substances(vapor,cloud water, cloud ice, snow, rain, and graupel) increase in the outer region of the typhoon. This reallocation of water substances is essential to the maintenance of rainfall. The six kinds of water substances are classified as vapor, clouds(cloud water and ice) and precipitation(snow, rain, and graupel) to diagnose their budgets. This sorting reveals that the changes in the budgets of different kinds of water substances, caused by the reduced mixing ratios of snow and ice, the water consumption of clouds, and the transformation of graupel, induce increased concentrations of precipitation fallout,which occur closer to the ground after typhoon landfall. In addition, this pattern is an efficient way for Haikui's rainfall to remain stable after its landfall. Thus, the allocation and budget analyses of water substances are meaningful when forecasting the typhoon rainfall stability and increases after landfall.
基金Supported by the National Key Research and Development Program of China (2021YFC3090205)National Natural Science Foundation of China (42090032)。
文摘The horizontal resolution of global numerical weather prediction models is continuously developing. However, due to the imperfect precipitation simulation/forecast of these models, the demand for considering riming particles in cloud microphysical schemes in these models is increasing. This study employed the latest versions of global atmospheric reanalysis data (ERA5), the satellite retrieval data of the Global Precipitation Observation Program (GPM),and station precipitation observations to explore the impacts of adding graupel to the cloud microphysical scheme in the China Meteorological Administration-Global Forecast System (CMA-GFS) on summer regional precipitation simulations in four Chinese climate zones. The results verify that the new graupel scheme can enable CMA-GFS to decently predict global graupel distribution, especially in tropical and midlatitude regions. The addition of graupel in the cloud microphysics increases the precipitation simulation in North China, while that in Southwest China is weakened and dispersed. Moreover, graupel scheme increases the precipitation simulations of almost all magnitudes.The increase in light rain is obvious, and the absolute value of heavy rain is strengthened. This may be because graupel quickly melts into rain after falling out of the zero-temperature layer due to its large mass and fast falling speed, increasing surface precipitation. In summary, the addition of graupel in the cloud microphysical scheme can improve CMA-GFS’s underestimation of strong precipitation.
基金supported jointly by the Major Special Projects of the Information System Bureau,the Special Proget of Earth Observation with High Resolution(Grant No.GFZX0402180102)the National Natural Science Foundation of China(Grant No.U1533131)
文摘This study simulated FY-2 D satellite infrared brightness images based on the WRF and RTTOV models. The effects of prediction errors in WRF micro-and macroscale cloud variables on FY-2 D infrared brightness temperature accuracy were analyzed. The principle findings were as follows. In the T+0–48 h simulation time, the root mean square errors of the simulated brightness temperatures were within the range 10–27 K, i.e., better than the range of 20–40 K achieved previously. In the T+0–24 h simulation time, the correlation coefficients between the simulated and measured brightness temperatures for all four channels were >0.5. The simulation performance of water channel IR3 was stable and the best. The four types of cloud microphysical scheme considered all showed that the simulated values of brightness temperature in clouds were too high and that the distributions of cloud systems were incomplete, especially in typhoon areas. The performance of the THOM scheme was considered best, followed in descending order by the WSM6, WDM6, and LIN schemes. Compared with observed values, the maximum deviation appeared in the range 253–273 K for all schemes. On the microscale, the snow water mixing ratio of the THOM scheme was much bigger than that of the other schemes. Improving the production efficiency or increasing the availability of solid water in the cloud microphysical scheme would provide slight benefit for brightness temperature simulations. On the macroscale, the cloud amount obtained by the scheme used in this study was small. Improving the diagnostic scheme for cloud amount, especially high-level cloud, could improve the accuracy of brightness temperature simulations. These results could provide an intuitive reference for forecasters and constitute technical support for the creation of simulated brightness temperature images for the FY-4 satellite.