期刊文献+
共找到172篇文章
< 1 2 9 >
每页显示 20 50 100
Unveiling micromechanism of Fe minor addition-induced property degradation of an Al-5.1Cu-0.65 Mg-0.8Mn(wt%)alloy 被引量:1
1
作者 Xin-Jian Chen Bin Wang +10 位作者 Zhen Wang De-Yu Zhang Hong Wang Jia-Hai Li Jin Wu Jun-Fen Zhao Xi-Zhou Kai Man-Ping Liu Yu-Tao Zhao Shi-Hao Wang Shuang-Bao Wang 《Rare Metals》 2025年第5期3496-3513,共18页
In this paper,the property degradation micromechanism of Al-5.10Cu-0.65 Mg-0.8Mn(wt%)alloy induced by 0.5 wt%Fe minor addition was revealed by atomic-scale scanning transmission electron microscopy and energy-dispersi... In this paper,the property degradation micromechanism of Al-5.10Cu-0.65 Mg-0.8Mn(wt%)alloy induced by 0.5 wt%Fe minor addition was revealed by atomic-scale scanning transmission electron microscopy and energy-dispersive X-ray spectroscopy coupled with first-principles calculations.The results show that the Fe minor addition to the Al-Cu-Mg-Mn alloy leads to a slight reduction of grain size and the formation of coarse Al7Cu2Fe constituent particles.Fe tends to segregate into the T-phase dispersoids,θ'-,and S-phase precipitates by preferentially occupying Cu or Mn sites in these phase structures.The apparent Fe segregation contributes to an increase in stiffness of the T-phase and S-phase but decreased stiffness of theθ'phase.Formation of the coarse Al7Cu2Fe constituent particles and decreased stiffness of main precipitatesθ'containing Fe result in the degraded strength of the Al-Cu-Mg-Mn-Fe alloy.Further study reveals that corrosion resistance degradation of the Al-Cu-Mg-Mn-Fe alloy is associated with the increased width of precipitation free zones and consecutive grain boundary precipitates.The obtained results have significant implications for the usage of recycled Al alloys and the potential design strategies of high-performance alloys containing Fe. 展开更多
关键词 Al-Cu-Mg-Mn alloys Fe minor addition Property degradation micromechanism Transmission electron microscopy
原文传递
Developing a high-performance Al–Mg–Si–Sn–Sc alloy for essential room-temperature storage after quenching: aging regime design and micromechanisms 被引量:2
2
作者 Shuai Pan Xin-Jian Chen +2 位作者 Gui-Zhen Liao Asad Ali Shuang-Bao Wang 《Rare Metals》 SCIE EI CAS CSCD 2023年第11期3814-3828,共15页
Sn microalloying can depress the adverse effect of natural aging after quenching(i.e., room-temperature storage) of Al-Mg-Si alloys. However, the other effect of Sc micro-addition to the Al-Mg-Si-Sn alloys remains elu... Sn microalloying can depress the adverse effect of natural aging after quenching(i.e., room-temperature storage) of Al-Mg-Si alloys. However, the other effect of Sc micro-addition to the Al-Mg-Si-Sn alloys remains elusive. Here, the optimal room-temperature storage time,properties and micromechanisms of Al-0.43 Mg-1.2Si-0.1Sn-0.1Sc(wt%) alloy are investigated by atomic-resolution scanning transmission electron microscopy(STEM),microhardness and corrosion resistance tests. The results show that the peak-aging Al-Mg-Si-Sn-Sc alloy exhibits vastly shortened peak hardening time, increased thermal stability and corrosion resistance compared with its Sc-free counterpart after a long room-temperature storage time of 1 week. Under such a designed double-stage aging regime(1-week room-temperature storage + artificial aging at 180℃), the addition of Sc to Al-Mg-Si-Sn alloy induces a decrease in diameter but an increase in length of peakhardening β″-based precipitates. In addition, a suppressed over-aging phase transition from Sc/Sn-containing β″ to β′ is identified in the Al-Mg-Si-Sn-Sc alloy. The Sn tends to segregate to the Si site in the low-density cylinder of β″ and the central site of sub-B′ in the precipitate can be occupied by Sn/Sc. Further study reveals that Sc and Sn coexist in the precursors of β″. Both reduced width of precipitation free zones and protective corrosion product film easily formed on the material contribute to the improved corrosion resistance of Al-Mg-Si-Sn-Sc alloy.The results provide important insight into the development of high-performance Al alloys. 展开更多
关键词 AlMgSiSn alloys Sc microalloying Aging regime Property micromechanismS
原文传递
Micromechanism of Crystallization in Multicomponent Metallic Glass
3
作者 Jianmin LP Mingxiu QUAN and Zbuangqi HU (National Key Lab. of RSA, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110015, China)(To whom correspondence should be addressed) 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 1996年第6期401-408,共8页
A micromechanism in an atomic level of crystallization of transition metal-metalloid TM(80)M(20) metallic glass is thermodynamically proposed by taking Bernal polyhedra as the starting structure of metallic glass. It ... A micromechanism in an atomic level of crystallization of transition metal-metalloid TM(80)M(20) metallic glass is thermodynamically proposed by taking Bernal polyhedra as the starting structure of metallic glass. It is composed of two competitively processes: (i) densification process of atom cluster leads to the formation of the precursor in amorphous matrix; (ii) the growth of atom cluster leads to the decreasing packing density. The preferential precipitation sequence of metastable phase is bcc, bet, cpc (close-packed crystal, hcp or fee structure). A metastable phase decomposition (Fe,Mo)(23)B-6 (fcc)-Fe2B highly strained bet phase was observed during crystallization of (Fe(0.99)M(0.01))(78)Si9B13 metallic glass, which is related to the occurrence of nanocrystalline. 展开更多
关键词 Si MO REV micromechanism of Crystallization in Multicomponent Metallic Glass NATURE
在线阅读 下载PDF
A micromechanical friction-damage fatigue model of rock materials under cyclic loadings using a fractional plastic flow rule
4
作者 Jin Zhang Ke Ren +3 位作者 Zhigang Tao Tao Ni Qi-Zhi Zhu Jianfu Shao 《Journal of Rock Mechanics and Geotechnical Engineering》 2025年第10期6248-6263,共16页
This study is devoted to a novel fractional friction-damage model for quasi-brittle rock materials subjected to cyclic loadings in the framework of micromechanics.The total damage of material describing the microstruc... This study is devoted to a novel fractional friction-damage model for quasi-brittle rock materials subjected to cyclic loadings in the framework of micromechanics.The total damage of material describing the microstructural degradation is decomposed into two parts:an instantaneous part arising from monotonic loading and a fatigue-related one induced by cyclic loading,relating to the initiation and propagation of microcracks.The inelastic deformation arises directly from frictional sliding along microcracks,inherently coupled with the damage effect.A fractional plastic flow rule is introduced using stress-fractional plasticity operations and covariant transformation approach,instead of classical plastic flow function.Additionally,the progression of fatigue damage is intricately tied to subcracks and can be calculated through application of a convolution law.The number of loading cycles serves as an integration variable,establishing a connection between inelastic deformation and the evolution of fatigue damage.In order to verify the accuracy of the proposed model,comparison between analytical solutions and experimental data are carried out on three different rocks subjected to conventional triaxial compression and cyclic loading tests.The evolution of damage variables is also investigated along with the cumulative deformation and fatigue lifetime.The improvement of the fractional model is finally discussed by comparing with an existing associated fatigue model in literature. 展开更多
关键词 Fractional model MICROMECHANICS Fatigue damage Rock material Cyclic loadings
在线阅读 下载PDF
Micromechanical analysis of particle corner effect on bearing and deformation behaviors of coral sand slope foundation under a strip footing
5
作者 PENG Yu LUO Zhao-gang +2 位作者 HE Shao-heng QU Li-ming DING Xuan-ming 《Journal of Central South University》 2025年第2期624-642,共19页
To understand the specific behaviors of coastal coral sand slope foundations,discrete element method(DEM)was employed to examine the effect of breakable particle corners on the performance of coral sand slope foundati... To understand the specific behaviors of coastal coral sand slope foundations,discrete element method(DEM)was employed to examine the effect of breakable particle corners on the performance of coral sand slope foundations under a strip footing,from macro to micro scales.The results demonstrate that the bearing characteristics of coral sand slope foundations can be successfully modeled by utilizing breakable corner particles in simulations.The dual effects of interlocking and breakage of corners well explained the specific shallower load transmission and narrower shear stress zones in breakable corner particle slopes.Additionally,the study revealed the significant influence of breakable corners on soil behaviors on slopes.Furthermore,progressive corner breakage within slip bands was successfully identified as the underling mechanism in determining the unique bearing characteristics and the distinct failure patterns of breakable corner particle slopes.This study provides a new perspective to clarify the behaviors of slope foundations composed of breakable corner particle materials. 展开更多
关键词 micromechanical analysis coral sand slope foundation particle corner breakage corner interlock
在线阅读 下载PDF
Factors Affecting Resin Mineral Composites'Effective Elastic Modulus
6
作者 LONG Yunfang ZHANG Jianhua +1 位作者 NIU Shuo GU Weizhou 《Journal of Wuhan University of Technology(Materials Science)》 2025年第5期1488-1498,共11页
We proposed a microscopic mechanical model for the effective elastic modulus of resin mineral composites based on the Mori-Tanaka method and equivalent inclusion theory to predict the elastic modulus of these material... We proposed a microscopic mechanical model for the effective elastic modulus of resin mineral composites based on the Mori-Tanaka method and equivalent inclusion theory to predict the elastic modulus of these materials.The model-predicted values were compared with the experimental results.The results show that when the resin dosage is lower than 10 wt%,the predicted value is lower than the measured value,and the decrease in porosity is obvious;when the resin dosage is higher than 10 wt%,the predicted value is higher than the measured value,the maximum error is 7.95%,and the decrease of porosity is not obvious.The model can predict the trend of the change of elastic modulus.The elastic modulus of resin mineral composites decreases with the increase of porosity.Therefore,the resin dosage should be controlled within 10 wt%when designing the experiments,which provides a guiding direction for the mechanical properties of resin mineral composites to be improved afterward. 展开更多
关键词 resin mineral composites homogenization methods hybrid inclusion modeling elastic modulus MICROMECHANICS
原文传递
Microstructures and micromechanical behaviors of high -entropy alloys investigated by synchrotron X-ray and neutron diffraction techniques: A review 被引量:2
7
作者 Yubo Huang Ning Xu +3 位作者 Huaile Lu Yang Ren Shilei Li Yandong Wang 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2024年第6期1333-1349,共17页
High-entropy alloys(HEAs)possess outstanding features such as corrosion resistance,irradiation resistance,and good mechan-ical properties.A few HEAs have found applications in the fields of aerospace and defense.Exten... High-entropy alloys(HEAs)possess outstanding features such as corrosion resistance,irradiation resistance,and good mechan-ical properties.A few HEAs have found applications in the fields of aerospace and defense.Extensive studies on the deformation mech-anisms of HEAs can guide microstructure control and toughness design,which is vital for understanding and studying state-of-the-art structural materials.Synchrotron X-ray and neutron diffraction are necessary techniques for materials science research,especially for in situ coupling of physical/chemical fields and for resolving macro/microcrystallographic information on materials.Recently,several re-searchers have applied synchrotron X-ray and neutron diffraction methods to study the deformation mechanisms,phase transformations,stress behaviors,and in situ processes of HEAs,such as variable-temperature,high-pressure,and hydrogenation processes.In this review,the principles and development of synchrotron X-ray and neutron diffraction are presented,and their applications in the deformation mechanisms of HEAs are discussed.The factors that influence the deformation mechanisms of HEAs are also outlined.This review fo-cuses on the microstructures and micromechanical behaviors during tension/compression or creep/fatigue deformation and the application of synchrotron X-ray and neutron diffraction methods to the characterization of dislocations,stacking faults,twins,phases,and intergrain/interphase stress changes.Perspectives on future developments of synchrotron X-ray and neutron diffraction and on research directions on the deformation mechanisms of novel metals are discussed. 展开更多
关键词 high-entropy alloys MICROSTRUCTURES micromechanical behaviors synchrotron X-ray diffraction neutron diffraction
在线阅读 下载PDF
A microscopic approach to brittle creep and time-dependent fracturing of rocks based on stress corrosion model 被引量:1
8
作者 Tao Xu Zhen Heng +3 位作者 Ben Liu Michael J.Heap P.L.P.Wasantha Zhiguo Li 《Deep Resources Engineering》 2024年第3期12-29,共18页
A brittle creep and time-dependent fracturing process model of rock is established by incorporating the stress corrosion model into discrete element method to analyze the creep behavior and microcrack evolution in bri... A brittle creep and time-dependent fracturing process model of rock is established by incorporating the stress corrosion model into discrete element method to analyze the creep behavior and microcrack evolution in brittle rocks at a micro-scale level.Experimental validation of the model is performed,followed by numerical simu-lations to investigate the creep properties and microcrack evolution in rocks under single-stage loading,multi-stage loading,and confining pressure,at various constant stress levels.The results demonstrate that as the stress level increases in single-stage creep simulations,the time-to-failure progressively decreases.The growth of microcracks during uniaxial creep occurs in three stages,with tensile microcracks being predominant and the spatial distribution of microcracks becoming more dispersed at higher stress levels.In multi-stage loadingunloading simulations,microcracks continue to form during the unloading stage,indicating cumulative damage resulting from increased axial stress.Additionally,the creep behaviour of rocks under confining pressure is not solely determined by the magnitude of the confining pressure,but is also influenced by the magnitude of the axial stress.The findings contribute to a better understanding of rock deformation and failure processes under different loading conditions,and they can be valuable for applications in rock mechanics and rock engineering. 展开更多
关键词 Time-dependent cracking CREEP Damage Brittle rocks Micromechanical modeling
在线阅读 下载PDF
A macro-mesoscopic constitutive model for porous and cracked rock under true triaxial conditions
9
作者 Li Qian Zuguo Mo +4 位作者 Jianhai Zhang Xianglin Xing Ru Zhang Tianzhi Yao Yunpeng Gao 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2024年第8期3080-3098,共19页
The complex mechanical and damage mechanisms of rocks are intricately tied to their diverse mineral compositions and the formation of pores and cracks under external loads.Numerous rock tests reveal a complex interpla... The complex mechanical and damage mechanisms of rocks are intricately tied to their diverse mineral compositions and the formation of pores and cracks under external loads.Numerous rock tests reveal a complex interplay between the closure of porous defects and the propagation of induced cracks,presenting challenges in accurately representing their mechanical properties,especially under true triaxial stress conditions.This paper proposes a conceptualization of rock at the mesoscopic level as a two-phase composite,consisting of a bonded medium matrix and frictional medium inclusions.The bonded medium is characterized as a mesoscopic elastic material,encompassing various minerals surrounding porous defects.Its mechanical properties are determined using the mixed multi-inclusion method.Transformation of the bonded medium into the frictional medium occurs through crack extension,with its elastoplastic properties defined by the DruckerePrager yield criterion,accounting for hardening,softening,and extension.MorieTanaka and Eshelby’s equivalent inclusion methods are applied to the bonded and frictional media,respectively.The macroscopic mechanical properties of the rock are derived from these mesoscopic media.Consequently,a True Triaxial Macro-Mesoscopic(TTMM)constitutive model is developed.This model effectively captures the competitive effect and accurately describes the stress-deformation characteristics of granite.Utilizing the TTMM model,the strains resulting from porous defect closure and induced crack extension are differentiated,enabling quantitative determination of the associated damage evolution. 展开更多
关键词 MICROMECHANICS Macroemesoscopic HOMOGENIZATION Constitutive model Competitive effect
在线阅读 下载PDF
Mechanical heterogeneity characterization of coal materials based on nano-indentation experiments
10
作者 ZHANG Qi LI Xiang-chun +3 位作者 LI Biao MENG Jun-qing NIE Bai-sheng LU Wei-dong 《Journal of Central South University》 SCIE EI CAS CSCD 2024年第9期3142-3155,共14页
To investigate the complex macro-mechanical properties of coal from a micro-mechanical perspective,we have conducted a series of micro-mechanical experiments on coal using a nano-indentation instrument.These experimen... To investigate the complex macro-mechanical properties of coal from a micro-mechanical perspective,we have conducted a series of micro-mechanical experiments on coal using a nano-indentation instrument.These experiments were conducted under both dynamic and static loading conditions,allowing us to gather the micro-mechanical parameters of coal for further analysis of its micro-mechanical heterogeneity using the box counting statistical method and the Weibull model.The research findings indicate that the load–displacement curves of the coal mass under the two different loading modes exhibit noticeable discreteness.This can be attributed to the stress concentration phenomenon caused by variations in the mechanical properties of the micro-units during the loading process of the coal mass.Consequently,there are significant fluctuations in the micro-mechanical parameters of the coal mass.Moreover,the mechanical heterogeneity of the coal at the nanoscale was confirmed based on the calculation results of the standard deviation coefficient and Weibull modulus of the coal body’s micromechanical parameters.These results reveal the influence of microstructural defects and minerals on the uniformity of the stress field distribution within the loaded coal body,as well as on the ductility characteristics of the micro-defect structure.Furthermore,there is a pronounced heterogeneity in the micromechanical parameters.Furthermore,we have established a relationship between the macro and micro elastic modulus of coal by applying the Mori-Tanaka homogenization method.This relationship holds great significance for revealing the micro-mechanical failure mechanism of coal. 展开更多
关键词 nano-indentation experiment MICROMECHANICS heterogeneity characterization COAL
在线阅读 下载PDF
Effect of crystal morphology on cementability and micromechanical properties of calcium carbonate precipitate induced by crude soybean enzyme
11
作者 Kai Xu Ming Huang +1 位作者 Mingjuan Cui Shuang Li 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2024年第12期5095-5108,共14页
Enzyme-induced carbonate precipitation(EICP)has emerged as an innovative soil stabilization technology to precipitate CaCO_(3)by catalyzing urea decomposition.Although extensive efforts have been made to increase the ... Enzyme-induced carbonate precipitation(EICP)has emerged as an innovative soil stabilization technology to precipitate CaCO_(3)by catalyzing urea decomposition.Although extensive efforts have been made to increase the calcium carbonate content(CCC)formed in the EICP process for the better biocementation effect,the cementability and micromechanical properties of CaCO_(3)are rarely known.A study of the cementitious characteristics and micromechanical properties of CaCO_(3)precipitates with different mixing percentages of crystal morphology is essential for soil improvement.In the present study,ultrasonic oscillation tests and nanoindentation tests were performed to investigate the cementability and micromechanical properties of CaCO_(3)precipitate.The results show that the cementability and micromechanical properties of CaCO_(3)precipitate are related to the composition of the crystal morphology.A high content of calcite is beneficial to improve the adhesion of calcium carbonate precipitate.Calcite has better mechanical properties(elastic modulus,hardness and ductility)than vaterite,and the presence of vaterite can significantly affect the measured value of mechanical properties in nanoindentation tests.The ductility of CaCO_(3)precipitate induced by crude soybean urease(CSU)is higher than that of CaCO_(3)precipitate induced by commercially available pure enzyme,suggesting that commercially available pure enzyme can be replaced by CSU for cost-effective field-scale engineering applications.This work can provide insight into optimizing the properties of CaCO_(3)precipitate from the micro-scale. 展开更多
关键词 Enzyme-induced carbonate precipitation (EICP) Micromechanical properties Nanoindentation tests Cementability
在线阅读 下载PDF
Finite Element Simulations on Failure Behaviors of Granular Materials with Microstructures Using a Micromechanics-Based Cosserat Elastoplastic Model
12
作者 Chenxi Xiu Xihua Chu 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第3期2305-2338,共34页
This paper presents a micromechanics-based Cosserat continuum model for microstructured granular materials.By utilizing this model,the macroscopic constitutive parameters of granular materials with different microstru... This paper presents a micromechanics-based Cosserat continuum model for microstructured granular materials.By utilizing this model,the macroscopic constitutive parameters of granular materials with different microstructures are expressed as sums of microstructural information.The microstructures under consideration can be classified into three categories:a medium-dense microstructure,a dense microstructure consisting of one-sized particles,and a dense microstructure consisting of two-sized particles.Subsequently,the Cosserat elastoplastic model,along with its finite element formulation,is derived using the extended Drucker-Prager yield criteria.To investigate failure behaviors,numerical simulations of granular materials with different microstructures are conducted using the ABAQUS User Element(UEL)interface.It demonstrates the capacity of the proposed model to simulate the phenomena of strain-softening and strain localization.The study investigates the influence of microscopic parameters,including contact stiffness parameters and characteristic length,on the failure behaviors of granularmaterials withmicrostructures.Additionally,the study examines themesh independence of the presented model and establishes its relationship with the characteristic length.A comparison is made between finite element simulations and discrete element simulations for a medium-dense microstructure,revealing a good agreement in results during the elastic stage.Somemacroscopic parameters describing plasticity are shown to be partially related to microscopic factors such as confining pressure and size of the representative volume element. 展开更多
关键词 Granular materials MICROMECHANICS Cosserat elastoplastic model MICROSTRUCTURES failure behaviors
在线阅读 下载PDF
Experimental investigation on the macro-mechanical behavior and micromechanical damage model of Xiyu conglomerate with pores and inclusions under triaxial compression
13
作者 Yajun Cao Xuelei Duan +4 位作者 Wei Wang Qizhi Zhu Dengfeng Zhao Long Jiang Qiang Zhang 《International Journal of Mining Science and Technology》 SCIE EI CAS CSCD 2024年第11期1529-1549,共21页
The complex and special mechanical properties of Xiyu conglomerate are of great significance to the construction of water conservancy and hydropower engineering.The crack characteristic stress,dilatancy behavior,and f... The complex and special mechanical properties of Xiyu conglomerate are of great significance to the construction of water conservancy and hydropower engineering.The crack characteristic stress,dilatancy behavior,and failure mechanism of Xiyu conglomerate collected from Momoke Water Control Project,southwestern China,were analyzed and discussed based on the experimental results of triaxial compression test and 3D X-ray computed tomography test.The results show that with increasing confining pressure,the deformation characteristics and all characteristic stresses increase monotonically,while the dilation angle and dilatancy index decrease,and exponential function model can accurately describe the evolution rule of dilatancy index with confining pressure.While the porosity is negatively correlated with confining pressure.The failure modes of Xiyu conglomerate include axial tensile cracks,shear cracks,local cross cracks and cracks around gravel.With increasing confining pressure,the failure modes transform from tension cracks to shear cracks.A non-associated micromechanical damage model considering pressure dependent matrix presenting tension-compression asymmetry is proposed and applied to Xiyu conglomerate with pores and a large number of gravels.By comparing numerical calculations and experimental results,the proposed micromechanical plastic damage model is able to describe the mechanical behavior of Xiyu conglomerate. 展开更多
关键词 Xiyu conglomerate Crack characteristic stress Dilation behavior CT observation Micromechanical plastic damage model
在线阅读 下载PDF
Phase-Field Modeling of Thermal Fracture and Shear Heating in Rocks with Degraded Thermal Conductivity Across Crack
14
作者 Tao You Qizhi Zhu +1 位作者 Weijian Li Jianfu Shao 《Acta Mechanica Solida Sinica》 SCIE EI CSCD 2024年第5期711-726,共16页
By incorporating two different fracture mechanisms and salient unilateral effects in rock materials,we propose a thermomechanical phase-field model to capture thermally induced fracture and shear heating in the proces... By incorporating two different fracture mechanisms and salient unilateral effects in rock materials,we propose a thermomechanical phase-field model to capture thermally induced fracture and shear heating in the process of rock failure.The heat conduction equation is derived,from which the plastic dissipation is treated as a heat source.We then ascertain the effect of the non-associated plastic flow on frictional dissipation and show how it improves the predictive capability of the proposed model.Taking advantage of the multiscale analysis,we propose a phase-field-dependent thermal conductivity with considering the unilateral effect of fracture.After proposing a robust algorithm for solving involved three-field coupling and damage-plasticity coupling problems,we present three numerical examples to illustrate the abilities of our proposed model in capturing various thermo-mechanically coupled behaviors. 展开更多
关键词 PHASE-FIELD MICROMECHANICS Heat transfer Thermal conductivity degradation Shear heating
原文传递
Modeling the Interaction between Vacancies and Grain Boundaries during Ductile Fracture
15
作者 Mingjian Li Ping Yang Pengyang Zhao 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第8期2019-2034,共16页
The experimental results in previous studies have indicated that during the ductile fracture of pure metals,vacancies aggregate and form voids at grain boundaries.However,the physical mechanism underlying this phenome... The experimental results in previous studies have indicated that during the ductile fracture of pure metals,vacancies aggregate and form voids at grain boundaries.However,the physical mechanism underlying this phenomenon remains not fully understood.This study derives the equilibrium distribution of vacancies analytically by following thermodynamics and the micromechanics of crystal defects.This derivation suggests that vacancies cluster in regions under hydrostatic compression to minimize the elastic strain energy.Subsequently,a finite element model is developed for examining more general scenarios of interaction between vacancies and grain boundaries.This model is first verified and validated through comparison with some available analytical solutions,demonstrating consistency between finite element simulation results and analytical solutions within a specified numerical accuracy.A systematic numerical study is then conducted to investigate the mechanism that might govern the micromechanical interaction between grain boundaries and the profuse vacancies typically generated during plastic deformation.The simulation results indicate that the reduction in total elastic strain energy can indeed drive vacancies toward grain boundaries,potentially facilitating void nucleation in ductile fracture. 展开更多
关键词 Ductile fracture VACANCY grain boundary MICROMECHANICAL finite element method
在线阅读 下载PDF
Micromechanical modeling of longitudinal tensile behavior and failure mechanism of unidirectional carbon fiber/aluminum composites involving fiber strength dispersion
16
作者 Qipeng LIU Wengang JIANG +3 位作者 Yuehua GAO Zhenjun WANG Shanshan SHI Zhi SUN 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2024年第9期312-327,共16页
This paper examines the longitudinal tensile behavior and failure mechanism of a new unidirectional carbon fiber reinforced aluminum composite through experiments and simulations.A Weibull distribution model was estab... This paper examines the longitudinal tensile behavior and failure mechanism of a new unidirectional carbon fiber reinforced aluminum composite through experiments and simulations.A Weibull distribution model was established to describe the fiber strength dispersion based on single-fiber tensile tests for carbon fibers extracted from the composite.The constitutive models for the matrix and interface were established based on the uniaxial tensile and single-fiber push-out tests,respectively.Then,a 3D micromechanical numerical model,innovatively considering the fiber strength dispersion by use of the weakest link and Weibull distribution theories,was estab-lished to simulate the progressive failure behavior of the composite under longitudinal tension.Due to the dispersion of fiber strength,the weakest link of the fiber first fractures,and stress concentra-tion occurs in the surrounding fibers,interfaces,and matrix.The maximum stress concentration fac-tor for neighboring fibers varies nonlinearly with the distance from the fractured fiber.Both isolated and clustered fractured fibers are present during the progressive failure process of the composite.The expansion of fractured fiber clusters intensifies stress concentration and material degradation which in turn enlarges the fractured fiber clusters,and their mutual action leads to the final collapse of the composite. 展开更多
关键词 Fiber reinforced metals Finite element method 3D micromechanical model Fiber strength dispersion Longitudinal tension Progressive failure
原文传递
Micromechanics of Thermal Conductive Composites:Review,Developments and Applications
17
作者 Guannan Wang Yulin Huang +1 位作者 Mengyuan Gao Qiang Chen 《Acta Mechanica Solida Sinica》 SCIE EI CSCD 2024年第2期215-237,共23页
Micromechanics investigations of composites with fiber-shaped reinforcement are extensively applied in the engineering design and theoretical analysis of thermal composites in the aerospace engineering and high-tech i... Micromechanics investigations of composites with fiber-shaped reinforcement are extensively applied in the engineering design and theoretical analysis of thermal composites in the aerospace engineering and high-tech industry.In this paper,a critical review of various classical micromechanics approaches is provided based on the classification framework and the development of micromechanics tools.Several numerical micromechanics tools have been developed to overcome limitations through exactly/approximately solving the internal governing equations of microstructures.The connections and limitations of those models are also investigated and discussed,based on which three recently developed numerical or semi-analytical models are explained,including finite-element micromechanics,finite-volume direct averaging micromechanics,and locally exact homogenization theory,as well as machine learning tools.Since it is almost inevitable to mention the interfacial effects on thermal behavior of fibrous composites,we review the new mathematical relations that interrupt the original continuity conditions due to the existence of interphase/interface within unit cells.Generally speaking,the interphase/interface is demonstrated to play a significant role in influencing the effective coefficients and localized thermal fields.The present work also briefly reviews the application of micromechanics tools in emerging engineered woven composites,natural fibrous composites,and ablative thermal protection composites.It is demonstrated that sophisticated micromechanics tools are always demanded for investigating the effective and localized responses of thermal fibrous composites. 展开更多
关键词 Micromechanics models Thermal fibrous composites Microstructural detail-free models Semi-analytical and numerical methods Interfacial effects Woven composites Natural composites
原文传递
Micromechanical modeling of hollow cylinder torsional shear test on sand using discrete element method
18
作者 Shunxiang Song Pei Wang +1 位作者 Zhenyu Yin Yi Pik Cheng 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2024年第12期5193-5208,共16页
Previous studies on the hollow cylinder torsional shear test(HCTST)have mainly focused on the macroscopic behavior,while the micromechanical responses in soil specimens with shaped particles have rarely been investiga... Previous studies on the hollow cylinder torsional shear test(HCTST)have mainly focused on the macroscopic behavior,while the micromechanical responses in soil specimens with shaped particles have rarely been investigated.This paper develops a numerical model of the HCTST using the discrete element method(DEM).The method of bonded spheres in a hexagonal arrangement is proposed to generate flexible boundaries that can achieve real-time adjustment of the internal and external cell pressures and capture the inhomogeneous deformation in the radial direction during shearing.Representative angular particles are selected from Toyoura sand and reproduced in this model to approximate real sand particles.The model is then validated by comparing numerical and experimental results of HCTSTs on Toyoura sand with different major principal stress directions.Next,a series of HCTSTs with different combinations of major principal stress direction(a)and intermediate principal stress ratio(b)is simulated to quantitatively characterize the sand behavior under different shear conditions.The results show that the shaped particles are horizontally distributed before shearing,and the initial anisotropic packing structure further results in different stressestrain curves in cases with different a and b values.The distribution of force chains is affected by both a and b during the shear process,together with the formation of the shear bands in different patterns.The contact normal anisotropy and contact force anisotropy show different evolution patterns when either a or b varies,resulting in the differences in the non-coaxiality and other macroscopic responses.This study improves the understanding of the macroscopic response of sand from a microscopic perspective and provides valuable insights for the constitutive modeling of sand. 展开更多
关键词 SAND Hollow cylinder torsional shear test(HCTST) Discrete element method(DEM) Principal stress rotation MICROMECHANICS ANISOTROPY
在线阅读 下载PDF
Nonequilibrium Statistical Theory of Fracture
19
作者 邢修三 《Journal of Beijing Institute of Technology》 EI CAS 1996年第1期13-18,共6页
Nonequilibrium statistical theory of fracture is a theory of fracture that macromechanical quantities can be derived from the microscopic atomic mechanism of microcrack(or microvoid)evolution kinetcs by means of noneq... Nonequilibrium statistical theory of fracture is a theory of fracture that macromechanical quantities can be derived from the microscopic atomic mechanism of microcrack(or microvoid)evolution kinetcs by means of nonequilibrium statistical physical concepts and methods. The microcrack evolution equation is the central equation in the theory.The coefficents of the equation, the microcrack growth rate and the microcrack nucleation rate,come from microscopic atomic mechanism.The solution of the equation connects with macromechanical quantities by the model of the weakest chain. All the other formulas and quantities, for instance, distribution function,fracture probability, reliability, failure rate and macromechanical quantities such as strength, toughness, life etc. and their statistical distribution function and statistical fluctuation are derived in a unified fashion and expressed by a few physical parameters. This theory can be widely applied to various kinds of fracture, such as the brittle, fatigue, delayed and environmental fracture of metals and structural ceramics. The theoretical framework of this theory is given in this paper. 展开更多
关键词 fracture of solids nonequilibrium statistical theory microcrack evolution equation micromechanism macromechanical quantity
在线阅读 下载PDF
Constitutive model for concrete subjected to impact loading 被引量:6
20
作者 刘海峰 宁建国 《Journal of Southeast University(English Edition)》 EI CAS 2012年第1期79-84,共6页
To better design and analyze concrete structures, the mechanical properties of concrete subjected to impact loadings are investigated. Concrete is considered to be a two-phase composite made up of micro-cracks and sol... To better design and analyze concrete structures, the mechanical properties of concrete subjected to impact loadings are investigated. Concrete is considered to be a two-phase composite made up of micro-cracks and solid parts which consist of coarse aggregate particles and a cement mortar matrix. The cement mortar matrix is assumed to be elastic, homogeneous and isotropic. Based on the Moil-Tanaka concept of average stress and the Eshelby equivalent inclusion theory, a dynamic constitutive model is developed to simulate the impact responses of concrete. The impact compression experiments of concrete and cement mortar are also carried out. Experimental results show that concrete and cement mortar are rate-dependent. Under the same impact velocity, the load-carrying capacity of concrete is higher than that of cement mortar. Whereas, the maximum strain of concrete is lower than that of cement mortar. Regardless of whether it is concrete or cement mortar, with the increase in the impact velocity, the fragment size of specimens after experiment decreases. 展开更多
关键词 CONCRETE MICROMECHANICS dynamic constitutivemodel impact loading
在线阅读 下载PDF
上一页 1 2 9 下一页 到第
使用帮助 返回顶部