Direct conversion of syngas to light olefins(STO)on bifunctional catalysts has garnered significant attention,yet a comprehensive understanding of the reaction pathway and reaction kinetics remains elusive.Herein,we t...Direct conversion of syngas to light olefins(STO)on bifunctional catalysts has garnered significant attention,yet a comprehensive understanding of the reaction pathway and reaction kinetics remains elusive.Herein,we theoretically addressed the kinetics of the direct STO reaction on typical ZnAl_(2)O_(4)/zeolite catalysts by establishing a complete reaction network,consisting of methanol synthesis and conversion,water gas shift(WGS)reaction,olefin hydrogenation,and other relevant steps.The WGS reaction occurs very readily on ZnAl_(2)O_(4) surface whereas which is less active towards alkane formation via olefin hydrogenation,and the latter can be attributed to the characteristics of the H_(2) heterolytic activation and the weak polarity of olefins.The driving effect of zeolite component towards CO conversion was demonstrated by microkinetic simulations,which is sensitive to reaction conditions like space velocity and reaction temperature.Under a fixed ratio of active sites between oxide and zeolite components,the concept of the“impossible trinity”of high CO conversion,high olefin selectivity,and high space velocity can thus be manifested.This work thus provides a comprehensive kinetic picture on the direct STO conversion,offering valuable insights for the design of each component of bifunctional catalysts and the optimization of reaction conditions.展开更多
Single-atom(SA) catalysts have emerged as a pivotal area drawing extensive research interest due to their high catalytic activities.However,SA catalysts are often plagued by the aggregation and deactivation of SA site...Single-atom(SA) catalysts have emerged as a pivotal area drawing extensive research interest due to their high catalytic activities.However,SA catalysts are often plagued by the aggregation and deactivation of SA sites under reaction conditions.This study focuses on CO oxidation over Gd-doped ceriasupported Cu catalysts and aims to provide a new strategy to stabilize the SA site,in which a Cu SA site is "prestored" in a relatively stable Cu cluster and can be dynamically activated under reaction conditions.Three typical Cu_(10)/CeO_(2)catalyst models were built with different Gd-doping contents,which are pristine Cu_(10)/CeO_(2),Cu_(10)/Gd_(0.125)Ce_(0.875)O_(2),and Cu_(10)/Gd_(0.25)Ce_(0.75)O_(2),respectively.We performed density functional theory(DFT) calculations on the Cu_(10)/Gd-CeO_(2)system to investigate the adsorption of CO and O_(2)molecules,the formation of surface oxygen vacancy(OV) and dynamic Cu SA site,and potential energy surfaces of CO oxidation process.Ab initio thermodynamic analysis suggests that the saturation adsorption of CO on Cu_(10)and high Gd-doping in CeO_(2)lead to a spontaneously formed single Cu-CO site and an OVdefect on ceria surface.The CO oxidation process is identified as a two-paths-coupled catalytic cycle,in which Path Ⅰ is activated by the terminal O atom of adsorbed O_(2)at surface OVsite while Path Ⅱinitiates with the lattice O atom of CeO_(2)surface.The micro kinetic modeling demonstrates that the dominant pathway is Path Ⅰ for the undoped and low-doping cases,and Path Ⅱ for the high-doping case which exhibits a novel mechanism for CO oxidation and the highest reaction activity due to the participation of the dynamic SA site.展开更多
Single-event microkinetic(SEMK) model of the catalytic cracking of methylcyclohexane admixed with 1-octene over REUSY zeolites at 693 K—753 K in the absence of coke formation is enhanced. To keep consistency with the...Single-event microkinetic(SEMK) model of the catalytic cracking of methylcyclohexane admixed with 1-octene over REUSY zeolites at 693 K—753 K in the absence of coke formation is enhanced. To keep consistency with the wellknown carbenium ion chemistry, hydride transfer forming and consuming allylic carbenium ions in the aromatization of cycloparaffins are further investigated and differentiated. The reversibility of endocyclic β-scission and cyclization reactions is refined by accounting explicitly for the reacting olefins and resulting cycloparaffins in the corresponding thermodynamics. 24 activation energies for the reactions involved in the cracking of cycloparaffins are obtained by the regression of 15 sets of experimental data upon taking the resulting 37 main cracking products, i. e., responses into account. The enhanced SEMK model can adequately describe the catalytic behavior of 37 main products with conversion and temperature.展开更多
The developed SEMK model is used to provide an insight into the contribution of individual reactions in the cracking of methylcyclohexane as well as the site coverage by various carbenium ions. The preferred reaction ...The developed SEMK model is used to provide an insight into the contribution of individual reactions in the cracking of methylcyclohexane as well as the site coverage by various carbenium ions. The preferred reaction pathways for the conversion of methylcyclohexane are hydride transfer reactions followed by PCP-isomerizations, deprotonation and endocyclic β-scission, accounting for 61%, 22% and 12% of its disappearance, respectively, at 693 K and 30% conversion of methylcyclohexane. Protolysis plays a minor role in the cracking of methylcyclohexane. Once cyclic diolefins are formed, all of them can be instantaneously transformed to aromatics, which are easily interconverted via disproportionation. Judging from the carbenium ion concentrations it is evident that, at the investigated operating conditions, less than 5% of the acid sites are covered by carbenium ions, less than 2% of which corresponds to cyclic type species including allylic ones.展开更多
First-principle based microkinetic simulations are performed to investigate methanol synthesis from CO and CO2 on Cu(221)and CuZn(221)surfaces.It is found that regardless of surface structure,the carbon consumption ra...First-principle based microkinetic simulations are performed to investigate methanol synthesis from CO and CO2 on Cu(221)and CuZn(221)surfaces.It is found that regardless of surface structure,the carbon consumption rate follows the order:CO hydrogenation>CO/CO2 hydrogenation>CO2 hydrogenation.The superior CO hydrogenation activity mainly arises from the lower barriers of elementary reactions than CO2 hydrogenation.Compared to Cu(221),the introduction of Zn greatly lowers the activity of methanol synthesis,in particularly for CO hydrogenation.For a mixed CO/CO2 hydrogenation,CO acts as the carbon source on Cu(221)while both CO and CO2 contribute to carbon conversion on CuZn(221).The degree of rate control studies show that the key steps that determine the reaction activity of CO/CO2 hydrogenation are HCO and HCOO hydrogenation on Cu(221),instead of HCOOH hydrogenation on CuZn(221).The present work highlights the effect of the Zn doping and feed gas composition on methanol synthesis.展开更多
Cr_(2)O_(3) has been recognized as a key oxide component in bifunctional catalysts to produce bridging intermediate,e.g.,methanol,from syngas.By combining density functional theory calculations and microkinetic modeli...Cr_(2)O_(3) has been recognized as a key oxide component in bifunctional catalysts to produce bridging intermediate,e.g.,methanol,from syngas.By combining density functional theory calculations and microkinetic modeling,we computationally studied the surface structures and catalytic activities of bare Cr_(2)O_(3)(001)and(012)surfaces,and two reduced(012)surfaces covered with dissociative hydrogens or oxygen vacancies.The reduction of(001)surface is much more difficult than that of(012)surface.The stepwise or the concerted reaction pathways were explored for the syngas to methanol conversion,and the hydrogenation of CO or CHO is identified as rate-determining step.Microkinetic modeling reveals that(001)surface is inactive for the reaction,and the rates of both reduced(012)surfaces(25−28 s^(-1))are about five times higher than bare(012)surface(4.3 s^(-1))at 673 K.These theoretical results highlight the importance of surface reducibility on the reaction and may provide some implications on the design of individual component in bifunctional catalysis.展开更多
Exploring effective transition metal single-atom catalysts for selective oxidation of benzene to phenol is still a great challenge due to the lack of a comprehensive mechanism and mechanism-driven approach.Here,robust...Exploring effective transition metal single-atom catalysts for selective oxidation of benzene to phenol is still a great challenge due to the lack of a comprehensive mechanism and mechanism-driven approach.Here,robust 4N-coordinated transition metal single atom catalysts embedded within graphene(TM_(1)-N_(4)/C)are systematically screened by density functional theory and microkinetic modeling approach to assess their selectivity and activity in benzene oxidation reaction.Our findings indicate that the single metal atom triggers the dissociation of H_(2)O_(2)to form an active oxygen species(O*).The lone-electronic pair character of O*activates the benzene C–H bond by constructing C–O bond with C atom of benzene,promoting the formation of phenol products.In addition,after benzene captures O*to form phenol,the positively charged bare single metal atom activates the phenol O–H bond by electron interaction with the O atom in the phenol,inducing the generation of benzoquinone by-products.The activation process of O–H bond is accompanied by H atom falling onto the carrier.On this basis,it can be inferred that adsorption energy of the C atom on the O*atom(EC)and the H atom on the TM_(1)-N_(4)/C(EH),which respectively represent activation ability of benzene C–H bond and phenol O–H bond,could be labeled as descriptors describing catalytic activity and selectivity.Moreover,based on the as-obtained volcano map,appropriate EC(–8 to–7 eV)and weakened EH(–1.5 to 0 eV)contribute to the optimization of catalytic performance for benzene oxidation to phenol.This study offers profound opinions on the rational design of metal single-atom catalysts that exhibit favorable catalytic behaviors in hydrocarbon oxidation.展开更多
We study the carbon dioxide reduction reaction(CO_(2)RR)activity and selectivity of Fe single-atom catalyst(Fe-SAC)and Fe dual-atom catalyst(Fe-DAC)active sites at the interior of graphene and the edges of graphitic n...We study the carbon dioxide reduction reaction(CO_(2)RR)activity and selectivity of Fe single-atom catalyst(Fe-SAC)and Fe dual-atom catalyst(Fe-DAC)active sites at the interior of graphene and the edges of graphitic nanopore by using a combination of DFT calculations and microkinetic simulations.The trend of limiting potentials for CO_(2)RR to produce CO can be described by using either the adsorption energy of COOH,CO,or their combination.CO_(2)RR process with reasonable reaction rates can be achieved only on the active site configurations with weak tendencies toward CO poisoning.The efficiency of CO_(2)RR on a catalyst depends on its ability to suppress the parasitic hydrogen evolution reaction(HER),which is directly related to the behavior of H adsorption on the catalyst’s active site.We find that the edges of the graphitic nanopore can act as potential adsorption sites for an H atom,and in some cases,the edge site can bind the H atom much stronger than the main Fe site.The linear scaling between CO and H adsorptions is broken if this condition is met.This condition also allows some edge active site configurations to have their CO_(2)RR limiting potential lower than the HER process favoring CO production over H2 production.展开更多
Recent studies have revealed the extraordinary performance of zirconium oxide in propane dehydrogenation,which is attributed to the excellent reactivity of the coordinatively unsaturated zirconium sites(Zr_(cus))aroun...Recent studies have revealed the extraordinary performance of zirconium oxide in propane dehydrogenation,which is attributed to the excellent reactivity of the coordinatively unsaturated zirconium sites(Zr_(cus))around the oxygen vacancies.The origin of the enhanced catalytic activity of ZrO_(2)with defective tetrahedral Zr sites was examined by direct comparison with its pristine counterpart in the current study.Electronic-structure analysis revealed that electrons from oxygen removal were localized within vacancies on the defective surface,which directly attacked the C-H bond in propane.The involvement of localized electrons activates the C-H bond via back-donation to the antibonding orbital on the defective surface;conversely,charge is transferred from propane to the pristine surfaces.The barrier for the first C-H bond activation is clearly significantly reduced on the defective surfaces compared to that on the pristine surfaces,which verifies the superior activity of Zr_(cus).Notably,however,the desorption of both propene and hydrogen molecules from Zr_(cus)is more difficult due to strong binding.The calculated turnover frequency(TOF)for propene formation demonstrates that the pristine surfaces exhibit better catalytic performance at lower temperatures,whereas the defective surfaces have a larger TOF at high temperatures.However,the rate-determining step and reaction order on the defective surface differ from those on the pristine surface,which corroborates that the catalysts follow different mechanisms.A further optimization strategy was proposed to address the remaining bottlenecks in propane dehydrogenation on zirconium oxide.展开更多
Hydrogen peroxide(H_(2)O_(2))is an eco-friendly chemical with widespread industrial applications.However,the commercial anthraquinone process for H_(2)O_(2) production is energy-intensive and environmentally harmful,h...Hydrogen peroxide(H_(2)O_(2))is an eco-friendly chemical with widespread industrial applications.However,the commercial anthraquinone process for H_(2)O_(2) production is energy-intensive and environmentally harmful,highlighting the need for more sustainable alternatives.The electrochemical production of H_(2)O_(2) via the two-electron water oxidation reaction(2e^(−)WOR)presents a promising route but is often hindered by low efficiency and selectivity,due to the competition with the oxygen evolution reaction.In this study,we employed high-throughput computational screening and microkinetic modeling to design a series of efficient 2e^(−)WOR electrocatalysts from a library of 240 single-metal-embedded nitrogen heterocycle aromatic molecules(M-NHAMs).These catalysts,primarily comprising post-transition metals,such as Cu,Ni,Zn,and Pd,exhibit high activity for H_(2)O_(2) conversion with a limiting potential approaching the optimal value of 1.76 V.Additionally,they exhibit excellent selectivity,with Faradaic efficiencies exceeding 80%at overpotentials below 300 mV.Structure-performance analysis reveals that the d-band center and magnetic moment of the metal center correlated strongly with the oxygen adsorption free energy(ΔGO*),suggesting these parameters as key catalytic descriptors for efficient screening and performance optimization.This study contributes to the rational design of highly efficient and selective electrocatalysts for electrochemical production of H_(2)O_(2),offering a sustainable solution for green energy and industrial applications.展开更多
Electrochemical nitrate reduction(eNO_(3)RR)and nitric oxide reduction(eNORR)to ammonia have emerged as promising and sustainable alternatives to the traditional Haber-Bosch method for ammonia production,particularly ...Electrochemical nitrate reduction(eNO_(3)RR)and nitric oxide reduction(eNORR)to ammonia have emerged as promising and sustainable alternatives to the traditional Haber-Bosch method for ammonia production,particularly within the recently proposed reverse artificial nitrogen cycle route:N_(2)→NO_(x)→NH_(3).Notably,experimental studies have demonstrated that eNORR exhibits superior performance over eNO_(3)RR on Cu6Sn5 catalysts.However,the fundamental mechanisms underlying this difference remain poorly understood.Herein,we performed systematic theoretical calculations to explore the reaction pathways,electronic structure effects,and potential-dependent Faradic efficiency associated with ammonia production via these two distinct electrochemical pathways(eNORR and eNO_(3)RR)on Cu6Sn5.By implementing an advanced‘adaptive electric field controlled constant potential(EFC-CP)’methodology combined with microkinetic modeling,we successfully reproduced the experimental observations and identified the key factors affecting ammonia production in both reaction pathways.It was found that eNORR outperforms eNO_(3)RR because it circumvents the ^(*)NO_(2) dissociation and ^(*)NO_(2) desorption steps,leading to distinct surface coverage of key intermediates between the two pathways.Furthermore,the reaction rates were found to exhibit a pronounced dependence on the surface coverage of ^(*)NO in eNORR and ^(*)NO_(2) in eNO_(3)RR.Specifically,the facile desorption of ^(*)NO_(2) on the Cu6Sn5 surface in eNO_(3)RR limits the attainable surface coverage of ^(*)NO,thereby impeding its performance.In contrast,the eNORR can maintain a high surface coverage of adsorbed ^(*)NO species,contributing to its enhanced ammonia production performance.These fundamental insights provide valuable guidance for the rational design of catalysts and the optimization of reaction routes,facilitating the development of more efficient,sustainable,and scalable techniques for ammonia production.展开更多
The hydrogenation of carbon dioxide(CO2)is one of important processes to effectively convert and utilize CO2,which is also regarded as the key step at the industrial methanol synthesis.Water is likely to play an impor...The hydrogenation of carbon dioxide(CO2)is one of important processes to effectively convert and utilize CO2,which is also regarded as the key step at the industrial methanol synthesis.Water is likely to play an important role in this process,but it still remains elusive.To systematically understand its influence,here we computationally compare the reaction mechanisms of CO2 hydrogenation over the stepped Cu(211)surface between in the absence and presence of water based on microkinetic simulations upon density functional theory(DFT)calculations.The effects of water on each hydrogenation step and the whole activity and selectivity are checked and its physical origin is discussed.It is found that the water could kinetically accelerate the hydrogenation on CO2 to COOH,promoting the reverse water gas shift reaction to produce carbon monoxide(CO).It hardly influences the CO2 hydrogenation to methanol kinetically.In addition,the too high initial partial pressure of water will thermodynamically inhibit the CO2 conversion.展开更多
Ammonia decomposition is a key reaction in the context of hydrogen storage, transport, and release. This study combines density functional theory(DFT) calculations with microkinetic modeling to address the promotion m...Ammonia decomposition is a key reaction in the context of hydrogen storage, transport, and release. This study combines density functional theory(DFT) calculations with microkinetic modeling to address the promotion mechanism of Ba species for ammonia decomposition on Co catalysts. The modified adsorption properties of Co upon the addition of metallic Ba or BaO suggest that the promoters play a role in alleviating the competitive adsorption of H. Calculating the full reaction pathway of ammonia decomposition shows that limiting the investigation to the N–N association step, as done previously, overlooks the effect of the promoter on the energy barriers of the NHxdehydrogenation steps. Challenges of modeling the ammonia decomposition reaction are addressed by understanding that the NH_(2) intermediate is stabilized on the step sites rather than the terrace sites. When the effect of H-coverage on the adsorption of NH_(3) is not considered in the microkinetic simulations, the results conflict with the experiments.However, accounting for the effect of H-coverage, as performed here, shows that BaO-doped Co has higher rates than pristine Co and Ba-doped Co at the reaction temperature of 723.15 K. When H is adsorbed on the Ba-doped Co, the adsorption of ammonia becomes significantly endergonic, which makes the rates relatively slow. The superiority of the BaO-promoted catalyst is attributed to a lower energy for the transition state of the rate-determining step, coupled with a reduced impact of the hydrogen coverage on weakening the ammonia adsorption. The kinetic analysis of the influence of Ba and BaO on the Co surface shows that BaO-doped Co aligns more closely with experimental observations than Badoped Co. This implies that Ba on the Co surface is likely to be in an oxide form under reaction conditions.Understanding the kinetics of the ammonia decomposition reaction provides a foundation for developing highly effective catalysts to accelerate the industrial utilization of ammonia as a sustainable hydrogen carrier.展开更多
Ammonia borane(NH_(3)BH_(3),AB)has been considered to be a promising chemical hydrogen storage material.Based on density functional theory,a series of transition metal atoms supported P_(3)C(P_(3)C_O)sheet is systemat...Ammonia borane(NH_(3)BH_(3),AB)has been considered to be a promising chemical hydrogen storage material.Based on density functional theory,a series of transition metal atoms supported P_(3)C(P_(3)C_O)sheet is systematically investigated to screen out the most promising catalyst for dehydrogenation of AB.The results indicate that the Os/P_(3)C and Os/P_(3)C_O could be an efficient single atom catalyst(SACs)and the stepwise reaction pathway with free energy barrier of 2.07 and 1.54 e V respectively.Remarkably,the rate constant further quantitatively confirmed the real situation of the first step of dehydrogenation of AB on the Os/P_(3)C and Os/P_(3)C_O substrates.We found that k_(f1)at 400 K is equivalent to k_(f2)at 800 K,which greatly improves the temperature of the first step of AB dehydrogenation on P_(3)C_O.We hope this work can provide a promising method for the design of catalysts for AB dehydrogenation reactions on the surface of two-dimensional materials(2D).展开更多
Our recent theoretical studies have screened out CuCs-doped Ag-based promising catalysts for ethylene epoxidation[ACS Catal.11,3371(2021)].The theoretical results were based on surface modeling,while in the actual rea...Our recent theoretical studies have screened out CuCs-doped Ag-based promising catalysts for ethylene epoxidation[ACS Catal.11,3371(2021)].The theoretical results were based on surface modeling,while in the actual reaction process Ag catalysts are particle shaped.In this work,we combine density functional theory(DFT),Wulff construction theory,and micro kinetic analysis to study the catalytic performance of Ag catalysts at the particle model.It demonstrates that the CuCs-doped Ag catalysts are superior to pure Ag catalysts in terms of selectivity and activity,which is further proved by experimental validation.The characterization analysis finds that both Cu and Cs dopant promote particle growth as well as particle dispersion,resulting in a grain boundary-rich Ag particle.Besides,CuCs also facilitate electrophilic atomic oxygen formation on catalyst surface,which is benefitial for ethylene oxide formation and desorption.Our work provides a case study for catalyst design by combining theory and experiment.展开更多
The apparent activation energy,Eapp,is a common measure in thermal catalysis to discuss the activity and limiting steps of catalytic processes on solid-state materials.Recently,the electrocatalysis community adopted t...The apparent activation energy,Eapp,is a common measure in thermal catalysis to discuss the activity and limiting steps of catalytic processes on solid-state materials.Recently,the electrocatalysis community adopted the concept of Eappand combined it with the Butler-Volmer theory.Certain observations though,such as potential-dependent fluctuations of Eapp,are yet surprising because they conflict with the proposed linear decrease in Eappwith increasing overpotential.The most common explanation for this finding refers to coverage changes upon alterations in the temperature or the applied electrode potential.In the present contribution,it is demonstrated that the modulation of surface coverages cannot entirely explain potential-dependent oscillations of Eapp,and rather the impact of entropic contributions of the transition states has been overlooked so far.In the case of a nearly constant surface coverage,these entropic contributions can be extracted by a dedicated combination of Tafel plots and temperature-dependent experiments.展开更多
Various scaling relations have long been established in the field of heterogeneous catalysis,but the resultant volcano curves inherently limit the catalytic performance of catalyst candidates.On the other hand,it is s...Various scaling relations have long been established in the field of heterogeneous catalysis,but the resultant volcano curves inherently limit the catalytic performance of catalyst candidates.On the other hand,it is still very challenging to develop universal descriptors that can be used in various types of catalysts and reaction systems.For these reasons,several strategies have recently been proposed to break and rebuild scaling relations to go beyond the top of volcanoes.In this review,some previously proposed descriptors have been briefly introduced.Then,the strategies for breaking known and establishing new and more generalized scaling relations in complex catalytic systems have been summarized.Finally,the application of machine-learning techniques in identifying universal descriptors for future computational design and high-throughput screening of heterogeneous catalysts has been discussed.展开更多
The direct synthesis of hydrogen peroxide(H_(2)O_(2))via a two‐electron oxygen reduction reaction(2e‐ORR)in acidic media has emerged as a green process for the production of this valuable chemical.However,such an ap...The direct synthesis of hydrogen peroxide(H_(2)O_(2))via a two‐electron oxygen reduction reaction(2e‐ORR)in acidic media has emerged as a green process for the production of this valuable chemical.However,such an approach employs expensive noble‐metal‐based electrocatalysts,which severely undermines its feasibility when implemented on an industrial scale.Herein,based on density functional theory computations and microkinetic modeling,we demonstrate that a novel two‐dimensional(2D)material,namely a 1T′‐MoTe_(2)monolayer,can serve as an efficient non‐precious electrocatalyst to facilitate the 2e‐ORR.The 1T′‐MoTe_(2)monolayer is a stable 2D crystal that can be easily produced through exfoliation techniques.The surface‐exposed Te sites of the 1T′‐MoTe_(2)monolayer exhibit a favorable OOH*binding energy of 4.24 eV,resulting in a rather high basal plane activity toward the 2e‐ORR.Importantly,kinetic computations indicate that the 1T'‐MoTe_(2)monolayer preferentially promotes the formation of H_(2)O_(2)over the competing four‐electron ORR step.These desirable characteristics render 1T′‐MoTe_(2)a promising candidate for catalyzing the electrochemical reduction of O_(2)to H_(2)O_(2).展开更多
Understanding the hydrogenation routes in the electrochemical CO_((2))reduction reaction(eCO_((2))RR)is essential for the selective production of oxygenated and hydrocarbon products.Hydrogenation dictates the selectiv...Understanding the hydrogenation routes in the electrochemical CO_((2))reduction reaction(eCO_((2))RR)is essential for the selective production of oxygenated and hydrocarbon products.Hydrogenation dictates the selectivity by determining whether hydrogen preferentially attacks oxygen or carbon in one intermediate.Oxygenated products are particularly valuable due to their higher energy density and economic potential,making enhancing their Faradaic efficiency(FE)vital.However,the factors determining hydrogenation selectivity remain unclear,making precise control over product distribution challenging.Herein,we systematically investigate hydrogenation mechanisms from CO to CH4,C_(2)H_(5)OH,and C_(2)H4using density functional theory(DFT)calculations with an explicit solvation model.Our results reveal that surface hydrogen preferentially attacks carbon atoms via the Langmuir-Hinshelwood(LH)mechanism,while solvent hydrogen attacks oxygen atoms via the Eley-Rideal(ER)mechanism.This insight suggests that enhancing the LH mechanism could promote oxy-generating products when the solvent environment is determined.Microkinetic modeling supports these findings by adjusting the LH mechanism through H_(2)partial pressure modulation.Further experiments demonstrate FE change of ethanol,ethylene,and methane under different CO:H_(2)/N_(2)partial pressures at different currents.Experiment results confirm that increasing the coverage of*H can effectively enhance the FE of oxygenated compounds while also causing rapid saturation of carbon atoms,thereby suppressing C-C coupling and reducing the FE of multi-carbon products.These computational and experimental findings provide a mechanistic foundation for optimizing eCO_((2))RR selectivity through hydrogen coverage modulation.展开更多
文摘Direct conversion of syngas to light olefins(STO)on bifunctional catalysts has garnered significant attention,yet a comprehensive understanding of the reaction pathway and reaction kinetics remains elusive.Herein,we theoretically addressed the kinetics of the direct STO reaction on typical ZnAl_(2)O_(4)/zeolite catalysts by establishing a complete reaction network,consisting of methanol synthesis and conversion,water gas shift(WGS)reaction,olefin hydrogenation,and other relevant steps.The WGS reaction occurs very readily on ZnAl_(2)O_(4) surface whereas which is less active towards alkane formation via olefin hydrogenation,and the latter can be attributed to the characteristics of the H_(2) heterolytic activation and the weak polarity of olefins.The driving effect of zeolite component towards CO conversion was demonstrated by microkinetic simulations,which is sensitive to reaction conditions like space velocity and reaction temperature.Under a fixed ratio of active sites between oxide and zeolite components,the concept of the“impossible trinity”of high CO conversion,high olefin selectivity,and high space velocity can thus be manifested.This work thus provides a comprehensive kinetic picture on the direct STO conversion,offering valuable insights for the design of each component of bifunctional catalysts and the optimization of reaction conditions.
基金Project supported by State Key Laboratory of Molecular&Process Engineering (RIPP, SINOPEC)(36800000-23-ZC0699-0042)the National Natural Science Foundation of China (22072182, 21776315, 12104513)+2 种基金the National Key Research and Development Program of China (2019YFA0708703)the Taishan Scholars Program of Shandong Province (tsqn201909071)the Shandong Provincial Natural Science Foundation of China (ZR2020QA050, ZR2023MB034)。
文摘Single-atom(SA) catalysts have emerged as a pivotal area drawing extensive research interest due to their high catalytic activities.However,SA catalysts are often plagued by the aggregation and deactivation of SA sites under reaction conditions.This study focuses on CO oxidation over Gd-doped ceriasupported Cu catalysts and aims to provide a new strategy to stabilize the SA site,in which a Cu SA site is "prestored" in a relatively stable Cu cluster and can be dynamically activated under reaction conditions.Three typical Cu_(10)/CeO_(2)catalyst models were built with different Gd-doping contents,which are pristine Cu_(10)/CeO_(2),Cu_(10)/Gd_(0.125)Ce_(0.875)O_(2),and Cu_(10)/Gd_(0.25)Ce_(0.75)O_(2),respectively.We performed density functional theory(DFT) calculations on the Cu_(10)/Gd-CeO_(2)system to investigate the adsorption of CO and O_(2)molecules,the formation of surface oxygen vacancy(OV) and dynamic Cu SA site,and potential energy surfaces of CO oxidation process.Ab initio thermodynamic analysis suggests that the saturation adsorption of CO on Cu_(10)and high Gd-doping in CeO_(2)lead to a spontaneously formed single Cu-CO site and an OVdefect on ceria surface.The CO oxidation process is identified as a two-paths-coupled catalytic cycle,in which Path Ⅰ is activated by the terminal O atom of adsorbed O_(2)at surface OVsite while Path Ⅱinitiates with the lattice O atom of CeO_(2)surface.The micro kinetic modeling demonstrates that the dominant pathway is Path Ⅰ for the undoped and low-doping cases,and Path Ⅱ for the high-doping case which exhibits a novel mechanism for CO oxidation and the highest reaction activity due to the participation of the dynamic SA site.
基金financial support from the China Scholarship Councilthe Long Term Structural Methusalem Funding by the Flemish Government
文摘Single-event microkinetic(SEMK) model of the catalytic cracking of methylcyclohexane admixed with 1-octene over REUSY zeolites at 693 K—753 K in the absence of coke formation is enhanced. To keep consistency with the wellknown carbenium ion chemistry, hydride transfer forming and consuming allylic carbenium ions in the aromatization of cycloparaffins are further investigated and differentiated. The reversibility of endocyclic β-scission and cyclization reactions is refined by accounting explicitly for the reacting olefins and resulting cycloparaffins in the corresponding thermodynamics. 24 activation energies for the reactions involved in the cracking of cycloparaffins are obtained by the regression of 15 sets of experimental data upon taking the resulting 37 main cracking products, i. e., responses into account. The enhanced SEMK model can adequately describe the catalytic behavior of 37 main products with conversion and temperature.
基金the financial support from the China Scholarship Councilthe Long Term Structural Methusalem Funding by the Flemish Government
文摘The developed SEMK model is used to provide an insight into the contribution of individual reactions in the cracking of methylcyclohexane as well as the site coverage by various carbenium ions. The preferred reaction pathways for the conversion of methylcyclohexane are hydride transfer reactions followed by PCP-isomerizations, deprotonation and endocyclic β-scission, accounting for 61%, 22% and 12% of its disappearance, respectively, at 693 K and 30% conversion of methylcyclohexane. Protolysis plays a minor role in the cracking of methylcyclohexane. Once cyclic diolefins are formed, all of them can be instantaneously transformed to aromatics, which are easily interconverted via disproportionation. Judging from the carbenium ion concentrations it is evident that, at the investigated operating conditions, less than 5% of the acid sites are covered by carbenium ions, less than 2% of which corresponds to cyclic type species including allylic ones.
基金This work was supported by the National Key R&D Program of China(No.2017YFB0602205,No.2017YFA0204800),the National Natural Science Foundation of China(No.91645202,No.91421315),the Chinese Academy of Sciences(No.QYZDJ-SSWSLH054,No.XDA09030101).
文摘First-principle based microkinetic simulations are performed to investigate methanol synthesis from CO and CO2 on Cu(221)and CuZn(221)surfaces.It is found that regardless of surface structure,the carbon consumption rate follows the order:CO hydrogenation>CO/CO2 hydrogenation>CO2 hydrogenation.The superior CO hydrogenation activity mainly arises from the lower barriers of elementary reactions than CO2 hydrogenation.Compared to Cu(221),the introduction of Zn greatly lowers the activity of methanol synthesis,in particularly for CO hydrogenation.For a mixed CO/CO2 hydrogenation,CO acts as the carbon source on Cu(221)while both CO and CO2 contribute to carbon conversion on CuZn(221).The degree of rate control studies show that the key steps that determine the reaction activity of CO/CO2 hydrogenation are HCO and HCOO hydrogenation on Cu(221),instead of HCOOH hydrogenation on CuZn(221).The present work highlights the effect of the Zn doping and feed gas composition on methanol synthesis.
基金This work was supported by the National Natural Science Foundation of China(No.92045303)the China Postdoctoral Science Foundation(No.2020M681444).The computational resources from Sinopec Geophysical Research Institute are acknowledged.
文摘Cr_(2)O_(3) has been recognized as a key oxide component in bifunctional catalysts to produce bridging intermediate,e.g.,methanol,from syngas.By combining density functional theory calculations and microkinetic modeling,we computationally studied the surface structures and catalytic activities of bare Cr_(2)O_(3)(001)and(012)surfaces,and two reduced(012)surfaces covered with dissociative hydrogens or oxygen vacancies.The reduction of(001)surface is much more difficult than that of(012)surface.The stepwise or the concerted reaction pathways were explored for the syngas to methanol conversion,and the hydrogenation of CO or CHO is identified as rate-determining step.Microkinetic modeling reveals that(001)surface is inactive for the reaction,and the rates of both reduced(012)surfaces(25−28 s^(-1))are about five times higher than bare(012)surface(4.3 s^(-1))at 673 K.These theoretical results highlight the importance of surface reducibility on the reaction and may provide some implications on the design of individual component in bifunctional catalysis.
基金Fundamental Research Funds for the Central Universities(Grant No.23CX07009A)National Natural Science Foundation of China(Grant No.22108305)+1 种基金Natural Science Foundation of Shandong Province(Grant No.ZR2023YQ009)Special Project Fund of Taishan-Scholars Shandong Province(Grant No.tsqn202211078).
文摘Exploring effective transition metal single-atom catalysts for selective oxidation of benzene to phenol is still a great challenge due to the lack of a comprehensive mechanism and mechanism-driven approach.Here,robust 4N-coordinated transition metal single atom catalysts embedded within graphene(TM_(1)-N_(4)/C)are systematically screened by density functional theory and microkinetic modeling approach to assess their selectivity and activity in benzene oxidation reaction.Our findings indicate that the single metal atom triggers the dissociation of H_(2)O_(2)to form an active oxygen species(O*).The lone-electronic pair character of O*activates the benzene C–H bond by constructing C–O bond with C atom of benzene,promoting the formation of phenol products.In addition,after benzene captures O*to form phenol,the positively charged bare single metal atom activates the phenol O–H bond by electron interaction with the O atom in the phenol,inducing the generation of benzoquinone by-products.The activation process of O–H bond is accompanied by H atom falling onto the carrier.On this basis,it can be inferred that adsorption energy of the C atom on the O*atom(EC)and the H atom on the TM_(1)-N_(4)/C(EH),which respectively represent activation ability of benzene C–H bond and phenol O–H bond,could be labeled as descriptors describing catalytic activity and selectivity.Moreover,based on the as-obtained volcano map,appropriate EC(–8 to–7 eV)and weakened EH(–1.5 to 0 eV)contribute to the optimization of catalytic performance for benzene oxidation to phenol.This study offers profound opinions on the rational design of metal single-atom catalysts that exhibit favorable catalytic behaviors in hydrocarbon oxidation.
基金supported by the Ministry of Education,Culture,Research,and Technology of the Republic of Indonesia through the‘WCR 2022’program under contract number 007/E5/PG.02.00.PT/2022.
文摘We study the carbon dioxide reduction reaction(CO_(2)RR)activity and selectivity of Fe single-atom catalyst(Fe-SAC)and Fe dual-atom catalyst(Fe-DAC)active sites at the interior of graphene and the edges of graphitic nanopore by using a combination of DFT calculations and microkinetic simulations.The trend of limiting potentials for CO_(2)RR to produce CO can be described by using either the adsorption energy of COOH,CO,or their combination.CO_(2)RR process with reasonable reaction rates can be achieved only on the active site configurations with weak tendencies toward CO poisoning.The efficiency of CO_(2)RR on a catalyst depends on its ability to suppress the parasitic hydrogen evolution reaction(HER),which is directly related to the behavior of H adsorption on the catalyst’s active site.We find that the edges of the graphitic nanopore can act as potential adsorption sites for an H atom,and in some cases,the edge site can bind the H atom much stronger than the main Fe site.The linear scaling between CO and H adsorptions is broken if this condition is met.This condition also allows some edge active site configurations to have their CO_(2)RR limiting potential lower than the HER process favoring CO production over H2 production.
文摘Recent studies have revealed the extraordinary performance of zirconium oxide in propane dehydrogenation,which is attributed to the excellent reactivity of the coordinatively unsaturated zirconium sites(Zr_(cus))around the oxygen vacancies.The origin of the enhanced catalytic activity of ZrO_(2)with defective tetrahedral Zr sites was examined by direct comparison with its pristine counterpart in the current study.Electronic-structure analysis revealed that electrons from oxygen removal were localized within vacancies on the defective surface,which directly attacked the C-H bond in propane.The involvement of localized electrons activates the C-H bond via back-donation to the antibonding orbital on the defective surface;conversely,charge is transferred from propane to the pristine surfaces.The barrier for the first C-H bond activation is clearly significantly reduced on the defective surfaces compared to that on the pristine surfaces,which verifies the superior activity of Zr_(cus).Notably,however,the desorption of both propene and hydrogen molecules from Zr_(cus)is more difficult due to strong binding.The calculated turnover frequency(TOF)for propene formation demonstrates that the pristine surfaces exhibit better catalytic performance at lower temperatures,whereas the defective surfaces have a larger TOF at high temperatures.However,the rate-determining step and reaction order on the defective surface differ from those on the pristine surface,which corroborates that the catalysts follow different mechanisms.A further optimization strategy was proposed to address the remaining bottlenecks in propane dehydrogenation on zirconium oxide.
基金supported by the National Natural Science Foundation of China (22209061 and 22462006)Start-up Fund for Senior Talents in Jiangsu University (21JDG060)the Fundamental Research Funds for the Central Universities (20720220009)
文摘Hydrogen peroxide(H_(2)O_(2))is an eco-friendly chemical with widespread industrial applications.However,the commercial anthraquinone process for H_(2)O_(2) production is energy-intensive and environmentally harmful,highlighting the need for more sustainable alternatives.The electrochemical production of H_(2)O_(2) via the two-electron water oxidation reaction(2e^(−)WOR)presents a promising route but is often hindered by low efficiency and selectivity,due to the competition with the oxygen evolution reaction.In this study,we employed high-throughput computational screening and microkinetic modeling to design a series of efficient 2e^(−)WOR electrocatalysts from a library of 240 single-metal-embedded nitrogen heterocycle aromatic molecules(M-NHAMs).These catalysts,primarily comprising post-transition metals,such as Cu,Ni,Zn,and Pd,exhibit high activity for H_(2)O_(2) conversion with a limiting potential approaching the optimal value of 1.76 V.Additionally,they exhibit excellent selectivity,with Faradaic efficiencies exceeding 80%at overpotentials below 300 mV.Structure-performance analysis reveals that the d-band center and magnetic moment of the metal center correlated strongly with the oxygen adsorption free energy(ΔGO*),suggesting these parameters as key catalytic descriptors for efficient screening and performance optimization.This study contributes to the rational design of highly efficient and selective electrocatalysts for electrochemical production of H_(2)O_(2),offering a sustainable solution for green energy and industrial applications.
文摘Electrochemical nitrate reduction(eNO_(3)RR)and nitric oxide reduction(eNORR)to ammonia have emerged as promising and sustainable alternatives to the traditional Haber-Bosch method for ammonia production,particularly within the recently proposed reverse artificial nitrogen cycle route:N_(2)→NO_(x)→NH_(3).Notably,experimental studies have demonstrated that eNORR exhibits superior performance over eNO_(3)RR on Cu6Sn5 catalysts.However,the fundamental mechanisms underlying this difference remain poorly understood.Herein,we performed systematic theoretical calculations to explore the reaction pathways,electronic structure effects,and potential-dependent Faradic efficiency associated with ammonia production via these two distinct electrochemical pathways(eNORR and eNO_(3)RR)on Cu6Sn5.By implementing an advanced‘adaptive electric field controlled constant potential(EFC-CP)’methodology combined with microkinetic modeling,we successfully reproduced the experimental observations and identified the key factors affecting ammonia production in both reaction pathways.It was found that eNORR outperforms eNO_(3)RR because it circumvents the ^(*)NO_(2) dissociation and ^(*)NO_(2) desorption steps,leading to distinct surface coverage of key intermediates between the two pathways.Furthermore,the reaction rates were found to exhibit a pronounced dependence on the surface coverage of ^(*)NO in eNORR and ^(*)NO_(2) in eNO_(3)RR.Specifically,the facile desorption of ^(*)NO_(2) on the Cu6Sn5 surface in eNO_(3)RR limits the attainable surface coverage of ^(*)NO,thereby impeding its performance.In contrast,the eNORR can maintain a high surface coverage of adsorbed ^(*)NO species,contributing to its enhanced ammonia production performance.These fundamental insights provide valuable guidance for the rational design of catalysts and the optimization of reaction routes,facilitating the development of more efficient,sustainable,and scalable techniques for ammonia production.
基金supported by the National Key Research and Development Program of China(2018YFA0208600)the National Natural Science Foundation of China(21673072,21333003,91845111)Program of Shanghai Subject Chief Scientist(17XD1401400)
文摘The hydrogenation of carbon dioxide(CO2)is one of important processes to effectively convert and utilize CO2,which is also regarded as the key step at the industrial methanol synthesis.Water is likely to play an important role in this process,but it still remains elusive.To systematically understand its influence,here we computationally compare the reaction mechanisms of CO2 hydrogenation over the stepped Cu(211)surface between in the absence and presence of water based on microkinetic simulations upon density functional theory(DFT)calculations.The effects of water on each hydrogenation step and the whole activity and selectivity are checked and its physical origin is discussed.It is found that the water could kinetically accelerate the hydrogenation on CO2 to COOH,promoting the reverse water gas shift reaction to produce carbon monoxide(CO).It hardly influences the CO2 hydrogenation to methanol kinetically.In addition,the too high initial partial pressure of water will thermodynamically inhibit the CO2 conversion.
基金Saudi Aramco for their fundingsupported by the Supercomputing Laboratory at King Abdullah University of Science&Technology (KAUST) in Thuwal,Saudi Arabiaused Expanse cluster at San Diego Supercomputer Center through allocation TG-CHE170060 from the Advanced Cyberinfrastructure Coordination Ecosystem:Services&Support (ACCESS) program,which is supported by National Science Foundation grants#2138259,#2138286,#2138307,#2137603, and#2138296。
文摘Ammonia decomposition is a key reaction in the context of hydrogen storage, transport, and release. This study combines density functional theory(DFT) calculations with microkinetic modeling to address the promotion mechanism of Ba species for ammonia decomposition on Co catalysts. The modified adsorption properties of Co upon the addition of metallic Ba or BaO suggest that the promoters play a role in alleviating the competitive adsorption of H. Calculating the full reaction pathway of ammonia decomposition shows that limiting the investigation to the N–N association step, as done previously, overlooks the effect of the promoter on the energy barriers of the NHxdehydrogenation steps. Challenges of modeling the ammonia decomposition reaction are addressed by understanding that the NH_(2) intermediate is stabilized on the step sites rather than the terrace sites. When the effect of H-coverage on the adsorption of NH_(3) is not considered in the microkinetic simulations, the results conflict with the experiments.However, accounting for the effect of H-coverage, as performed here, shows that BaO-doped Co has higher rates than pristine Co and Ba-doped Co at the reaction temperature of 723.15 K. When H is adsorbed on the Ba-doped Co, the adsorption of ammonia becomes significantly endergonic, which makes the rates relatively slow. The superiority of the BaO-promoted catalyst is attributed to a lower energy for the transition state of the rate-determining step, coupled with a reduced impact of the hydrogen coverage on weakening the ammonia adsorption. The kinetic analysis of the influence of Ba and BaO on the Co surface shows that BaO-doped Co aligns more closely with experimental observations than Badoped Co. This implies that Ba on the Co surface is likely to be in an oxide form under reaction conditions.Understanding the kinetics of the ammonia decomposition reaction provides a foundation for developing highly effective catalysts to accelerate the industrial utilization of ammonia as a sustainable hydrogen carrier.
基金funded by the National Natural Science Foundation of China (No. 21603109)the Henan Joint Fund of the National Natural Science Foundation of China (No. U1404216)+2 种基金the Special Fund of Tianshui Normal University, China (No. CXJ2020-08)the Scientific Research Program Funded by Shaanxi Provincial Education Department (No. 20JK0676)partially supported by the postgraduate research opportunities program of HZWTECH (HZWTECH-PROP).
文摘Ammonia borane(NH_(3)BH_(3),AB)has been considered to be a promising chemical hydrogen storage material.Based on density functional theory,a series of transition metal atoms supported P_(3)C(P_(3)C_O)sheet is systematically investigated to screen out the most promising catalyst for dehydrogenation of AB.The results indicate that the Os/P_(3)C and Os/P_(3)C_O could be an efficient single atom catalyst(SACs)and the stepwise reaction pathway with free energy barrier of 2.07 and 1.54 e V respectively.Remarkably,the rate constant further quantitatively confirmed the real situation of the first step of dehydrogenation of AB on the Os/P_(3)C and Os/P_(3)C_O substrates.We found that k_(f1)at 400 K is equivalent to k_(f2)at 800 K,which greatly improves the temperature of the first step of AB dehydrogenation on P_(3)C_O.We hope this work can provide a promising method for the design of catalysts for AB dehydrogenation reactions on the surface of two-dimensional materials(2D).
基金This work is supported by PetroChina Innovation Foundation(2019D-5007-0403).
文摘Our recent theoretical studies have screened out CuCs-doped Ag-based promising catalysts for ethylene epoxidation[ACS Catal.11,3371(2021)].The theoretical results were based on surface modeling,while in the actual reaction process Ag catalysts are particle shaped.In this work,we combine density functional theory(DFT),Wulff construction theory,and micro kinetic analysis to study the catalytic performance of Ag catalysts at the particle model.It demonstrates that the CuCs-doped Ag catalysts are superior to pure Ag catalysts in terms of selectivity and activity,which is further proved by experimental validation.The characterization analysis finds that both Cu and Cs dopant promote particle growth as well as particle dispersion,resulting in a grain boundary-rich Ag particle.Besides,CuCs also facilitate electrophilic atomic oxygen formation on catalyst surface,which is benefitial for ethylene oxide formation and desorption.Our work provides a case study for catalyst design by combining theory and experiment.
基金funding by the Ministry of Culture and Science of the Federal State of North Rhine-Westphalia (NRW Return Grant)CRC/TRR247:"Heterogeneous Oxidation Catalysis in the Liquid Phase"(388390466-TRR247),the RESOLV Cluster of Excellence,funded by the Deutsche Forschungsgemeinschaft under Germany’s Excellence StrategyEXC 2033-390677874-RESOLV+1 种基金the Center for Nanointegration (CENIDE)supported by COST (European Cooperation in Science and Technology)。
文摘The apparent activation energy,Eapp,is a common measure in thermal catalysis to discuss the activity and limiting steps of catalytic processes on solid-state materials.Recently,the electrocatalysis community adopted the concept of Eappand combined it with the Butler-Volmer theory.Certain observations though,such as potential-dependent fluctuations of Eapp,are yet surprising because they conflict with the proposed linear decrease in Eappwith increasing overpotential.The most common explanation for this finding refers to coverage changes upon alterations in the temperature or the applied electrode potential.In the present contribution,it is demonstrated that the modulation of surface coverages cannot entirely explain potential-dependent oscillations of Eapp,and rather the impact of entropic contributions of the transition states has been overlooked so far.In the case of a nearly constant surface coverage,these entropic contributions can be extracted by a dedicated combination of Tafel plots and temperature-dependent experiments.
基金supported by the National Natural Science Founda-tion of China(21473053,91645122,and 22073027)the Natural Science Foundation of Shanghai(20ZR1415800)the Funda-mental Research Funds for the Central Universities(222201718003).
文摘Various scaling relations have long been established in the field of heterogeneous catalysis,but the resultant volcano curves inherently limit the catalytic performance of catalyst candidates.On the other hand,it is still very challenging to develop universal descriptors that can be used in various types of catalysts and reaction systems.For these reasons,several strategies have recently been proposed to break and rebuild scaling relations to go beyond the top of volcanoes.In this review,some previously proposed descriptors have been briefly introduced.Then,the strategies for breaking known and establishing new and more generalized scaling relations in complex catalytic systems have been summarized.Finally,the application of machine-learning techniques in identifying universal descriptors for future computational design and high-throughput screening of heterogeneous catalysts has been discussed.
文摘The direct synthesis of hydrogen peroxide(H_(2)O_(2))via a two‐electron oxygen reduction reaction(2e‐ORR)in acidic media has emerged as a green process for the production of this valuable chemical.However,such an approach employs expensive noble‐metal‐based electrocatalysts,which severely undermines its feasibility when implemented on an industrial scale.Herein,based on density functional theory computations and microkinetic modeling,we demonstrate that a novel two‐dimensional(2D)material,namely a 1T′‐MoTe_(2)monolayer,can serve as an efficient non‐precious electrocatalyst to facilitate the 2e‐ORR.The 1T′‐MoTe_(2)monolayer is a stable 2D crystal that can be easily produced through exfoliation techniques.The surface‐exposed Te sites of the 1T′‐MoTe_(2)monolayer exhibit a favorable OOH*binding energy of 4.24 eV,resulting in a rather high basal plane activity toward the 2e‐ORR.Importantly,kinetic computations indicate that the 1T'‐MoTe_(2)monolayer preferentially promotes the formation of H_(2)O_(2)over the competing four‐electron ORR step.These desirable characteristics render 1T′‐MoTe_(2)a promising candidate for catalyzing the electrochemical reduction of O_(2)to H_(2)O_(2).
基金supported by the Marsden Fund Council from Government Funding(21-UOA-237)the Catalyst:Seeding General(24-UOA-048-CSG)financial support for this work from Khalifa University(FSU-2025-006)。
文摘Understanding the hydrogenation routes in the electrochemical CO_((2))reduction reaction(eCO_((2))RR)is essential for the selective production of oxygenated and hydrocarbon products.Hydrogenation dictates the selectivity by determining whether hydrogen preferentially attacks oxygen or carbon in one intermediate.Oxygenated products are particularly valuable due to their higher energy density and economic potential,making enhancing their Faradaic efficiency(FE)vital.However,the factors determining hydrogenation selectivity remain unclear,making precise control over product distribution challenging.Herein,we systematically investigate hydrogenation mechanisms from CO to CH4,C_(2)H_(5)OH,and C_(2)H4using density functional theory(DFT)calculations with an explicit solvation model.Our results reveal that surface hydrogen preferentially attacks carbon atoms via the Langmuir-Hinshelwood(LH)mechanism,while solvent hydrogen attacks oxygen atoms via the Eley-Rideal(ER)mechanism.This insight suggests that enhancing the LH mechanism could promote oxy-generating products when the solvent environment is determined.Microkinetic modeling supports these findings by adjusting the LH mechanism through H_(2)partial pressure modulation.Further experiments demonstrate FE change of ethanol,ethylene,and methane under different CO:H_(2)/N_(2)partial pressures at different currents.Experiment results confirm that increasing the coverage of*H can effectively enhance the FE of oxygenated compounds while also causing rapid saturation of carbon atoms,thereby suppressing C-C coupling and reducing the FE of multi-carbon products.These computational and experimental findings provide a mechanistic foundation for optimizing eCO_((2))RR selectivity through hydrogen coverage modulation.