期刊文献+
共找到169篇文章
< 1 2 9 >
每页显示 20 50 100
Effects of Bifidobacterium lactis BLa80 on fecal and mucosal flora and stem cell factor/c-kit signaling pathway in simulated microgravity rats 被引量:1
1
作者 Ping Zhang Ying Zhu +7 位作者 Pu Chen Tong Zhou Zhe-Yi Han Jun Xiao Jian-Feng Ma Wen Ma Peng Zang Ying Chen 《World Journal of Gastroenterology》 SCIE CAS 2025年第1期93-109,共17页
BACKGROUND Simulated microgravity environment can lead to gastrointestinal motility disturbance.The pathogenesis of gastrointestinal motility disorders is closely related to the stem cell factor(SCF)/c-kit signaling p... BACKGROUND Simulated microgravity environment can lead to gastrointestinal motility disturbance.The pathogenesis of gastrointestinal motility disorders is closely related to the stem cell factor(SCF)/c-kit signaling pathway associated with intestinal flora and Cajal stromal cells.Moreover,intestinal flora can also affect the regulation of SCF/c-kit signaling pathway,thus affecting the expression of Cajal stromal cells.Cajal cells are the pacemakers of gastrointestinal motility.AIM To investigate the effects of Bifidobacterium lactis(B.lactis)BLa80 on the intestinal flora of rats in simulated microgravity and on the gastrointestinal motility-related SCF/c-kit pathway.METHODS The internationally recognized tail suspension animal model was used to simulate the microgravity environment,and 30 rats were randomly divided into control group,tail suspension group and drug administration tail suspension group with 10 rats in each group for a total of 28 days.The tail group was given B.lactis BLa80 by intragastric administration,and the other two groups were given water intragastric administration,the concentration of intragastric administration was 0.1 g/mL,and each rat was 1 mL/day.Hematoxylin&eosin staining was used to observe the histopathological changes in each segment of the intestine of each group,and the expression levels of SCF,c-kit,extracellular signal-regulated kinase(ERK)and p-ERK in the gastric antrum of each group were detected by Western blotting and PCR.The fecal flora and mucosal flora of rats in each group were detected by 16S rRNA.RESULTS Simulated microgravity resulted in severe exfoliation of villi of duodenum,jejunum and ileum in rats,marked damage,increased space between villi,loose arrangement,shortened columnar epithelium of colon,less folds,narrower mucosal thickness,reduced goblet cell number and crypts,and significant improvement after probiotic intervention.Simulated microgravity reduced the expressions of SCF and c-kit,and increased the expressions of ERK and P-ERK in the gastric antrum of rats.However,after probiotic intervention,the expressions of SCF and ckit were increased,while the expressions of ERK and P-ERK were decreased,with statistical significance(P<0.05).In addition,simulated microgravity can reduce the operational taxonomic unit(OTU)of the overall intestinal flora of rats,B.lactis BLa80 can increase the OTU of rats,simulated microgravity can reduce the overall richness and diversity of stool flora of rats,increase the abundance of firmicutes in stool flora of rats,and reduce the abundance of Bacteroides in stool flora of rats,most of which are mainly beneficial bacteria.Simulated microgravity can increase the overall richness and diversity of mucosal flora,increase the abundance of Bacteroides and Desulphurides in the rat mucosal flora,and decrease the abundance of firmicutes,most of which are proteobacteria.After probiotics intervention,the overall Bacteroidetes trend in simulated microgravity rats was increased.CONCLUSION B.lactis BLa80 can ameliorate intestinal mucosal injury,regulate intestinal flora,inhibit ERK expression,and activate the SCF/c-kit signaling pathway,which may have a facilitating effect on gastrointestinal motility in simulated microgravity rats. 展开更多
关键词 Simulated microgravity Rat Intestinal flora Gastrointestinal motility Stem cell factor/c-kit signaling pathway
暂未订购
Impact of microgravity on retinal neuroimmune responses and visual dysfunction in rats
2
作者 Jin-Shuo Liu Nai-Qin Yan +6 位作者 Ying-Yan Mao Chen Xin Da-Peng Mou Xin-Xiao Gao Jia Guo Ning-Li Wang Si-Quan Zhu 《International Journal of Ophthalmology(English edition)》 2025年第8期1409-1425,共17页
AIM:To analyze visual dysfunction in rats under simulated weightlessness(SW)by examining trans-laminar cribrosa pressure difference(TLCPD)and neuroimmune responses.METHODS:The 72 male Sprague-Dawley rats were randomly... AIM:To analyze visual dysfunction in rats under simulated weightlessness(SW)by examining trans-laminar cribrosa pressure difference(TLCPD)and neuroimmune responses.METHODS:The 72 male Sprague-Dawley rats were randomly assigned into two groups(ground control and hindlimb unloading-simulated microgravity)using stratified randomization,with each group further subdivided into three exposure durations:SW 2-week(SW-2W),4-week(SW-4W),and 8-week(SW-8W),n=12 per subgroup.At the designated time points for each group,intraocular pressure(IOP)and intracranial pressure(ICP)were measured,and the trans-laminar cribrosa pressure difference(TLCPD)was calculated.Additionally,optomotor response(OMR),electroretinography(ERG),and optical coherence tomography(OCT)were performed.The number of retinal ganglion cells(RGCs)was quantified via immunofluorescence,the activation of astrocytes and microglial cells was determined,and Sholl analysis was conducted to assess the function and morphology of microglial cells.Data were analyzed with SPSS and GraphPad Prism(P<0.05).RESULTS:Under prolonged simulated microgravity,rats exhibited a progressive increase in both IOP and ICP,with the most pronounced rise observed at 8wk.Concurrently,the TLCPD shifted from a negative value in controls to a positive value.These pressure alterations were associated with retinal dysfunction,as evidenced by significant reductions in ERG b-wave and photopic negative response(PhNR)amplitudes.OCT and histological analyses revealed subtle photoreceptor layer damage:while the inner nuclear layer(INL)thickness remained relatively unchanged,the outer nuclear layer(ONL)thinned significantly,and the nerve fiber layer-ganglion cell layer complex thickness(NFL-GCL)complex initially thickened before later thinning.Immunofluorescence further demonstrated marked neuroimmune activation,with astrocytes transitioning from having large cell bodies with small,elongated,sparse processes to a phenotype characterized by compact,enlarged nuclei and aggregated processes,alongside notable RGC loss.CONCLUSION:Based on the results from the simulated microgravity rat model,microgravity-induced changes in dual-chamber pressure,and neuroimmune responses in the retina may play a key role in visual dysfunction.Specifically,the activation of retinal neuroimmune cells(astrocytes and microglial cells)induced by mechanical stress appears to be central to retinal and optic nerve damage. 展开更多
关键词 simulated weightlessness microgravity NEUROIMMUNE MICROGLIA astrocyte activation
原文传递
Time-lapse microgravity monitoring technology for underground gas storage and application based on Robust Principal Component Analysis
3
作者 Peng Xiang Xue-guo Chen +3 位作者 Hong-mei Luo Juan Zhang Ling-wei Meng Tao Guo 《Applied Geophysics》 2025年第3期770-783,895,896,共16页
Underground gas storage(UGS)are an important guarantee for national energy strategic reserves,but the monitoring of gas reservoir distribution has always faced challenges.Time-lapse microgravity monitoring technology ... Underground gas storage(UGS)are an important guarantee for national energy strategic reserves,but the monitoring of gas reservoir distribution has always faced challenges.Time-lapse microgravity monitoring technology can infer the movement patterns of substances based on density changes at different times.Simulation results indicate that this technology provides strong support for the dynamic monitoring of UGS.However,in the process of processing time-lapse microgravity data,it is necessary to use field separation technology to obtain the gravity anomaly of the target body.In order to obtain more accurate and stable field separation results,this paper utilizes the low-rank nature of the regional field and the sparsity of the local field in potential field data,and adopts a method based on Robust Principal Component Analysis(RPCA)for field separation processing.In the study of the gas injection process in the Y21 UGS,microgravity measurement and processing results show that the areas with enriched natural gas in the UGS are approximately annular and located in the structural high-point areas,which basically match the geological structural characteristics.Due to the presence of boundary faults,according to the results of time-lapse microgravity,it is inferred that groundwater moves towards the structural high-point areas,and natural gas mainly moves towards the southwest direction,providing the direction of underground fluid movement during the gas injection process in the UGS. 展开更多
关键词 Time-lapse microgravity monitoring RPCA UGS
在线阅读 下载PDF
Recent Progress of Microgravity Science Research in China 被引量:1
4
作者 ZHAO Jianfu DU Wangfang +12 位作者 KANG Qi LAN Ding LI Kai LI Weibin LIU Y C LUO Xinghong MIAO Jianyin WANG Qinggong WANG Shuangfeng ZHANG Tao ZHANG Xingwang ZHANG Yonghai ZHENG Huiqiong 《空间科学学报》 CAS CSCD 北大核心 2022年第4期772-785,共14页
Microgravity science is an important branch of space science.Its major objective is to study the laws of materials movement in microgravity,as well as to reveal the influence of gravity on the movement of materials in... Microgravity science is an important branch of space science.Its major objective is to study the laws of materials movement in microgravity,as well as to reveal the influence of gravity on the movement of materials in different gravity environments.Application researches relevant to these basic studies are also important contents of microgravity science.The advanced subjects,to some extent,reflect the ability of human beings to understand nature and the R&D level in this field in various countries.In this paper,the recent progress and the latest achievements of microgravity science and application researches in China aboard space platforms such as the Core Capsule Tianhe of the China Space Station(CSS)and satellites,as well as utilizing ground-based short-term microgravity facilities such as the Drop Tower Beijing and TUFF,are summarized,which cover the following sub-disciplines:microgravity fluid physics,microgravity combustion science,space materials science,space fundamental physics,space bio-technology,and relevant space technology applications. 展开更多
关键词 microgravity science China Space Station(CSS) Ground-based short-term microgravity platforms microgravity fluid physics microgravity combustion science Space materials science Space fundamental physics Space bio-technology
在线阅读 下载PDF
Static profiles of capillary surfaces in the annular space between two coaxial cones under microgravity
5
作者 Wen Li Di Wu +4 位作者 Yong Li Shuyang Chen Fenglin Ding Qi Kang Shangtong Chen 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 2024年第9期1-9,共9页
In space,surface tension plays an important role and liquid behaviour is much different from that on the ground.The static capillary surfaces in the annular space between two coaxial cones under microgravity are studi... In space,surface tension plays an important role and liquid behaviour is much different from that on the ground.The static capillary surfaces in the annular space between two coaxial cones under microgravity are studied in this paper.Theoretical expressions of the capillary surfaces are derived and a procedure is developed to predict the capillary surfaces based on the expressions.By considering various liquid contact angles,liquid volumes,and container geometries,numerical simulation with the volume of fluid method is carried out and microgravity experiments in Beijing Drop Tower are performed.The numerical and experimental results are in good agreement with theoretical predictions.Furthermore,capillary surfaces in an annulus with constant cross-section and in a spherical tank with a central column are also discussed.z3 will decrease obviously with the increase of the liquid contact angle.The theoretical models and findings will be great helpful for liquid management in space and the evaluation of propellant residue. 展开更多
关键词 Capillary surface Coaxial cones Drop tower microgravity Shooting method
原文传递
Simulated Microgravity can Promote the Apoptosis and Change Inflammatory State of Kupffer Cells
6
作者 Jun Ge Fei Liu +12 位作者 Hongyun Nie Yuan Yue Kaige Liu Haiguan Lin Hao Li Tao Zhang Hongfeng Yan Bingxin Xu Hongwei Sun Jianwu Yang Shaoyan Si Jinlian Zhou Yan Cui 《Biomedical and Environmental Sciences》 SCIE CAS CSCD 2024年第10期1117-1127,共11页
Objective In this study,we analyzed the transcriptome sequences of Kupffer cells exposed to simulated microgravity for 3 d and conducted biological experiments to determine how microgravity initiates apoptosis in Kupf... Objective In this study,we analyzed the transcriptome sequences of Kupffer cells exposed to simulated microgravity for 3 d and conducted biological experiments to determine how microgravity initiates apoptosis in Kupffer cells.Methods Rotary cell culture system was used to construct a simulated microgravity model.GO and KEGG analyses were conducted using the DAVID database.GSEA was performed using the R language.The STRING database was used to conduct PPI analysis.qPCR was used to measure the IL1B,TNFA,CASP3,CASP9,and BCL2L11 mRNA expressions.Western Blotting was performed to detect the level of proteins CASP3 and CASP 9.Flow cytometry was used to detect apoptosis and mitochondrial membrane cells.Transmission electron microscopy was used to detect changes in the ultrastructure of Kupffer cells.Results Transcriptome Sequencing indicated that simulated microgravity affected apoptosis and the inflammatory state of Kupffer cells.Simulated microgravity improved the CASP3,CASP9,and BCL2L11 expressions in Kupffer cells.Annexin-V/PI and JC-1 assays showed that simulated microgravity promoted apoptosis in Kupffer cells.Simulated microgravity causes M1 polarization in Kupffer cells.Conclusion Our study found that simulated microgravity facilitated the apoptosis of Kupffer cells through the mitochondrial pathway and activated Kupffer cells into M1 polarization,which can secrete TNFA to promote apoptosis. 展开更多
关键词 microgravity APOPTOSIS Kupffer cell POLARIZATION
暂未订购
SJ-10 Recoverable Satellite for Space Microgravity Experiments
7
作者 HU Wenrui KANG Qi +1 位作者 DUAN Enkui LONG Mian 《空间科学学报》 CAS CSCD 北大核心 2020年第5期648-654,共7页
SJ-10 is a recoverable scientific experiment satellite specially for the space experiments of microgravity physics science and space life science.This mission was officially started on 31 December 2012,and the satelli... SJ-10 is a recoverable scientific experiment satellite specially for the space experiments of microgravity physics science and space life science.This mission was officially started on 31 December 2012,and the satellite was launched on 6 April 2016.This paper introduces briefly the SJ-10 mission,the progress of SJ-10 engineering and the project constitution of sciences experiments onboard SJ-10.The purpose of this mission is to discover the law of matter movement and the rule of life activity that cannot be discovered on the ground due to the existence of gravity,and to know the acting mechanism on organisms by the complex radiation of space that cannot be simulated on the ground. 展开更多
关键词 microgravity physics Space life science Space microgravity experiments Recoverable satellite
在线阅读 下载PDF
Effects of spaceflight and simulated microgravity on microbial growth and secondary metabolism 被引量:10
8
作者 Bing Huang Dian-Geng Li +1 位作者 Ying Huang Chang-Ting Liu 《Military Medical Research》 CAS 2018年第4期335-349,共15页
Spaceflight and ground-based microgravity analog experiments have suggested that microgravity can affect microbial growth and metabolism. Although the effects of microgravity and its analogs on microorganisms have bee... Spaceflight and ground-based microgravity analog experiments have suggested that microgravity can affect microbial growth and metabolism. Although the effects of microgravity and its analogs on microorganisms have been studied for more than 50 years, plausible conflicting and diverse results have frequently been reported in different experiments, especially regarding microbial growth and secondary metabolism. Until now, only the responses of a few typical microbes to microgravity have been investigated; systematic studies of the genetic and phenotypic responses of these microorganisms to microgravity in space are still insufficient due to technological and logistical hurdles. The use of different test strains and secondary metabolites in these studies appears to have caused diverse and conflicting results. Moreover, subtle changes in the extracellular microenvironments around microbial cells play a key role in the diverse responses of microbial growth and secondary metabolisms. Therefore, "indirect" effects represent a reasonable pathway to explain the occurrence of these phenomena in microorganisms. This review summarizes current knowledge on the changes in microbial growth and secondary metabolism in response to spaceflight and its analogs and discusses the diverse and conflicting results. In addition, recommendations are given for future studies on the effects of microgravity in space on microbial growth and secondary metabolism. 展开更多
关键词 MICROBIAL growth SECONDARY METABOLISM SPACEFLIGHT microgravity Simulated microgravity microgravity ANALOGS
原文传递
Simulated Microgravity Conditions and Carbon Ion Irradiation Induce Spermatogenic Cell Apoptosis and Sperm DNA Damage 被引量:10
9
作者 LI Hong Yan ZHANG Hong +10 位作者 MIAO Guo Ying XIE Yi SUN Chao DI Cui Xia LIU Yang LIU Yuan Yuan ZHANG Xin MA Xiao Fei XU Shuai GAN Lu ZHOU Xin 《Biomedical and Environmental Sciences》 SCIE CAS CSCD 2013年第9期726-734,共9页
Objective To investigate the effect of simulated microgravity and carbon ion irradiation (CIR) on spermatogenic cell apoptosis and sperm DNA damage to the testis of male Swiss Webster mice, and assess the risk assoc... Objective To investigate the effect of simulated microgravity and carbon ion irradiation (CIR) on spermatogenic cell apoptosis and sperm DNA damage to the testis of male Swiss Webster mice, and assess the risk associated with space environment. Methods Sperm DNA damage indicated by DNA fragmentation index (DFI) and high DNA stainability (HDS) was measured by sperm chromatin structure assay (SCSA). Apoptosis of spermatogenic cells was detected by annexin V-propidium iodide assay. Bax (the expression levels of p53) and proliferating cell nuclear antigen (PCNAI were measured by immunoblotting; p53 and PCNA were located by immunohistology. Results HDS, DFI, apoptosis index, and the expression levels of p53 and Bax were detected to be significantly higher in the experimental groups (P〈0.05) compared with those in the control group, however, the PCNA expression varied to a certain degree, p53- and PCNA- positive expression were detected in each group, mainly in relation to the spermatogonic cells and spermatocytes. Conclusion The findings of the present study demonstrated that simulated microgravity and CIR can induce spermatogenic cell apoptosis and sperm DNA damage. Sperm DNA damage may be one of the underlying mechanisms behind male fertility decline under space environment. These findings may provide a scientific basis for protectint~ astronauts and space traveler's health and safety. 展开更多
关键词 Simulated microgravity Carbon ion irradiation Spermatogenic cells apoptosis Sperm DNAdamage
在线阅读 下载PDF
Mitochondrial Oxidative Stress Enhances Vasoconstriction by Altering Calcium Homeostasis in Cerebrovascular Smooth Muscle Cells under Simulated Microgravity 被引量:7
10
作者 LIU Zi Fan WANG Hai Ming +8 位作者 JIANG Min WANG Lin LIN Le Jian ZHAO Yun Zhang SHAO Jun Jie ZHOU Jing Jing XIE Man Jiang LI Xin ZHANG Ran 《Biomedical and Environmental Sciences》 SCIE CAS CSCD 2021年第3期203-212,共10页
Objective Exposure to microgravity results in postflight cardiovascular deconditioning in astronauts.Vascular oxidative stress injury and mitochondrial dysfunction have been reported during this process.To elucidate t... Objective Exposure to microgravity results in postflight cardiovascular deconditioning in astronauts.Vascular oxidative stress injury and mitochondrial dysfunction have been reported during this process.To elucidate the mechanism for this condition,we investigated whether mitochondrial oxidative stress regulates calcium homeostasis and vasoconstriction in hindlimb unweighted(HU)rat cerebral arteries.Methods Three-week HU was used to simulate microgravity in rats.The contractile responses to vasoconstrictors,mitochondrial fission/fusion,Ca^(2+) distribution,inositol 1,4,5-trisphosphate receptor(IP3 R)abundance,and the activities of voltage-gated K+channels(KV)and Ca^(2+)-activated K+channels(BKCa)were examined in rat cerebral vascular smooth muscle cells(VSMCs).Results An increase of cytoplasmic Ca^(2+) and a decrease of mitochondrial/sarcoplasmic reticulum(SR)Ca^(2+) were observed in HU rat cerebral VSMCs.The abundance of fusion proteins(mitofusin 1/2[MFN1/2])and fission proteins(dynamin-related protein 1[DRP1]and fission-mitochondrial 1[FIS1])was significantly downregulated and upregulated,respectively in HU rat cerebral VSMCs.The cerebrovascular contractile responses to vasoconstrictors were enhanced in HU rats compared to control rats,and IP3 R protein/mRNA levels were significantly upregulated.The current densities and open probabilities of KV and BKCa decreased and increased,respectively.Treatment with the mitochondrial-targeted antioxidant mitoTEMPO attenuated mitochondrial fission by upregulating MFN1/2 and downregulating DRP1/FIS1.It also decreased IP3 R expression levels and restored the activities of the KV and BKCa channels.MitoTEMPO restored the Ca^(2+) distribution in VSMCs and attenuated the enhanced vasoconstriction in HU rat cerebral arteries.Conclusion The present results suggest that mitochondrial oxidative stress enhances cerebral vasoconstriction by regulating calcium homeostasis during simulated microgravity. 展开更多
关键词 microgravity Mitochondrial oxidative stress Calcium homeostasis VASOCONSTRICTION
暂未订购
Effect of Simulated Microgravity and its Associated Mechanism on Pulmonary Circulation in Rats 被引量:7
11
作者 LI Tian Zhi YUAN Ming +8 位作者 CHEN Zhen Hong GUO Ying Hua KANG Chun Yan WANG Jing Yu LI Zhi Li WANG De Sheng WANG Hui Juan YUAN Min LIU Chang Ting 《Biomedical and Environmental Sciences》 SCIE CAS CSCD 2013年第2期118-127,共10页
Objective To study the effect of Simulated Microgravity and its Associated Mechanism on Pulmonary Circulation in Rats. Methods Rat tail-suspension model was used to simulate the physiological effects of microgravity a... Objective To study the effect of Simulated Microgravity and its Associated Mechanism on Pulmonary Circulation in Rats. Methods Rat tail-suspension model was used to simulate the physiological effects of microgravity and changes in pulmonary blood vessel morphology, pulmonary arterial and venous blood pressure, pulmonary vascular resistance, pulmonary vasomotoricity, as well as the regulation of pulmonary circulation by cytokines produced and released by the lung of rats were measured. Results The walls of pulmonary blood vessels of rats were thickened, and the pulmonary artery was reconstructed with increased pulmonary vascular resistance. The pulmonary blood vessels of rats became more prone to dilation as contractions increased. Rat epithelial Adrenomedulin gene transcription and protein expression were upregulated. The level of basic fibroblast growth Factor of rat was also elevated. Conclusion Findings from the present study on rats revealed that the microgravity can affect pulmonary blood vessel structure, pulmonary arterial pressure, and pulmonary blood vessel self-regulation and cytokine production. 展开更多
关键词 RAT Simulated microgravity Changes in pulmonary circulation Regulations of pulmonarycirculation
暂未订购
Differentiation of Mesenchymal Stem Cells towards a Nucleus Pulposus-like Phenotype Utilizing Simulated Microgravity In Vitro 被引量:9
12
作者 罗伟 熊伟 +3 位作者 邱敏 吕永威 李勇 李锋 《Journal of Huazhong University of Science and Technology(Medical Sciences)》 SCIE CAS 2011年第2期199-203,共5页
Mesenchymal stem cells (MSCs) were induced into a nucleus pulposus-like phenotype utilizing simulated microgravity in vitro in order to establish a new cell-based tissue engineering treatment for intervertebral disc... Mesenchymal stem cells (MSCs) were induced into a nucleus pulposus-like phenotype utilizing simulated microgravity in vitro in order to establish a new cell-based tissue engineering treatment for intervertebral disc degeneration. For induction of a nucleus pulposus-like phenotype, MSCs were cultured in simulated microgravity in a chemically defined medium supplemented with 0 (experimental group) and 10 ng/mL (positive control group) of transforming growth factor β1 (TGF-β1). MSCs cultured under conventional condition without TGF-β1 served as blank control group. On the day 3 of culture, cellular proliferation was determined by WST-8 assay. Differentiation markers were evaluated by histology and reverse transcriptase-polymerase chain reaction (RT-PCR). TGF-β1 slightly promoted the proliferation of MSCs. The collagen and proteoglycans were detected in both groups after culture for 7 days. The accumulation of proteoglycans was markedly increased. The RT-PCR revealed that the gene expression of Sox-9, aggrecan and type Ⅱ collagen, which were chondrocyte specific, was increased in MSCs cultured under simulated microgravity for 3 days. The ratio of proteoglycans/collagen in blank control group was 3.4-fold higher than positive control group, which denoted a nucleus pulposus-like phenotype differentiation. Independent, spontaneous differentiation of MSCs towards a nucleus pulposus-like phenotype in simulated microgravity occurred without addition of any external bioactive stimulators, namely factors from TGF-β family, which were previously considered necessary. 展开更多
关键词 mesenchymal stem cells simulated microgravity cell differentiation transforming growth factor β1
暂未订购
Progress on Microgravity Sciences in China 被引量:5
13
作者 LIU Qiusheng NIE Yuxin FENG Meifu HU Wenrui 《空间科学学报》 CAS CSCD 北大核心 2006年第z1期150-159,共10页
The main progress of the research activities on microgravity fluid physics, combustion, biotechnology research and fundamental Physics in China are briefly summarized in the present paper. The major space missions and... The main progress of the research activities on microgravity fluid physics, combustion, biotechnology research and fundamental Physics in China are briefly summarized in the present paper. The major space missions and experimental results obtained on board the Chinese recoverable/nonrecoverable satellites and the Chinese manned spaceship named "Shen Zhou" are presented summarily. The recent main activities of the ground-based studies in China are introduced in brief. 展开更多
关键词 microgravity sciences Fluid physics Combustion FUNDAMENTAL physics BIOTECHNOLOGY
在线阅读 下载PDF
The Impacts of Simulated Microgravity on Rat Brain Depended on Durations and Regions 被引量:4
14
作者 CHEN Bo ZHANG Yu Shi +3 位作者 LI George CHO Jun-Lae DENG Yu Lin LI Yu Juan 《Biomedical and Environmental Sciences》 SCIE CAS CSCD 2019年第7期496-507,共12页
Objective To explore the dynamic impacts of simulated microgravity(SM) on different vital brain regions of rats. Methods Microgravity was simulated for 7 and 21 days, respectively, using the tail-suspension rat model.... Objective To explore the dynamic impacts of simulated microgravity(SM) on different vital brain regions of rats. Methods Microgravity was simulated for 7 and 21 days, respectively, using the tail-suspension rat model. Histomorphology, oxidative stress, inflammatory cytokines and the expression of some key proteins were determined in hippocampus, cerebral cortex and striatum. Results 21-day SM decreased brain derived neurotrophic factor and induced neuron atrophy in the cerebral cortex. Strong oxidative stress was triggered at day 7 and the oxidative status returned to physiological level at day 21. Inflammatory cytokines were gradually suppressed and in striatum, the suppression was regulated partially through c-Jun/c-Fos. Conclusion The results revealed that the significant impacts of SM on rat brain tissue depended on durations and regions, which might help to understand the health risk and to prevent brain damage for astronauts in space travel. 展开更多
关键词 microgravity Brain NEURON ATROPHY Oxidative stress INFLAMMATORY CYTOKINES
在线阅读 下载PDF
MICROGRAVITY EXPERIMENTS OF TWO-PHASE FLOW PATTERNS ABOARD MIR SPACE STATION 被引量:4
15
作者 赵建福 解京昌 +1 位作者 林海 胡文瑞 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 2001年第2期151-159,共9页
A first experimental study on two-phase how patterns at a long-term, steady microgravity condition was conducted on board the Russian Space Station 'MIR' in August 1999. Carbogal and air are used as the liquid... A first experimental study on two-phase how patterns at a long-term, steady microgravity condition was conducted on board the Russian Space Station 'MIR' in August 1999. Carbogal and air are used as the liquid and the gas phase, respectively. Bubble, slug, slug-annular transitional, and annular hows are observed. A new region of annular how with lower liquid superficial velocity is discovered, and the region of the slug-annular transitional flow is wider than that observed by experiments on board the parabolic aircraft. The main patterns are bubble, slug-annular transitional and annular flows based on the experiments on board MIR space station. Some influences on the two-phase how patterns in the present experiments are discussed. 展开更多
关键词 two-phase flow microgravity fluid physics space experiment
在线阅读 下载PDF
Bone Loss Induced by Simulated Microgravity,Ionizing Radiation and/or Ultradian Rhythms in the Hindlimbs of Rats 被引量:4
16
作者 ZHANG Ya Nan SHI Wen Gui +6 位作者 LI He HUA Jun Rui FENG Xiu WEI Wen Jun WANG Ju Fang HE Jin Peng LEI Su Wen 《Biomedical and Environmental Sciences》 SCIE CAS CSCD 2018年第2期126-135,共10页
Objective To better understand the pathological causes of bone loss in a space environment, including microgravity, ionizing radiation, and ultradian rhythms.Methods Sprague Dawley (SD) rats were randomly divided in... Objective To better understand the pathological causes of bone loss in a space environment, including microgravity, ionizing radiation, and ultradian rhythms.Methods Sprague Dawley (SD) rats were randomly divided into a baseline group, a control group, a hindlimb suspension group, a radiation group, a ultradian rhythms group and a combined-three-factor group. After four weeks of hindlimb suspension followed by X-ray exposure and/or ultradian rhythms, biomechanical properties, bone mineral density, histological analysis, microstructure parameters, and bone turnover markers were detected to evaluate bone loss in hindlimbs of rats.Results Simulated microgravity or combined-three factors treatment led to a significant decrease in the biomechanical properties of bones, reduction in bone mineral density, and deterioration of trabecular parameters. Ionizing radiation exposure also showed adverse impact while ultradian rhythms had no significant effect on these outcomes. Decrease in the concentration of the turnover markers bone alkaline phosphatase (bALP), osteocalcin (OCN), and tartrate-resistant acid phosphatase-5b (TRAP-Sb) in serum was in line with the changes in trabecular parameters.Conclusion Simulated microgravity is the main contributor of bone loss. Radiation also results in deleterious effects but ultradian rhythms has no significant effect. Combined-three factors treatment do not exacerbate bone loss when compared to simulated microgravity treatment alone. 展开更多
关键词 Bone loss microgravity RADIATION Ultradian rhythms
暂未订购
The study on the mechanical characteristics of articular cartilage in simulated microgravity 被引量:3
17
作者 Hai-Jun Niu Qing Wang +6 位作者 Yue-Xiang Wang Ang Li Lian-Wen Sun Yan Yan Fan Fan De-Yu Li Yu-Bo Fan 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 2012年第5期1488-1493,共6页
The microgravity environment of a long-term space flight may induce acute changes in an astronaut's musculo-skeletal systems. This study explores the effects of simulated microgravity on the mechanical characteristic... The microgravity environment of a long-term space flight may induce acute changes in an astronaut's musculo-skeletal systems. This study explores the effects of simulated microgravity on the mechanical characteristics of articular cartilage. Six rats underwent tail suspension for 14 days and six additional rats were kept under normal earth gravity as controls. Swelling strains were measured using high-frequency ultrasound in all cartilage samples subject to osmotic loading. Site-specific swelling strain data were used in a triphasic theoretical model of cartilage swelling to determine the uniaxial modulus of the cartilage solid matrix. No severe surface irregularities were found in the cartilage samples obtained from the control or tail-suspended groups. For the tail-suspended group, the thickness of the cartilage at a specified site, as determined by ultrasound echo, showed a minor decrease. The uniaxial modulus of articular cartilage at the specified site decreased significantly, from (6.31 ± 3.37) MPa to (5.05 ± 2.98)MPa (p 〈 0.05). The histology- stained image of a cartilage sample also showed a reduced number of chondrocytes and decreased degree of matrix staining. These results demonstrated that the 14 d simulated microgravity induced significant effects on the mechanical characteristics of articular cartilage. This study is the first attempt to explore the effects of simulated microgravity on the mechanical characteristics of articular cartilage using an osmotic loading method and a triphasic model. The conclusions may provide reference information for manned space flights and a better understanding of the effects of microgravity on the skeletal system. 展开更多
关键词 Simulated microgravity Articular cartilage.Triphasic theory High-frequency ultrasound Uniaxialmodulus
暂未订购
TWO-PHASE FLOW PATTERNS IN A 90° BEND AT MICROGRAVITY 被引量:2
18
作者 赵建福 K.S.GABRIEL 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 2004年第3期206-211,共6页
Bends are widely used in pipelines carrying single-and two-phase fluids in both ground and space applications.In particular,they play more important role in space applications due to the extreme spatial constraints.In... Bends are widely used in pipelines carrying single-and two-phase fluids in both ground and space applications.In particular,they play more important role in space applications due to the extreme spatial constraints.In the present study,a set of experimental data of two-phase flow patterns and their transitions in a 90°bend with inner diameter of 12.7 mm and curvature radius of 76.5 mm at microgravity conditions are reported.Gas and liquid superficial velocities are found to range from (1.0~23.6)m/s for gas and(0.09~0.5)m/s for liquid,respectively.Three major flow patterns, namely slug,slug-annular transitional,and annular flows,are observed in this study.Focusing on the differences between flow patterns in bends and their counterparts in straight pipes,detailed analyses of their characteristics are made.The transitions between adjoining flow patterns are found to be more or less the same as those in straight pipes,and can be predicted using Weber number models satisfactorily. The reasons for such agreement are carefully examined. 展开更多
关键词 two-phase flow flow patterns 90°bend microgravity
在线阅读 下载PDF
Experimental and numerical study on energy dissipation in freely cooling granular gases under microgravity 被引量:2
19
作者 Wen-Guang Wang Mei-Ying Hotl +2 位作者 Ke Chen Pei-Dong Yu Matthias Sperl 《Chinese Physics B》 SCIE EI CAS CSCD 2018年第8期324-330,共7页
Energy dissipation is one of the most important properties of granular gas, which makes Its behavior dltterent trom that of molecular gas. In this work we report our investigations on the freely-cooling evolution of g... Energy dissipation is one of the most important properties of granular gas, which makes Its behavior dltterent trom that of molecular gas. In this work we report our investigations on the freely-cooling evolution of granular gas under microgravity in a drop tower experiment, and also conduct the molecular dynamics (MD) simulation for comparison. While our experimental and simulation results support Haff's law that the kinetic energy dissipates with time t as E(t) (1 + t/v) 2, we modify ~" by taking into account the friction dissipation during collisions, and study the effects of number density and particle size on the collision frequency. From the standard deviation of the measured velocity distributions we also verify the energy dissipation law, which is in agreement with Haff's kinetic energy dissipation. 展开更多
关键词 granular gas freely coolin microgravity
原文传递
Advances of Microgravity Sciences 被引量:1
20
作者 KANG Qi LONG Mian +4 位作者 ZHANG Yuanzhong DUAN Li ZHAO Jianfu XU Shenhua WANG Shangfeng 《空间科学学报》 CAS CSCD 北大核心 2014年第5期733-739,共7页
Advances of microgravity sciences in China are introduced. The research works include ground-based study and space experiments. In the recent years, the main means still are theoretical analysis, numerical simulation,... Advances of microgravity sciences in China are introduced. The research works include ground-based study and space experiments. In the recent years, the main means still are theoretical analysis, numerical simulation, ground-based experiment, and short-time microgravity experiments of drop tower. Besides, many space experiment projects are arranged. SJ-10 recoverable satellite will carry out 19 scientific experiment projects. Nine of them are for microgravity Sciences. The other ways for space microgravity experiment are with the help of Chinese Shenzhou spacecraft, Chinese Tiangong space laboratory, and Chinese space station in the near future. The Chinese space station will become main platform of Chinese microgravity sciences experiment in space. 展开更多
关键词 microgravity SCIENCES microgravity fluid PHYSICS microgravity combustion FUNDAMENTAL PHYSICS in SPACE SPACE experiment PROJECTS
在线阅读 下载PDF
上一页 1 2 9 下一页 到第
使用帮助 返回顶部