Surface engineering plays a crucial role in improving the performance of high energy materials,and polydopamine(PDA)is widely used in the field of energetic materials for surface modification and functionalization.In ...Surface engineering plays a crucial role in improving the performance of high energy materials,and polydopamine(PDA)is widely used in the field of energetic materials for surface modification and functionalization.In order to obtain high-quality HMX@PDA-based PBX explosives with high sphericity and a narrow particle size distribution,composite microspheres were prepared using co-axial droplet microfluidic technology.The formation mechanism,thermal behavior,mechanical sensitivity,electrostatic spark sensitivity,compressive strength,and combustion performance of the microspheres were investigated.The results show that PDA can effectively enhance the interfacial interaction between the explosive particles and the binder under the synergistic effect of chemical bonds and the physical"mechanical interlocking"structure.Interface reinforcement causes the thermal decomposition temperature of the sample microspheres to move to a higher temperature,with the sensitivity to impact,friction,and electrostatic sparks(for S-1)increasing by 12.5%,31.3%,and 81.5%respectively,and the compressive strength also increased by 30.7%,effectively enhancing the safety performance of the microspheres.Therefore,this study provides an effective and universal strategy for preparing high-quality functional explosives,and also provides some reference for the safe use of energetic materials in practical applications.展开更多
Point-of-care testing(POCT)refers to a category of diagnostic tests that are performed at or near to the site of the patients(also called bedside testing)and is capable of obtaining accurate results in a short time by...Point-of-care testing(POCT)refers to a category of diagnostic tests that are performed at or near to the site of the patients(also called bedside testing)and is capable of obtaining accurate results in a short time by using portable diagnostic devices,avoiding sending samples to the medical laboratories.It has been extensively explored for diagnosing and monitoring patients’diseases and health conditions with the assistance of development in biochemistry and microfluidics.Microfluidic paper-based analytical devices(μPADs)have gained dramatic popularity in POCT because of their simplicity,user-friendly,fast and accurate result reading and low cost.SeveralμPADs have been successfully commercialized and received excellent feedback during the past several decades.This review briefly discusses the main types ofμPADs,preparation methods and their detection principles,followed by a few representative examples.The future perspectives of the development inμPADs are also provided.展开更多
Liposomes serve as critical carriers for drugs and vaccines,with their biological effects influenced by their size.The microfluidic method,renowned for its precise control,reproducibility,and scalability,has been wide...Liposomes serve as critical carriers for drugs and vaccines,with their biological effects influenced by their size.The microfluidic method,renowned for its precise control,reproducibility,and scalability,has been widely employed for liposome preparation.Although some studies have explored factors affecting liposomal size in microfluidic processes,most focus on small-sized liposomes,predominantly through experimental data analysis.However,the production of larger liposomes,which are equally significant,remains underexplored.In this work,we thoroughly investigate multiple variables influencing liposome size during microfluidic preparation and develop a machine learning(ML)model capable of accurately predicting liposomal size.Experimental validation was conducted using a staggered herringbone micromixer(SHM)chip.Our findings reveal that most investigated variables significantly influence liposomal size,often interrelating in complex ways.We evaluated the predictive performance of several widely-used ML algorithms,including ensemble methods,through cross-validation(CV)for both lipo-some size and polydispersity index(PDI).A standalone dataset was experimentally validated to assess the accuracy of the ML predictions,with results indicating that ensemble algorithms provided the most reliable predictions.Specifically,gradient boosting was selected for size prediction,while random forest was employed for PDI prediction.We successfully produced uniform large(600 nm)and small(100 nm)liposomes using the optimised experimental conditions derived from the ML models.In conclusion,this study presents a robust methodology that enables precise control over liposome size distribution,of-fering valuable insights for medicinal research applications.展开更多
Objective Cerebral palsy(CP)is a prevalent neurodevelopmental disorder acquired during the perinatal period,with periventricular white matter injury(PWMI)serving as its primary pathological hallmark.PWMI is characteri...Objective Cerebral palsy(CP)is a prevalent neurodevelopmental disorder acquired during the perinatal period,with periventricular white matter injury(PWMI)serving as its primary pathological hallmark.PWMI is characterized by the loss of oligodendrocytes(OLs)and the disintegration of myelin sheaths,leading to impaired neural connectivity and motor dysfunction.Neural stem cells(NSCs)represent a promising regenerative source for replenishing lost OLs;however,conventional twodimensional(2D)in vitro culture systems lack the three-dimensional(3D)physiological microenvironment.Microfluidic chip technology has emerged as a powerful tool to overcome this limitation by enabling precise spatial and temporal control over 3D microenvironmental conditions,including the establishment of stable concentration gradients of bioactive molecules.Catalpol,an iridoid glycoside derived from traditional medicinal plants,exhibits dual antioxidant and anti-apoptotic properties.Despite its therapeutic potential,the capacity of catalpol to drive NSC differentiation toward OLs under biomimetic 3D conditions,as well as the underlying molecular mechanisms,remains poorly understood.This study aims to develop a microfluidic-based 3D biomimetic platform to systematically investigate the concentration-dependent effects of catalpol on promoting NSCs-to-OLs differentiation and to elucidate the role of the caveolin-1(Cav-1)signaling pathway in this process.Methods We developed a novel multiplexed microfluidic device featuring parallel microchannels with integrated gradient generators capable of establishing and maintaining precise linear concentration gradients(0-3 g/L catalpol)across 3D NSCs cultures.This platform facilitated the continuous perfusion culture of NSC-derived 3D spheroids,mimicking the dynamic in vivo microenvironment.Real-time cell viability was assessed using Calcein-AM/propidium iodide(PI)dual staining,with fluorescence imaging quantifying live/dead cell ratios.Oligodendrocyte differentiation was evaluated through quantitative reverse transcription polymerase chain reaction(qRT-PCR)for MBP and SOX10 gene expression,complemented by immunofluorescence staining to visualize corresponding protein changes.To dissect the molecular mechanism,the Cav-1-specific pharmacological inhibitor methyl‑β‑cyclodextrin(MCD)was employed to perturb the pathway,and its effects on differentiation markers were analyzed.Results Catalpol demonstrated excellent biocompatibility,with cell viability exceeding 96%across the entire tested concentration range(0-3 g/L),confirming its non-cytotoxic nature.At the optimal concentration of 0-3 g/L,catalpol significantly upregulated both MBP and SOX10 expression(P<0.05,P<0.01),indicating robust promotion of oligodendroglial differentiation.Intriguingly,Cav-1 mRNA expression was progressively downregulated during NSC differentiation into OLs.Further inhibition of Cav-1 with MCD further enhanced this effect,leading to a statistically significant increase in OL-specific gene expression(P<0.05,P<0.01),suggesting Cav-1 acts as a negative regulator of OLs differentiation.Conclusion This study established an integrated microfluidic gradient chip-3D NSC spheroid culture system,which combines the advantages of precise chemical gradient control with physiologically relevant 3D cell culture.The findings demonstrate that 3 g/L catalpol effectively suppresses Cav-1 signaling to drive NSC differentiation into functional OLs.This work not only provides novel insights into the Cav-1-dependent mechanisms of myelination but also delivers a scalable technological platform for future research on remyelination therapies,with potential applications in cerebral palsy and other white matter disorders.The platform’s modular design permits adaptation for screening other neurogenic compounds or investigating additional signaling pathways involved in OLs maturation.展开更多
Combining deep-learning image inpainting algorithms with the microfluidic technology,the paper proposes a method to achieve dynamic stealth and camouflage by using a microfluidic vision camouflage system simulating th...Combining deep-learning image inpainting algorithms with the microfluidic technology,the paper proposes a method to achieve dynamic stealth and camouflage by using a microfluidic vision camouflage system simulating the chameleon skin.The basic principle is to perceive color changes in the external environment and collect ambient image information,and then utilize the image inpainting algorithm to adjust the control signals of the microfluidic system in real time.The detailed working principle of the microfluidic vision camouflage system is presented,and the mechanism of generating control signals for the system through deep-learning image inpainting algorithms and image-processing techniques is elucidated.The camouflage effect of the chameleon skin is analyzed and evaluated using color similarity.Results indicate that the camouflaged images are consistent with the background environment,thereby improving the target’s stealth and maneuvering characteristics.The camouflage technology developed in the paper based on the microfluidic vision camouflage system can be applied to several situations,such as military camouflage uniforms,robot skins,and weapon equipment.展开更多
Paired electrosynthesis has received considerable attention as a consequence of simultaneously synthesizing target products at both cathode and anode,whereas the related synthetic efficiency in batch reactors is still...Paired electrosynthesis has received considerable attention as a consequence of simultaneously synthesizing target products at both cathode and anode,whereas the related synthetic efficiency in batch reactors is still undesirable under certain circumstances.Encouragingly,laminar microfluidic reactor offers prospective options that possess controllable flow characteristics such as enhanced mass transport,precise laminar flow control and the ability to expand production scale progressively.In this comprehensive review,the underlying fundamentals of the paired electrosynthesis are initially summarized,followed by categorizing the paired electrosynthesis including parallel paired electrosynthesis,divergent paired electrosynthesis,convergent paired electrosynthesis,sequential paired electrosynthesis and linear paired electrosynthesis.Thereafter,a holistic overview of microfluidic reactor equipment,integral fundamentals and research methodology as well as channel extension and scale-up strategies is proposed.The established fundamentals and evaluated metrics further inspired the applications of microfluidic reactors in paired electrosynthesis.This work stimulated the overwhelming investigation of mechanism discovery,material screening strategies,and device assemblies.展开更多
There are limited quantitative studies on condensate gas using microfluidics under high-pressure and high-temperature conditions.This study employed microfluidics chips based on real porous media structures to conduct...There are limited quantitative studies on condensate gas using microfluidics under high-pressure and high-temperature conditions.This study employed microfluidics chips based on real porous media structures to conduct constant volume depletion experiments and investigate the microscopic mechanisms of condensate gas recovery.The aim of the experiments was to reveal the phase-behavior differences between bulk-phase gas and gas contained in porous media.The results revealed that condensate oil recovery in microfluidics experiments was higher than that in PVT cell tests,and nonuniform condensation and evaporation were exclusively observed in the microfluidics experiments.Furthermore,lower pore connectivity resulted in higher depletion recovery,while more developed fractures led to reduced recovery.Specifically,the chip with fewer fractures achieved the highest recovery(71.15%),whereas the highly fractured chip exhibited the lowest recovery(56.11%).These findings demonstrate that oil saturation during the process of constant volume depletion(CVD)of gas condensate within porous media is lower than that observed in the PVT cell,thus providing experimental evidence for optimizing condensate gas development in field applications.展开更多
The real-time screening of biomolecules and single cells in biochips is extremely important for disease prediction and diagnosis,cellular analysis,and life science research.Barcode biochip technology,which is integrat...The real-time screening of biomolecules and single cells in biochips is extremely important for disease prediction and diagnosis,cellular analysis,and life science research.Barcode biochip technology,which is integrated with microfluidics,typically comprises barcode array,sample loading,and reaction unit array chips.Here,we present a review of microfluidics barcode biochip analytical approaches for the high-throughput screening of biomolecules and single cells,including protein biomarkers,microRNA(miRNA),circulating tumor DNA(ctDNA),single-cell secreted proteins,single-cell exosomes,and cell interactions.We begin with an overview of current high-throughput detection and analysis approaches.Following this,we outline recent improvements in microfluidic devices for biomolecule and single-cell detection,highlighting the benefits and limitations of these devices.This paper focuses on the research and development of microfluidic barcode biochips,covering their self-assembly substrate materials and their specific applications with biomolecules and single cells.Looking forward,we explore the prospects and challenges of this technology,with the aim of contributing toward the use of microfluidic barcode detection biochips in medical diagnostics and therapies,and their large-scale commercialization.展开更多
Energetic materials,characterized by their capacity to store and release substantial energy,hold pivotal significance in some fields,particularly in defense applications.Microfluidics,with its ability to manipulate fl...Energetic materials,characterized by their capacity to store and release substantial energy,hold pivotal significance in some fields,particularly in defense applications.Microfluidics,with its ability to manipulate fluids and facilitate droplet formation at the microscale,enables precise control of chemical reactions.Recent scholarly endeavors have increasingly harnessed microfluidic reactors in the realm of energetic materials,yielding morphologically controllable particles with enhanced uniformity and explosive efficacy.However,crucial insights into microfluidic-based methodologies are dispersed across various publications,necessitating a systematic compilation.Accordingly,this review addresses this gap by concentrating on the synthesis of energetic materials through microfluidics.Specifically,the methods based on micro-mixing and droplets in the previous papers are summarized and the strategies to control the critical parameters within chemical reactions are discussed in detail.Then,the comparison in terms of advantages and disadvantages is attempted.As demonstrated in the last section regarding perspectives,challenges such as clogging,dead zones,and suboptimal production yields are non-ignoble in the promising fields and they might be addressed by integrating sound,optics,or electrical energy to meet heightened requirements.This comprehensive overview aims to consolidate and analyze the diverse array of microfluidic approaches in energetic material synthesis,offering valuable insights for future research directions.展开更多
Nickel(II)as one of the primary categories of heavy metals can lead to serious health problems if achieving the critical levels in the water.Thus,it is vital to propose a stable,reliable,and economical approach for de...Nickel(II)as one of the primary categories of heavy metals can lead to serious health problems if achieving the critical levels in the water.Thus,it is vital to propose a stable,reliable,and economical approach for detecting Ni ions.The microfluidic paper-based analytical devices(µPADs)are potential candidates for the detection of water quality parameters including pH,heavy ions,nitrite and so on.However,it suffers from a huge error caused by the environment and artificial mistakes.In this study,we proposed an improved technique route to increase the stability and reliability of microfluidic paper-based analytical devices.The main technique points include a stable light source,a matched camera,improved reliability of the devices,and effective calculated methods.Finally,we established 15 standard curves that could be used to detect nickel ions and obtained uniform colorimetric results with reliability and repeatability.With those improvements,the relative errors for the five types of real water samples from the Zhongshan industrial parks were reduced to 0.26%,14.78%,24.20%,50.29%and 3.53%,respectively.These results were conducive to exploring this technique for the detection of nickel ions in wastewater from the Zhongshan industrial parks.The results demonstrated that the above technique route is promising for the detection of other heavy metal ions in industrial effluent.展开更多
Bubble breakup at T-junction microchannels is the basis for the numbering-up of gas−liquid two-phase flow in parallelized microchannels. This article presents the bubble breakup in viscous liquids at a microfluidic T-...Bubble breakup at T-junction microchannels is the basis for the numbering-up of gas−liquid two-phase flow in parallelized microchannels. This article presents the bubble breakup in viscous liquids at a microfluidic T-junction. Nitrogen is used as the gas phase, and glycerol-water mixtures with different mass concentration of glycerol as the liquid phase. The evolution of the gas−liquid interface during bubble breakup at the microfluidic T-junction is explored. The thinning of the bubble neck includes the squeezing stage and the rapid pinch-off stage. In the squeezing stage, the power law relation is found between the minimum width of the bubble neck and the time, and the values of exponents α1 and α2 are influenced by the viscous force. The values of pre-factors m_(1) and m_(2) are negatively correlated with the capillary number. In the rapid pinch-off stage, the thinning of the bubble neck is predominated by the surface tension, and the minimum width of the bubble neck can be scaled with the remaining time as power-law. The propagation of the bubble tip can be characterized by the power law between the movement distance and the time, with decreasing exponent as increased liquid viscosity.展开更多
Cleat serves as the primary flow pathway for coalbed methane(CBM)and water.However,few studies consider the impact of local contact on two-phase flow within cleats.A visual generalized model of endogenous cleats was c...Cleat serves as the primary flow pathway for coalbed methane(CBM)and water.However,few studies consider the impact of local contact on two-phase flow within cleats.A visual generalized model of endogenous cleats was constructed based on microfluidics.A microscopic and mesoscopic observation technique was proposed to simultaneously capture gas-liquid interface morphology of pores and throat and the two-phase flow characteristics in entire cleat system.The local contact characteristics of cleats reduced absolute permeability,which resulted in a sharp increase in the starting pressure.The reduced gas flow capacity narrowed the co-infiltration area and decreased water saturation at the isotonic point in a hydrophilic environment.The increased local contact area of cleats weakened gas phase flow capacity and narrowed the co-infiltration area.Jumping events occurred in methane-water flow due to altered porosity caused by local contact in cleats.The distribution of residual phases changed the jumping direction on the micro-scale as well as the dominant channel on the mesoscale.Besides,jumping events caused additional energy dissipation,which was ignored in traditional two-phase flow models.This might contribute to the overestimation of relative permeability.The work provides new methods and insights for investigating unsaturated flow in complex porous media.展开更多
Due to the rapid development and potential applications of iron(Ⅲ)-alginate(Fe-Alg)microgels in biomedical as well as environmental engineering,this study explores the preparation and characterization of spherical Fe...Due to the rapid development and potential applications of iron(Ⅲ)-alginate(Fe-Alg)microgels in biomedical as well as environmental engineering,this study explores the preparation and characterization of spherical Fe-Alg microgels using droplet microfluidics combined with an external ionic crosslinking method.This study focused on the role of Fe^(3+)and examined its effects on the physical/chemical properties of microgels under different ionic conditions and reduced or oxidized states.The pH-dependent release behavior of Fe^(3+)from these microgels demonstrates their potential biomedical and environmental applications.Furthermore,the microgels can exhibit magnetism simply by utilizing in situ oxidation,which can be further used for targeted drug delivery and magnetic separation technologies.展开更多
Foods are often contaminated by multiple foodborne pathogens,which threatens human health.In this work,we developed a microfluidic biosensor for multiplex immunoassay of foodborne bacteria with agitation driven by pro...Foods are often contaminated by multiple foodborne pathogens,which threatens human health.In this work,we developed a microfluidic biosensor for multiplex immunoassay of foodborne bacteria with agitation driven by programmed audio signals.This agitation,powered by the vibration of a speaker cone during music playing,accelerated the mass transport in the incubation process to form bacterial complexes within 10 min.Immunoassay reagents of the two target bacteria(Escherichia coli O157:H7 and Salmonella typhimurium)were preloaded into the corresponding fore-vacuum storage chamber on the chip,and released to participate in the subsequent immune analysis process by piercing the chambers.All the detection processes were integrated into a single microfluidic chip and controlled by a smartphone through Bluetooth.Under selected conditions,wide linear ranges and low limits of detection(LODs<2CFU/m L)were obtained,and real food samples were successfully determined within 30 min.This biosensing method can be extended to wide-ranging applications by loading different recognizing reagents.展开更多
Electrocatalytic nitrogen reduction reaction(NRR)is considered as a promising candidate to achieve ammonia synthesis because of clean electric energy,moderate reaction condition,safe operating process and harmless by-...Electrocatalytic nitrogen reduction reaction(NRR)is considered as a promising candidate to achieve ammonia synthesis because of clean electric energy,moderate reaction condition,safe operating process and harmless by-products.However,the chemical inertness of nitrogen and poor activated capacity on catalyst surface usually produce low ammonia yield and faradic efficiency.Herein,the microfluidic technology is proposed to efficiently fabricate enriched iridium nanodots/carbon architecture.Owing to in-situ co-precipitation reaction and microfluidic manipulation,the iridium nanodots/carbon nanomaterials possess small average size,uniform dispersion,high conductivity and abundant active sites,producing good proton activation and rapid electrons transmission and moderate adsorption/desorption capacity.As a result,the as-prepared iridium nanodots/carbon nanomaterials realize large ammonia yield of 28.73 μg h^(-1) cm^(-2) and faradic efficiency of 9.14%in KOH solution.Moreover,the high ammonia yield of 11.21 μg h^(-1) cm^(-2) and faradic efficiency of 24.30%are also achieved in H_(2)SO_(4) solution.The microfluidic method provides a reference for large-scale fabrication of nano-sized catalyst materials,which may accelerate the progress of electrocatalytic NRR in industrialization field.展开更多
In the last three decades,carbon dioxide(CO_(2)) emissions have shown a significant increase from various sources.To address this pressing issue,the importance of reducing CO_(2) emissions has grown,leading to increas...In the last three decades,carbon dioxide(CO_(2)) emissions have shown a significant increase from various sources.To address this pressing issue,the importance of reducing CO_(2) emissions has grown,leading to increased attention toward carbon capture,utilization,and storage strategies.Among these strategies,monodisperse microcapsules,produced by using droplet microfluidics,have emerged as promising tools for carbon capture,offering a potential solution to mitigate CO_(2) emissions.However,the limited yield of microcapsules due to the inherent low flow rate in droplet microfluidics remains a challenge.In this comprehensive review,the high-throughput production of carbon capture microcapsules using droplet microfluidics is focused on.Specifically,the detailed insights into microfluidic chip fabrication technologies,the microfluidic generation of emulsion droplets,along with the associated hydrodynamic considerations,and the generation of carbon capture microcapsules through droplet microfluidics are provided.This review highlights the substantial potential of droplet microfluidics as a promising technique for large-scale carbon capture microcapsule production,which could play a significant role in achieving carbon neutralization and emission reduction goals.展开更多
On-demand droplet sorting is extensively applied for the efficient manipulation and genome-wide analysis of individual cells.However,state-of-the-art microfluidic chips for droplet sorting still suffer from low sortin...On-demand droplet sorting is extensively applied for the efficient manipulation and genome-wide analysis of individual cells.However,state-of-the-art microfluidic chips for droplet sorting still suffer from low sorting speeds,sample loss,and labor-intensive preparation procedures.Here,we demonstrate the development of a novel microfluidic chip that integrates droplet generation,on-demand electrostatic droplet charging,and high-throughput sorting.The charging electrode is a copper wire buried above the nozzle of the microchannel,and the deflecting electrode is the phosphate buffered saline in the microchannel,which greatly simplifies the structure and fabrication process of the chip.Moreover,this chip is capable of high-frequency droplet generation and sorting,with a frequency of 11.757 kHz in the drop state.The chip completes the selective charging process via electrostatic induction during droplet generation.On-demand charged microdroplets can arbitrarilymove to specific exit channels in a three-dimensional(3D)-deflected electric field,which can be controlled according to user requirements,and the flux of droplet deflection is thereby significantly enhanced.Furthermore,a lossless modification strategy is presented to improve the accuracy of droplet deflection or harvest rate from 97.49% to 99.38% by monitoring the frequency of droplet generation in real time and feeding it back to the charging signal.This chip has great potential for quantitative processing and analysis of single cells for elucidating cell-to-cell variations.展开更多
High purity and ultrafine DAAF(u-DAAF)is an emerging insensitive charge in initiators.Although there are many ways to obtain u-DAAF,developing a preparation method with stable operation,accurate control,good quality c...High purity and ultrafine DAAF(u-DAAF)is an emerging insensitive charge in initiators.Although there are many ways to obtain u-DAAF,developing a preparation method with stable operation,accurate control,good quality consistency,equipment miniaturization,and minimum manpower is an inevitable requirement to adapt to the current social technology development trend.Here reported is the microfluidic preparation of u-DAAF with tunable particle size by a passive swirling microreactor.Under the guidance of recrystallization growth kinetics and mixing behavior of fluids in the swirling microreactor,the key parameters(liquid flow rate,explosive concentration and crystallization temperature)were screened and optimized through screening experiments.Under the condition that no surfactant is added and only experimental parameters are controlled,the particle size of recrystallized DAAF can be adjusted from 98 nm to 785 nm,and the corresponding specific surface area is 8.45 m^(2)·g^(-1)to 1.33 m^(2)·g^(-1).In addition,the preparation method has good batch stability,high yield(90.8%-92.6%)and high purity(99.0%-99.4%),indicating a high practical application potential.Electric explosion derived flyer initiation tests demonstrate that the u-DAAF shows an initiation sensitivity much lower than that of the raw DAAF,and comparable to that of the refined DAAF by conventional spraying crystallization method.This study provides an efficient method to fabricate u-DAAF with narrow particle size distribution and high reproducibility as well as a theoretical reference for fabrication of other ultrafine explosives.展开更多
Microfluidic devices are composed of microchannels with a diameter ranging from ten to a few hundred micrometers.Thus,quite a small(10-9–10-18l)amount of liquid can be manipulated by such a precise system.In the past...Microfluidic devices are composed of microchannels with a diameter ranging from ten to a few hundred micrometers.Thus,quite a small(10-9–10-18l)amount of liquid can be manipulated by such a precise system.In the past three decades,significant progress in materials science,microfabrication,and various applications has boosted the development of promising functional microfluidic devices.In this review,the recent progress on novel microfluidic devices with various functions and applications is presented.First,the theory and numerical methods for studying the performance of microfluidic devices are briefly introduced.Then,materials and fabrication methods of functional microfluidic devices are summarized.Next,the recent significant advances in applications of microfluidic devices are highlighted,including heat sinks,clean water production,chemical reactions,sensors,biomedicine,capillaric circuits,wearable electronic devices,and microrobotics.Finally,perspectives on the challenges and future developments of functional microfluidic devices are presented.This review aims to inspire researchers from various fields engineering,materials,chemistry,mathematics,physics,and more—to collaborate and drive forward the development and applications of functional microfluidic devices,specifically for achieving carbon neutrality.展开更多
In this study,the permeability of structured porous media with the microfluidic model is experimentally and numerically determined,and compared with the classic Kozeny-Carman(KC)equation.The Reynolds number(Re)varies ...In this study,the permeability of structured porous media with the microfluidic model is experimentally and numerically determined,and compared with the classic Kozeny-Carman(KC)equation.The Reynolds number(Re)varies from 0.83 to 142.98.It is observed that the threshold of the Reynolds number is 1.When Re is below the threshold,the permeability is independent of the Reynolds number.When Re is over this threshold,the viscous force plays a dominant role and the permeability decreases with the Reynolds number increment.The permeability also rises with the diameter increment.With the same micropillar diameter,the microfluidic model with a triangular pillar arrangement yields 4.5%–7.4%lower permeability than that with a square pillar arrangement.The tortuosity obtained by numerical simulation in the triangular-arrangement model is 5.1%–7.9%higher than that in the square-arrangement model.Based on the arrangement of micropillars,a tortuosity model is proposed for quasi-two-dimensional microfluidic models.There is an inverse relationship between permeability and tortuosity.In addition,the permeability generated by numerical simulation is consistent with that obtained experimentally.However,the permeability estimated by the classic KC equation roughly agrees with experimental results when the porosity is between 0.50 and 0.60.A model proposed in this study is suitable for predicting the permeability of microfluidic models.Furthermore,anisotropy induced by the tilt angle(0°–90°)of a model rectangular micropillar arrangement causes preferential flow and decreases the effective porosity.When the tilt angle increases from 0°to 90°,the tortuosity declines from 2.04 to 1.03,causing the permeability to rise from 1.0×10^(-11)to 4.3×10^(-11)m^(2).展开更多
基金supported by the National Natural Science Foundation of China(Grant No.22005275).
文摘Surface engineering plays a crucial role in improving the performance of high energy materials,and polydopamine(PDA)is widely used in the field of energetic materials for surface modification and functionalization.In order to obtain high-quality HMX@PDA-based PBX explosives with high sphericity and a narrow particle size distribution,composite microspheres were prepared using co-axial droplet microfluidic technology.The formation mechanism,thermal behavior,mechanical sensitivity,electrostatic spark sensitivity,compressive strength,and combustion performance of the microspheres were investigated.The results show that PDA can effectively enhance the interfacial interaction between the explosive particles and the binder under the synergistic effect of chemical bonds and the physical"mechanical interlocking"structure.Interface reinforcement causes the thermal decomposition temperature of the sample microspheres to move to a higher temperature,with the sensitivity to impact,friction,and electrostatic sparks(for S-1)increasing by 12.5%,31.3%,and 81.5%respectively,and the compressive strength also increased by 30.7%,effectively enhancing the safety performance of the microspheres.Therefore,this study provides an effective and universal strategy for preparing high-quality functional explosives,and also provides some reference for the safe use of energetic materials in practical applications.
文摘Point-of-care testing(POCT)refers to a category of diagnostic tests that are performed at or near to the site of the patients(also called bedside testing)and is capable of obtaining accurate results in a short time by using portable diagnostic devices,avoiding sending samples to the medical laboratories.It has been extensively explored for diagnosing and monitoring patients’diseases and health conditions with the assistance of development in biochemistry and microfluidics.Microfluidic paper-based analytical devices(μPADs)have gained dramatic popularity in POCT because of their simplicity,user-friendly,fast and accurate result reading and low cost.SeveralμPADs have been successfully commercialized and received excellent feedback during the past several decades.This review briefly discusses the main types ofμPADs,preparation methods and their detection principles,followed by a few representative examples.The future perspectives of the development inμPADs are also provided.
基金supported by the National Key Research and Development Plan of the Ministry of Science and Technology,China(Grant No.:2022YFE0125300)the National Natural Science Foundation of China(Grant No:81690262)+2 种基金the National Science and Technology Major Project,China(Grant No.:2017ZX09201004-021)the Open Project of National facility for Translational Medicine(Shanghai),China(Grant No.:TMSK-2021-104)Shanghai Jiao Tong University STAR Grant,China(Grant Nos.:YG2022ZD024 and YG2022QN111).
文摘Liposomes serve as critical carriers for drugs and vaccines,with their biological effects influenced by their size.The microfluidic method,renowned for its precise control,reproducibility,and scalability,has been widely employed for liposome preparation.Although some studies have explored factors affecting liposomal size in microfluidic processes,most focus on small-sized liposomes,predominantly through experimental data analysis.However,the production of larger liposomes,which are equally significant,remains underexplored.In this work,we thoroughly investigate multiple variables influencing liposome size during microfluidic preparation and develop a machine learning(ML)model capable of accurately predicting liposomal size.Experimental validation was conducted using a staggered herringbone micromixer(SHM)chip.Our findings reveal that most investigated variables significantly influence liposomal size,often interrelating in complex ways.We evaluated the predictive performance of several widely-used ML algorithms,including ensemble methods,through cross-validation(CV)for both lipo-some size and polydispersity index(PDI).A standalone dataset was experimentally validated to assess the accuracy of the ML predictions,with results indicating that ensemble algorithms provided the most reliable predictions.Specifically,gradient boosting was selected for size prediction,while random forest was employed for PDI prediction.We successfully produced uniform large(600 nm)and small(100 nm)liposomes using the optimised experimental conditions derived from the ML models.In conclusion,this study presents a robust methodology that enables precise control over liposome size distribution,of-fering valuable insights for medicinal research applications.
基金supported by grants from the Liaoning Province Excellent Talent Program Project(XLYC1902031)Dalian Science and Technology Talent Innovation Plan Grant(2022RG18)Basic Research Project of the Department of Education of Liaoning Province(LJKQZ20222395)。
文摘Objective Cerebral palsy(CP)is a prevalent neurodevelopmental disorder acquired during the perinatal period,with periventricular white matter injury(PWMI)serving as its primary pathological hallmark.PWMI is characterized by the loss of oligodendrocytes(OLs)and the disintegration of myelin sheaths,leading to impaired neural connectivity and motor dysfunction.Neural stem cells(NSCs)represent a promising regenerative source for replenishing lost OLs;however,conventional twodimensional(2D)in vitro culture systems lack the three-dimensional(3D)physiological microenvironment.Microfluidic chip technology has emerged as a powerful tool to overcome this limitation by enabling precise spatial and temporal control over 3D microenvironmental conditions,including the establishment of stable concentration gradients of bioactive molecules.Catalpol,an iridoid glycoside derived from traditional medicinal plants,exhibits dual antioxidant and anti-apoptotic properties.Despite its therapeutic potential,the capacity of catalpol to drive NSC differentiation toward OLs under biomimetic 3D conditions,as well as the underlying molecular mechanisms,remains poorly understood.This study aims to develop a microfluidic-based 3D biomimetic platform to systematically investigate the concentration-dependent effects of catalpol on promoting NSCs-to-OLs differentiation and to elucidate the role of the caveolin-1(Cav-1)signaling pathway in this process.Methods We developed a novel multiplexed microfluidic device featuring parallel microchannels with integrated gradient generators capable of establishing and maintaining precise linear concentration gradients(0-3 g/L catalpol)across 3D NSCs cultures.This platform facilitated the continuous perfusion culture of NSC-derived 3D spheroids,mimicking the dynamic in vivo microenvironment.Real-time cell viability was assessed using Calcein-AM/propidium iodide(PI)dual staining,with fluorescence imaging quantifying live/dead cell ratios.Oligodendrocyte differentiation was evaluated through quantitative reverse transcription polymerase chain reaction(qRT-PCR)for MBP and SOX10 gene expression,complemented by immunofluorescence staining to visualize corresponding protein changes.To dissect the molecular mechanism,the Cav-1-specific pharmacological inhibitor methyl‑β‑cyclodextrin(MCD)was employed to perturb the pathway,and its effects on differentiation markers were analyzed.Results Catalpol demonstrated excellent biocompatibility,with cell viability exceeding 96%across the entire tested concentration range(0-3 g/L),confirming its non-cytotoxic nature.At the optimal concentration of 0-3 g/L,catalpol significantly upregulated both MBP and SOX10 expression(P<0.05,P<0.01),indicating robust promotion of oligodendroglial differentiation.Intriguingly,Cav-1 mRNA expression was progressively downregulated during NSC differentiation into OLs.Further inhibition of Cav-1 with MCD further enhanced this effect,leading to a statistically significant increase in OL-specific gene expression(P<0.05,P<0.01),suggesting Cav-1 acts as a negative regulator of OLs differentiation.Conclusion This study established an integrated microfluidic gradient chip-3D NSC spheroid culture system,which combines the advantages of precise chemical gradient control with physiologically relevant 3D cell culture.The findings demonstrate that 3 g/L catalpol effectively suppresses Cav-1 signaling to drive NSC differentiation into functional OLs.This work not only provides novel insights into the Cav-1-dependent mechanisms of myelination but also delivers a scalable technological platform for future research on remyelination therapies,with potential applications in cerebral palsy and other white matter disorders.The platform’s modular design permits adaptation for screening other neurogenic compounds or investigating additional signaling pathways involved in OLs maturation.
基金the National Natural Science Foundation of China for the support(No.51175101)on this paper.
文摘Combining deep-learning image inpainting algorithms with the microfluidic technology,the paper proposes a method to achieve dynamic stealth and camouflage by using a microfluidic vision camouflage system simulating the chameleon skin.The basic principle is to perceive color changes in the external environment and collect ambient image information,and then utilize the image inpainting algorithm to adjust the control signals of the microfluidic system in real time.The detailed working principle of the microfluidic vision camouflage system is presented,and the mechanism of generating control signals for the system through deep-learning image inpainting algorithms and image-processing techniques is elucidated.The camouflage effect of the chameleon skin is analyzed and evaluated using color similarity.Results indicate that the camouflaged images are consistent with the background environment,thereby improving the target’s stealth and maneuvering characteristics.The camouflage technology developed in the paper based on the microfluidic vision camouflage system can be applied to several situations,such as military camouflage uniforms,robot skins,and weapon equipment.
基金supported by the National Natural Science Foundation of China(22178361,22378402,52302310)the International Partnership Project of CAS(039GJHZ2022029GC)+5 种基金the National Key R&D Program of China(2020YFA0710200)the foundation of the Innovation Academy for Green Manufacture Institute,Chinese Academy of Sciences(IAGM2022D07)the China Postdoctoral Science Foundation(2022M722597)QinChuangYuan Cites High-level Innovation and Entrepreneurship Talent Programs(QCYRCXM-2022-335)the Fundamental Research Funds for the Central Universities(G2022KY05111)the Open Project Program of Anhui Province International Research Center on Advanced Building Materials(JZCL2303KF)。
文摘Paired electrosynthesis has received considerable attention as a consequence of simultaneously synthesizing target products at both cathode and anode,whereas the related synthetic efficiency in batch reactors is still undesirable under certain circumstances.Encouragingly,laminar microfluidic reactor offers prospective options that possess controllable flow characteristics such as enhanced mass transport,precise laminar flow control and the ability to expand production scale progressively.In this comprehensive review,the underlying fundamentals of the paired electrosynthesis are initially summarized,followed by categorizing the paired electrosynthesis including parallel paired electrosynthesis,divergent paired electrosynthesis,convergent paired electrosynthesis,sequential paired electrosynthesis and linear paired electrosynthesis.Thereafter,a holistic overview of microfluidic reactor equipment,integral fundamentals and research methodology as well as channel extension and scale-up strategies is proposed.The established fundamentals and evaluated metrics further inspired the applications of microfluidic reactors in paired electrosynthesis.This work stimulated the overwhelming investigation of mechanism discovery,material screening strategies,and device assemblies.
基金supported by the National Natural Science Foundation of China(grant number 52404044).
文摘There are limited quantitative studies on condensate gas using microfluidics under high-pressure and high-temperature conditions.This study employed microfluidics chips based on real porous media structures to conduct constant volume depletion experiments and investigate the microscopic mechanisms of condensate gas recovery.The aim of the experiments was to reveal the phase-behavior differences between bulk-phase gas and gas contained in porous media.The results revealed that condensate oil recovery in microfluidics experiments was higher than that in PVT cell tests,and nonuniform condensation and evaporation were exclusively observed in the microfluidics experiments.Furthermore,lower pore connectivity resulted in higher depletion recovery,while more developed fractures led to reduced recovery.Specifically,the chip with fewer fractures achieved the highest recovery(71.15%),whereas the highly fractured chip exhibited the lowest recovery(56.11%).These findings demonstrate that oil saturation during the process of constant volume depletion(CVD)of gas condensate within porous media is lower than that observed in the PVT cell,thus providing experimental evidence for optimizing condensate gas development in field applications.
基金supported by the National Key Research and Development Plan of China(2023YFB3210400)the Natural Science Innovation Group Foundation of China(T2321004)+3 种基金the National Natural Science Foundation of China(62174101)Shandong University Integrated Research and Cultivation Project(2022JC001)Key Research and Development Plan of Shandong Province(Major Science and Technology Innovation Project2022CXGC020501).
文摘The real-time screening of biomolecules and single cells in biochips is extremely important for disease prediction and diagnosis,cellular analysis,and life science research.Barcode biochip technology,which is integrated with microfluidics,typically comprises barcode array,sample loading,and reaction unit array chips.Here,we present a review of microfluidics barcode biochip analytical approaches for the high-throughput screening of biomolecules and single cells,including protein biomarkers,microRNA(miRNA),circulating tumor DNA(ctDNA),single-cell secreted proteins,single-cell exosomes,and cell interactions.We begin with an overview of current high-throughput detection and analysis approaches.Following this,we outline recent improvements in microfluidic devices for biomolecule and single-cell detection,highlighting the benefits and limitations of these devices.This paper focuses on the research and development of microfluidic barcode biochips,covering their self-assembly substrate materials and their specific applications with biomolecules and single cells.Looking forward,we explore the prospects and challenges of this technology,with the aim of contributing toward the use of microfluidic barcode detection biochips in medical diagnostics and therapies,and their large-scale commercialization.
基金financially supported by Science and Technology on Applied Physical Chemistry Laboratory,China(Grant No.61426022220303)supported by the Young Scientists Fund of the National Natural Science Foundation of China(Grant No.52305617)。
文摘Energetic materials,characterized by their capacity to store and release substantial energy,hold pivotal significance in some fields,particularly in defense applications.Microfluidics,with its ability to manipulate fluids and facilitate droplet formation at the microscale,enables precise control of chemical reactions.Recent scholarly endeavors have increasingly harnessed microfluidic reactors in the realm of energetic materials,yielding morphologically controllable particles with enhanced uniformity and explosive efficacy.However,crucial insights into microfluidic-based methodologies are dispersed across various publications,necessitating a systematic compilation.Accordingly,this review addresses this gap by concentrating on the synthesis of energetic materials through microfluidics.Specifically,the methods based on micro-mixing and droplets in the previous papers are summarized and the strategies to control the critical parameters within chemical reactions are discussed in detail.Then,the comparison in terms of advantages and disadvantages is attempted.As demonstrated in the last section regarding perspectives,challenges such as clogging,dead zones,and suboptimal production yields are non-ignoble in the promising fields and they might be addressed by integrating sound,optics,or electrical energy to meet heightened requirements.This comprehensive overview aims to consolidate and analyze the diverse array of microfluidic approaches in energetic material synthesis,offering valuable insights for future research directions.
基金funded by the Beijing Natural Science Foundation[Grant No.Z210006]the National Natural Science Foundation of China[Grant No.62275061].
文摘Nickel(II)as one of the primary categories of heavy metals can lead to serious health problems if achieving the critical levels in the water.Thus,it is vital to propose a stable,reliable,and economical approach for detecting Ni ions.The microfluidic paper-based analytical devices(µPADs)are potential candidates for the detection of water quality parameters including pH,heavy ions,nitrite and so on.However,it suffers from a huge error caused by the environment and artificial mistakes.In this study,we proposed an improved technique route to increase the stability and reliability of microfluidic paper-based analytical devices.The main technique points include a stable light source,a matched camera,improved reliability of the devices,and effective calculated methods.Finally,we established 15 standard curves that could be used to detect nickel ions and obtained uniform colorimetric results with reliability and repeatability.With those improvements,the relative errors for the five types of real water samples from the Zhongshan industrial parks were reduced to 0.26%,14.78%,24.20%,50.29%and 3.53%,respectively.These results were conducive to exploring this technique for the detection of nickel ions in wastewater from the Zhongshan industrial parks.The results demonstrated that the above technique route is promising for the detection of other heavy metal ions in industrial effluent.
基金supports for this project from State Key Laboratory of Chemical Safety(SKLCS–2024001)are gratefully acknowledged。
文摘Bubble breakup at T-junction microchannels is the basis for the numbering-up of gas−liquid two-phase flow in parallelized microchannels. This article presents the bubble breakup in viscous liquids at a microfluidic T-junction. Nitrogen is used as the gas phase, and glycerol-water mixtures with different mass concentration of glycerol as the liquid phase. The evolution of the gas−liquid interface during bubble breakup at the microfluidic T-junction is explored. The thinning of the bubble neck includes the squeezing stage and the rapid pinch-off stage. In the squeezing stage, the power law relation is found between the minimum width of the bubble neck and the time, and the values of exponents α1 and α2 are influenced by the viscous force. The values of pre-factors m_(1) and m_(2) are negatively correlated with the capillary number. In the rapid pinch-off stage, the thinning of the bubble neck is predominated by the surface tension, and the minimum width of the bubble neck can be scaled with the remaining time as power-law. The propagation of the bubble tip can be characterized by the power law between the movement distance and the time, with decreasing exponent as increased liquid viscosity.
基金the financial support from the National Natural Science Foundation of China (No.42102127)the Postdoctoral Research Foundation of China (No.2024 M751860)。
文摘Cleat serves as the primary flow pathway for coalbed methane(CBM)and water.However,few studies consider the impact of local contact on two-phase flow within cleats.A visual generalized model of endogenous cleats was constructed based on microfluidics.A microscopic and mesoscopic observation technique was proposed to simultaneously capture gas-liquid interface morphology of pores and throat and the two-phase flow characteristics in entire cleat system.The local contact characteristics of cleats reduced absolute permeability,which resulted in a sharp increase in the starting pressure.The reduced gas flow capacity narrowed the co-infiltration area and decreased water saturation at the isotonic point in a hydrophilic environment.The increased local contact area of cleats weakened gas phase flow capacity and narrowed the co-infiltration area.Jumping events occurred in methane-water flow due to altered porosity caused by local contact in cleats.The distribution of residual phases changed the jumping direction on the micro-scale as well as the dominant channel on the mesoscale.Besides,jumping events caused additional energy dissipation,which was ignored in traditional two-phase flow models.This might contribute to the overestimation of relative permeability.The work provides new methods and insights for investigating unsaturated flow in complex porous media.
基金financially supported by the Fundamental Research Funds for the Central Universities(No.KVJBMC23001536)Guangdong Provincial Key Laboratory of Technique and Equipment for Macromolecular Advanced Manufacturing(No.20240518)+2 种基金the State Key Laboratory of Molecular Engineering of Polymers(Fudan University)(No.K2024-15)the Central Universities support from Beijing Jiaotong University(No.KVYJS24011536)the National Natural Science Foundation of China(No.62175012).
文摘Due to the rapid development and potential applications of iron(Ⅲ)-alginate(Fe-Alg)microgels in biomedical as well as environmental engineering,this study explores the preparation and characterization of spherical Fe-Alg microgels using droplet microfluidics combined with an external ionic crosslinking method.This study focused on the role of Fe^(3+)and examined its effects on the physical/chemical properties of microgels under different ionic conditions and reduced or oxidized states.The pH-dependent release behavior of Fe^(3+)from these microgels demonstrates their potential biomedical and environmental applications.Furthermore,the microgels can exhibit magnetism simply by utilizing in situ oxidation,which can be further used for targeted drug delivery and magnetic separation technologies.
基金supported financially by“Kunlun Talents High-end Innovation and Entrepreneurship Talents”of Qinghai Province in 2022National Natural Science Foundation of China(Nos.22322401 and 82073816)Beijing Nova Program(No.20220484055)。
文摘Foods are often contaminated by multiple foodborne pathogens,which threatens human health.In this work,we developed a microfluidic biosensor for multiplex immunoassay of foodborne bacteria with agitation driven by programmed audio signals.This agitation,powered by the vibration of a speaker cone during music playing,accelerated the mass transport in the incubation process to form bacterial complexes within 10 min.Immunoassay reagents of the two target bacteria(Escherichia coli O157:H7 and Salmonella typhimurium)were preloaded into the corresponding fore-vacuum storage chamber on the chip,and released to participate in the subsequent immune analysis process by piercing the chambers.All the detection processes were integrated into a single microfluidic chip and controlled by a smartphone through Bluetooth.Under selected conditions,wide linear ranges and low limits of detection(LODs<2CFU/m L)were obtained,and real food samples were successfully determined within 30 min.This biosensing method can be extended to wide-ranging applications by loading different recognizing reagents.
基金supported by the National Natural Science Foundation of China(22025801)and(22208190)National Postdoctoral Program for Innovative Talents(BX2021146)Shuimu Tsinghua Scholar Program(2021SM055).
文摘Electrocatalytic nitrogen reduction reaction(NRR)is considered as a promising candidate to achieve ammonia synthesis because of clean electric energy,moderate reaction condition,safe operating process and harmless by-products.However,the chemical inertness of nitrogen and poor activated capacity on catalyst surface usually produce low ammonia yield and faradic efficiency.Herein,the microfluidic technology is proposed to efficiently fabricate enriched iridium nanodots/carbon architecture.Owing to in-situ co-precipitation reaction and microfluidic manipulation,the iridium nanodots/carbon nanomaterials possess small average size,uniform dispersion,high conductivity and abundant active sites,producing good proton activation and rapid electrons transmission and moderate adsorption/desorption capacity.As a result,the as-prepared iridium nanodots/carbon nanomaterials realize large ammonia yield of 28.73 μg h^(-1) cm^(-2) and faradic efficiency of 9.14%in KOH solution.Moreover,the high ammonia yield of 11.21 μg h^(-1) cm^(-2) and faradic efficiency of 24.30%are also achieved in H_(2)SO_(4) solution.The microfluidic method provides a reference for large-scale fabrication of nano-sized catalyst materials,which may accelerate the progress of electrocatalytic NRR in industrialization field.
基金supported by the National Natural Science Foundation of China (No.52036006)。
文摘In the last three decades,carbon dioxide(CO_(2)) emissions have shown a significant increase from various sources.To address this pressing issue,the importance of reducing CO_(2) emissions has grown,leading to increased attention toward carbon capture,utilization,and storage strategies.Among these strategies,monodisperse microcapsules,produced by using droplet microfluidics,have emerged as promising tools for carbon capture,offering a potential solution to mitigate CO_(2) emissions.However,the limited yield of microcapsules due to the inherent low flow rate in droplet microfluidics remains a challenge.In this comprehensive review,the high-throughput production of carbon capture microcapsules using droplet microfluidics is focused on.Specifically,the detailed insights into microfluidic chip fabrication technologies,the microfluidic generation of emulsion droplets,along with the associated hydrodynamic considerations,and the generation of carbon capture microcapsules through droplet microfluidics are provided.This review highlights the substantial potential of droplet microfluidics as a promising technique for large-scale carbon capture microcapsule production,which could play a significant role in achieving carbon neutralization and emission reduction goals.
基金The authors acknowledge the financial support from the NationalNatural Science Foundation ofChina(No.52275562)the Technology Innovation Fund of Huazhong University of Science and Technology(No.2022JYCXJJ015).
文摘On-demand droplet sorting is extensively applied for the efficient manipulation and genome-wide analysis of individual cells.However,state-of-the-art microfluidic chips for droplet sorting still suffer from low sorting speeds,sample loss,and labor-intensive preparation procedures.Here,we demonstrate the development of a novel microfluidic chip that integrates droplet generation,on-demand electrostatic droplet charging,and high-throughput sorting.The charging electrode is a copper wire buried above the nozzle of the microchannel,and the deflecting electrode is the phosphate buffered saline in the microchannel,which greatly simplifies the structure and fabrication process of the chip.Moreover,this chip is capable of high-frequency droplet generation and sorting,with a frequency of 11.757 kHz in the drop state.The chip completes the selective charging process via electrostatic induction during droplet generation.On-demand charged microdroplets can arbitrarilymove to specific exit channels in a three-dimensional(3D)-deflected electric field,which can be controlled according to user requirements,and the flux of droplet deflection is thereby significantly enhanced.Furthermore,a lossless modification strategy is presented to improve the accuracy of droplet deflection or harvest rate from 97.49% to 99.38% by monitoring the frequency of droplet generation in real time and feeding it back to the charging signal.This chip has great potential for quantitative processing and analysis of single cells for elucidating cell-to-cell variations.
基金the National Natural Science Foundation of China (Grant No.22105184)Research Fund of SWUST for PhD (Grant No.22zx7175)+1 种基金Sichuan Science and Technology Program (Grant No.2019ZDZX0013)Institute of Chemical Materials Program (Grant No.SXK-2022-03)for financial support。
文摘High purity and ultrafine DAAF(u-DAAF)is an emerging insensitive charge in initiators.Although there are many ways to obtain u-DAAF,developing a preparation method with stable operation,accurate control,good quality consistency,equipment miniaturization,and minimum manpower is an inevitable requirement to adapt to the current social technology development trend.Here reported is the microfluidic preparation of u-DAAF with tunable particle size by a passive swirling microreactor.Under the guidance of recrystallization growth kinetics and mixing behavior of fluids in the swirling microreactor,the key parameters(liquid flow rate,explosive concentration and crystallization temperature)were screened and optimized through screening experiments.Under the condition that no surfactant is added and only experimental parameters are controlled,the particle size of recrystallized DAAF can be adjusted from 98 nm to 785 nm,and the corresponding specific surface area is 8.45 m^(2)·g^(-1)to 1.33 m^(2)·g^(-1).In addition,the preparation method has good batch stability,high yield(90.8%-92.6%)and high purity(99.0%-99.4%),indicating a high practical application potential.Electric explosion derived flyer initiation tests demonstrate that the u-DAAF shows an initiation sensitivity much lower than that of the raw DAAF,and comparable to that of the refined DAAF by conventional spraying crystallization method.This study provides an efficient method to fabricate u-DAAF with narrow particle size distribution and high reproducibility as well as a theoretical reference for fabrication of other ultrafine explosives.
基金supported by the National Natural Science Foundation of China(52006056)the Key-Area Research and Development Program of Guangdong Province(2020B090923003)The project was also partly supported by Natural Research Institute for Family Planning as well。
文摘Microfluidic devices are composed of microchannels with a diameter ranging from ten to a few hundred micrometers.Thus,quite a small(10-9–10-18l)amount of liquid can be manipulated by such a precise system.In the past three decades,significant progress in materials science,microfabrication,and various applications has boosted the development of promising functional microfluidic devices.In this review,the recent progress on novel microfluidic devices with various functions and applications is presented.First,the theory and numerical methods for studying the performance of microfluidic devices are briefly introduced.Then,materials and fabrication methods of functional microfluidic devices are summarized.Next,the recent significant advances in applications of microfluidic devices are highlighted,including heat sinks,clean water production,chemical reactions,sensors,biomedicine,capillaric circuits,wearable electronic devices,and microrobotics.Finally,perspectives on the challenges and future developments of functional microfluidic devices are presented.This review aims to inspire researchers from various fields engineering,materials,chemistry,mathematics,physics,and more—to collaborate and drive forward the development and applications of functional microfluidic devices,specifically for achieving carbon neutrality.
基金supported by the Basic Science Center Program for Multiphase Evolution in Hypergravity of the National Natural Science Foundation of China(No.51988101)the National Natural Science Foundation of China(No.42177118)the Program of Introducing Talents of Discipline to Universities(111 Project)of China(No.B18047).
文摘In this study,the permeability of structured porous media with the microfluidic model is experimentally and numerically determined,and compared with the classic Kozeny-Carman(KC)equation.The Reynolds number(Re)varies from 0.83 to 142.98.It is observed that the threshold of the Reynolds number is 1.When Re is below the threshold,the permeability is independent of the Reynolds number.When Re is over this threshold,the viscous force plays a dominant role and the permeability decreases with the Reynolds number increment.The permeability also rises with the diameter increment.With the same micropillar diameter,the microfluidic model with a triangular pillar arrangement yields 4.5%–7.4%lower permeability than that with a square pillar arrangement.The tortuosity obtained by numerical simulation in the triangular-arrangement model is 5.1%–7.9%higher than that in the square-arrangement model.Based on the arrangement of micropillars,a tortuosity model is proposed for quasi-two-dimensional microfluidic models.There is an inverse relationship between permeability and tortuosity.In addition,the permeability generated by numerical simulation is consistent with that obtained experimentally.However,the permeability estimated by the classic KC equation roughly agrees with experimental results when the porosity is between 0.50 and 0.60.A model proposed in this study is suitable for predicting the permeability of microfluidic models.Furthermore,anisotropy induced by the tilt angle(0°–90°)of a model rectangular micropillar arrangement causes preferential flow and decreases the effective porosity.When the tilt angle increases from 0°to 90°,the tortuosity declines from 2.04 to 1.03,causing the permeability to rise from 1.0×10^(-11)to 4.3×10^(-11)m^(2).