A simple and sensitive analytical procedure for the determination of multi-component compounds in water samples was developed and optimized using the headspace solid-phase microextraction(HSSPME) coupled with gas chro...A simple and sensitive analytical procedure for the determination of multi-component compounds in water samples was developed and optimized using the headspace solid-phase microextraction(HSSPME) coupled with gas chromatography-mass spectrometry(GC-MS). Ten off-flavor compounds, including geosmin(GSM), 2-methylisoborneol(2-MIB), 2-isopropyl-3-methoxypyrazine(IPMP), 2-isobutyl-3-methoxypyrazine(IBMP), β-ionone, trans-2,cis-6-nonadienal(NDE), 2,3,4-trichloroanisole(2,3,4-TCA), 2,3,6-trichroloanisole(2,3,6-TCA), 2,4,6-trichloroanisole(2,4,6-TCA), and 2,4,6-tribromoanisole(2,4,6-TBA) were used as the target analytes. The optimization of extraction parameters including fibers types, extraction time, extraction temperature, stirring rate, sample volume, and ionic strength was carried out through the univariate approach. Ten off-flavor compounds were quantified within 50 min under the optimal conditions. Calibration curves with good linearity(r^2=0.990-0.998) were obtained in the range 1.0/2.0-100 ng/L, while the limits of detection for all compounds were lower than or close to the odor threshold concentration. Furthermore, the proposed method was applied to analyzing and determining the off-flavor compounds in real water samples from water-treatment plants.展开更多
A fast and simple method for determination of α, β, γ-hexachlorocyclohexanes (HCHs) in water using activated carbon fiber-solid phase microextraction(ACF-SPME) were studied. Results showed the performance of adsorp...A fast and simple method for determination of α, β, γ-hexachlorocyclohexanes (HCHs) in water using activated carbon fiber-solid phase microextraction(ACF-SPME) were studied. Results showed the performance of adsorption and desorption of three HCHs on ACF were excellent. A wide linear range from 10 to 100 μg/L and detection limits of the ng/L level were obtained using ACF-SPME with GC-MS in selected ion monitoring(SIM) acquisition mode. The proposed method was also successfully applied for determination of three HCHs in tap water. Compared to commercial fibers, ACF showed some advantages such as better resistance to solvents, higher thermal stability, longer lifetime and lower cost. The data demonstrated that GC-MS with ACF-SPME is well suitable for the analysis of HCHs in water.展开更多
In this work, solid-phase microextraction coupled with gas chromatography–mass spectrometry was developed to determine trace levels of nitrobenzene compounds in water and soil samples. Graphene was chosen as the extr...In this work, solid-phase microextraction coupled with gas chromatography–mass spectrometry was developed to determine trace levels of nitrobenzene compounds in water and soil samples. Graphene was chosen as the extraction material and its composite was coated on a stainless steel wire through sol–gel technique for the solid phase microextraction. The key parameters influencing the extraction efficiency were optimized. Under the optimal conditions, the linearity for the compounds was observed in the range of 0.02–15.0 mg/L for water samples, and 0.2–60.0 mg/kg for soil samples, with the correlation coefficients(r) of 0.9966–0.9987. The limits of detection of the method were 0.0025–0.005 mg/L for water samples, and 0.02–0.04 mg/kg for soil samples. The recoveries for the spiked samples were in the range of 72.0%–113.2%, and the precision, expressed as the relative standard deviations, was less than 12.1%.展开更多
Dispersive liquid-liquid microextraction (DLLME) followed by gas chromatography–flame ionization detection (GC-FID), as a simple, rapid and efficient method, was developed for the determination of amitraz in honey sa...Dispersive liquid-liquid microextraction (DLLME) followed by gas chromatography–flame ionization detection (GC-FID), as a simple, rapid and efficient method, was developed for the determination of amitraz in honey samples. This method involves the use of an appropriate mixture of the extraction and disperser solvents for the formation of a cloudy solution in 5.0 mL aqueous sample containing amitraz. After extraction, phase separation was performed by centrifugation and the concentrated amitraz in the sedimented phase was determined by gas chromatography—flame ionization detection (GC-FID). Some important parameters such as the type and volume of extraction and disperser solvents, and the effect of pH and salt on the extraction recovery of amitraz were investigated. Under the optimum conditions (13 μL of carbon tetrachloride as an extraction solvent, 1 mL of acetonitrile as a disperser solvent, no salt addition and pH 6) preconcentration factor and the extraction recovery were 955 and 95.5%, respectively. The linear range was 0.01 - 1.0 mg?kg–1 and the limit of detection was 0.0015 mg?kg–1. The relative standard deviation (RSD, n = 4) for 0.1 mg?kg–1 of amitraz was 3.2%. The recoveries of amitraz from honey samples at the spiking levels of 0.1 mg?kg-1 were 78.8 and 98.2%. The results indicated that DLLME is an efficient technique for the extraction of amitraz in honey samples.展开更多
Solid phase microextraction (SPME) is a solvent-flee method of sample collection. SPME is an appealing method for sample collection because it is designed for the sampling of trace level analytes with short sampling...Solid phase microextraction (SPME) is a solvent-flee method of sample collection. SPME is an appealing method for sample collection because it is designed for the sampling of trace level analytes with short sampling times in a variety of environments. Additionally, SPME can be used to directly deliver a sample to a gas chromatograph (GC) for analysis by means of thermal desorption. In this paper, the performance of SPME under dynamic conditions was investigated. Additionally, the competence of SPME sampling for the simultaneous analysis of multiple trace analytes was also evaluated. This work is discussed in the context of underground mine ventilation surveys but is applicable to any industry in which ventilation circuits must be evaluated. The results of this paper showed that the performance of the 100 ~m PDMS SPME fiber was both precise and rapid under dynamic conditions. This SPME fiber was also able to simultaneously collect sulfur hexafluoride (SF6) and perfluoromethylcyclohexane (PMCH) with adequate sensitivity.展开更多
Headspace solid-phase microextraction(HS-SPME) with sol-gel calix[6]arene-containing fiber followed by gas chromatography with a flame ionization detector was used to examine the composition and distribution of seve...Headspace solid-phase microextraction(HS-SPME) with sol-gel calix[6]arene-containing fiber followed by gas chromatography with a flame ionization detector was used to examine the composition and distribution of seven polycyclic aromatic hydrocarbons(PAHs) in water. The novel SPME fiber exhibited higher extraction efficiency to PAHs compared with poly(dimethylsiloxane) and other calixarene-containing fibers. Extraction/retention mechanism based on the interactions between calixarenes and PAHs was discussed. Owing to the good selectivity and high extraction capability of this calixarene fiber, low detection limits were obtained in a range of 0.34―6.50 ng/L and the relative standard deviation values were ≤12.3% for all of the analytes. The linear ranges of the proposed method were five orders of magnitude for the tested compounds, with linear correlation coefficients(r) greater than 0.998. The method was applied to the determination of polycyclic aromatic hydrocarbons in nine water sources in Wuhan City, China. Standard addition method was selected for the quantification and the recovery values were in a satisfactory range. Total PAHs concentrations in the nine surface water samples were found to vary between undetectable and 8.840 μg/L with two- and three-ring PAHs predominating.展开更多
A new liquid-liquid microextraction method based on the solidification of floating organic drops coupled with gas chromatography was developed for the determination of trace benzene, toluene and xylene(BTX) in water...A new liquid-liquid microextraction method based on the solidification of floating organic drops coupled with gas chromatography was developed for the determination of trace benzene, toluene and xylene(BTX) in water samples. In the microextraction procedure, a microdrop of n-decanol was delivered to the surface of the analytes’ solution, and stirred for a desired time. Following the absolute extraction, the sample vial was cooled in an ice bath for 10 min. The solidified n-decanol was then transferred into a plastic tube and melted naturally; and 1 μL of it was injected into gas chromatography for analysis. Factors relevant to the extraction efficiency were studied and optimized. The optimal experimental conditions were: 15 μL of n-decanol as extractive solvent, 30 mL of solution containing analytes, no salt, the stirring rate 400 r/min, the extraction temperature 30 °C, and the extraction time 30 min. Under those optimized conditions, the detection limit(LOD) of analytes was in a range of 0.05―0.10 ng/mL by the developed method. A good linearity(r0.99) in a calibration range of 0.01―100 μg/mL was obtained. The recoveries of the real samples at different spiked levels of BTX were in the range from 92.2% to 103.4%.展开更多
The chlorination process is one of the water treatment method used for the disinfection of water. The disinfection by products are trihalomethanes such as chloroform, dichloromethane, dibromochloromethane and bromofor...The chlorination process is one of the water treatment method used for the disinfection of water. The disinfection by products are trihalomethanes such as chloroform, dichloromethane, dibromochloromethane and bromoform. A headspace solid-phase microextraction method has been developed for determination oftrihalomethanes in water samples. The experimental parameters such as the stirring rate, extraction time, extraction temperature and desorption time were investigated. The linearity, detection limits and percentage recovery were evaluated. The optimum conditions were stirring rate 800 rpm/min, extraction time 6 min, extraction temperature 20 ~C, desorption time 2.5 min and desorption temperature 220 ~C. The detection limits were 0.01 ~g/L and the recoveries were in the range of 86-110 %, The proposed method was successfully applied to determination of THM4 in tap water samples. The THM4 contents were varied depending on the sample sites and the season. The total THM4 contents in cool, summer and rainy season were in the range of 27.58-41.89, 32.06-60.73 and 46.26-69.87 p.g/L, respectively. Confirmation of the detected compounds in water samples were performed by gas chromatograph-mass spectrometer. The mass spectra of the target compounds in water samples is in good agreement with trihalomethanes standard spectra.展开更多
In this work, biphenyl and biphenyl oxide were extracted by direct single drop microextraction (di- rect-SDME) and analyzed by gas chromatography flame ionization detection. The extraction occurred by suspending a 7 ...In this work, biphenyl and biphenyl oxide were extracted by direct single drop microextraction (di- rect-SDME) and analyzed by gas chromatography flame ionization detection. The extraction occurred by suspending a 7 μL drop of toluene (as extracting solvent) containing acetonaphton (as internal standard) from the tip of a microsyringe in direct-SDME, respectively. The effect of different parameters such as nature of extraction solvent, microdrop and sample temperatures, stirring rate, microdrop and sample volumes, ionic strength and extracting time on the extraction efficiency of the analytes were investigated and optimized. Under optimized conditions the detection limits (S/N = 3) of the biphenyl and biphenyl oxide were 1.80 ± 0.03 and 1.10 ± 0.02 μg?mL–1, respectively. Good linearity was obtained for both analytes using extraction techniques with the correlation coefficients at least 0.997 and the relative standard deviations (R.S.D.) were in the range of 1% - 3%. The percent recoveries of the analytes from spiked water samples were near to 100%展开更多
[Objectives]This study aimed to determine the volatile components in Santalum album Linn and gradually clarify the aroma composition of S.album Linn.[Methods]Solid-phase microextraction method was used to obtain the v...[Objectives]This study aimed to determine the volatile components in Santalum album Linn and gradually clarify the aroma composition of S.album Linn.[Methods]Solid-phase microextraction method was used to obtain the volatile components of S.album Linn.The aroma components were analyzed by gas chromatography-mass spectrometry and their relative contents were calculated using the area normalization method.[Results]In a dry state at room temperature,39 chemical components were identified from S.album Linn,mainly olefins(91.15%),alkanes(3.00%),alcohols(2.56%),esters(2.19%),ketones(0.55%),aldehydes(0.41%)and heterocyclics(0.14%).[Conclusions]This method has the advantages of low sample consumption,easy operation,rapid identification of aroma components and high sensitivity,and can effectively separate and determine volatile components in S.album Linn,realizing the rapid identification of different S.album Linn varieties and providing technical support for further research on Chinese medicinal materials.展开更多
Automated classification of gas flow states in blast furnaces using top-camera imagery typically demands a large volume of labeled data,whose manual annotation is both labor-intensive and cost-prohibitive.To mitigate ...Automated classification of gas flow states in blast furnaces using top-camera imagery typically demands a large volume of labeled data,whose manual annotation is both labor-intensive and cost-prohibitive.To mitigate this challenge,we present an enhanced semi-supervised learning approach based on the Mean Teacher framework,incorporating a novel feature loss module to maximize classification performance with limited labeled samples.The model studies show that the proposed model surpasses both the baseline Mean Teacher model and fully supervised method in accuracy.Specifically,for datasets with 20%,30%,and 40%label ratios,using a single training iteration,the model yields accuracies of 78.61%,82.21%,and 85.2%,respectively,while multiple-cycle training iterations achieves 82.09%,81.97%,and 81.59%,respectively.Furthermore,scenario-specific training schemes are introduced to support diverse deployment need.These findings highlight the potential of the proposed technique in minimizing labeling requirements and advancing intelligent blast furnace diagnostics.展开更多
Volatile constituents in fully mature fruits of apricot (Prunus armeniaca L.) cultivar Xinshiji were extracted using headspace solid-phase microextraction (HS-SPME) and simultaneous steam distillation extraction ...Volatile constituents in fully mature fruits of apricot (Prunus armeniaca L.) cultivar Xinshiji were extracted using headspace solid-phase microextraction (HS-SPME) and simultaneous steam distillation extraction (SSDE) and then analyzed using capillary gas chromatography and gas chromatography-mass spectrometry. A total of 70 components were identified by HSSPME, including 20 esters, 19 hydrocarbons, 5 alcohols, 5 ketones, 4 acids, 4 lactones, 3 aldehydes, and 10 miscellaneous components, with the esters being the dominant constituent. On the basis of the odor unit values, it is believed that the following compounds probably contributed to the fresh apricot odor: hexyl acetate, β-ionone, butyl acetate, (E)-2-hexenal, linalool, limonene, γ-decalactone, and hexanal. A total of 49 components were also detected by SSDE, including 13 hydrocarbons, 9 alcohols, 7 aldehydes, 9 esters, 4 ketones, 4 lactones, 2 acids, and 1 miscellaneous component, of which the monoterpene alcohols were the dominant constituents. It could be judged from the odor unit values that the following compounds were the major contributors to boiled apricot aroma: β-ionone, linalool, hexyl acetate, γ-dodecalactone, γ- decalactone, (E)-2-hexenal, hexanal, γ-octalactone, phenylacetaldehyde, butyl acetate, limonene, α-terpineol, and δ-decalactone. The results show that HS-SPME is a simple, rapid, and solvent-free method, which is an alternative to the classical SSDE.展开更多
This paper describes the electrodeposition of polyphosphate-doped polypyrrole/nanosilica nano-composite coating on steel wire for direct solid-phase microextraction of bisphenol A and five phthalates. We optimized inf...This paper describes the electrodeposition of polyphosphate-doped polypyrrole/nanosilica nano-composite coating on steel wire for direct solid-phase microextraction of bisphenol A and five phthalates. We optimized influencing parameters on the extraction efficiency and morphology of the nanocomposite such as deposition potential, concentration of pyrrole and polyphosphate, deposition time and the nanosilica amount. Under the optimized conditions, characterization of the nanocomposite was inves-tigated by scanning electron microscopy and Fourier transform infra-red spectroscopy. Also, the factors related to the solid-phase microextraction method including desorption temperature and time, extrac-tion temperature and time, ionic strength and pH were studied in detail. Subsequently, the proposed method was validated by gas chromatography-mass spectrometry by thermal desorption and acceptable figures of merit were obtained. The linearity of the calibration curves was between 0.01 and 50 ng/mL with acceptable correlation coefficients (0.9956-0.9987) and limits of detection were in the range 0.002-0.01 ng/mL. Relative standard deviations in terms of intra-day and inter-day by five replicate analyses from aqueous solutions containing 0.1 ng/mL of target analytes were in the range 3.3%-5.4% and 5%-7.1%, respectively. Fiber-to-fiber reproducibilities were measured for three different fibers prepared in the same conditions and the results were between 7.3% and 9.8%. Also, extraction recoveries at two different concentrations were ≥96%. Finally, the suitability of the proposed method was demonstrated through its application to the analysis of some eye drops and injection solutions.展开更多
[Objectives] To determine the aromatic components of Rosa davurica Pall. [Methods] 42 kinds of aromatic components were identified from the flowers of R. davurica by headspace solid phase microextraction( HS-SPME) com...[Objectives] To determine the aromatic components of Rosa davurica Pall. [Methods] 42 kinds of aromatic components were identified from the flowers of R. davurica by headspace solid phase microextraction( HS-SPME) combined with gas chromatography-mass spectrometry( GC-MS). The main compounds were alcohols( 54. 88%) and aldehydes( 19. 55%). [Results] The top five components with the highest relative content were phenylethyl alcohol( 12. 69%),geraniol( 9. 85%),citronellol( 8. 80%),nerol( 7. 84%) and 2-n-pentylfuran( 7. 45%). [Conclusions] Headspace solid phase microextraction( HS-SPME) combined with gas chromatography-mass spectrometry( GC-MS) can provide basis for further development and utilization of R. davurica.展开更多
A convenient,cost-effective and fast method using dynamic microwave-assisted extraction and liquid phase microextraction based on the solidification of a floating drop was proposed to analyze organochlorine pesticides...A convenient,cost-effective and fast method using dynamic microwave-assisted extraction and liquid phase microextraction based on the solidification of a floating drop was proposed to analyze organochlorine pesticides in grains including rice,maize and millet.Twelve samples can be processed simultaneously in the method.During the extraction process,10%acetonitrile-water solutions containing 110μL of n-hexadecane were used to extract organochlorine pesticides.Subsequently,1.0 g sodium chloride was placed in the extract,and then centrifuged and cooled.The n-hexadecane drops containing the analytes were solidifi ed and transferred for determination by gas chromatography-electron capture detector without any further filtration or cleaning process.Limits of detection for organochlorine pesticides were 0.97–1.01μg/kg and the RSDs were in the range of 2.6%–8.5%.The developed technology has succeeded in analyzing six real grains samples and the recoveries of the organochlorine pesticides were 72.2%–94.3%.Compared with the published extraction methods,the developed method was used to analyze organochlorine pesticides in grains,being more environmentally friendly,which is suitable for the daily determination of organochlorine pesticides.展开更多
A novel method for the determination of five carbamate pesticides (metolcarb, carbofuran, carbaryl, isoprocard and diethofencard) in water samples was developed by dispersive liquid-liquid microextraction (DLLME) ...A novel method for the determination of five carbamate pesticides (metolcarb, carbofuran, carbaryl, isoprocard and diethofencard) in water samples was developed by dispersive liquid-liquid microextraction (DLLME) coupled with high performance liquid chromatography-diode array detector (HPLC-DAD). Some experimental parameters that influence the extraction efficiency were studied and optimized to obtain the best extraction results. Under the optimum conditions for the method, the calibration curve was linear in the concentration range from 5 to 1000 ng mL^-1 for all the five carbamate pesticides, with the correlation coefficients (r^2) varying from 0.9984 to 0.9994. Good enrichment factors were achieved ranging from 80 to 177- fold, depending on the compound. The limits of detection (LODs) (S/N = 3) were ranged from 0.1 to 0.5 ng mL^-1. The method has been successfully applied to the analysis of the pesticide residues in environmental water samples.展开更多
In this work, a new microextraction method termed ionic liquid based dispersive liquid-liquid microextraction (IL-DLLME) was demonstrated for the extraction of 2-methylaniline, 4-chloroaniline, 1-naphthylamine and 4...In this work, a new microextraction method termed ionic liquid based dispersive liquid-liquid microextraction (IL-DLLME) was demonstrated for the extraction of 2-methylaniline, 4-chloroaniline, 1-naphthylamine and 4-aminobiphenyl in aqueous matrices. After extraction the ionic liquid (IL) phase was injected directly into the high performance liquid chromatography (HPLC) system for determination. Some parameters that might affect the extraction efficiency were optimized. Under the optimum conditions, good linear relationship, sensitivity and reproducibility were obtained. The limits of detection (LOD, S/N = 3) for the four analytes were in the range of 0.45-2.6 μg L^-1. The relative standard deviations (R.S.D., n = 6) were in the range of 6.2-9.8%. This method was applied for the analysis of the real water samples. The recoveries ranged from 93.4 to 106.4%. The main advantages of the method are high speed, high recovery, good repeatability and volatile organic solvent-free.展开更多
In this report, gas chromatography-mass spectrometry (GC-MS) based non-targeted metabolomics is used to develop appropriate headspace solid phase microextractions (HS-SPME) to enhance the understanding of volatile com...In this report, gas chromatography-mass spectrometry (GC-MS) based non-targeted metabolomics is used to develop appropriate headspace solid phase microextractions (HS-SPME) to enhance the understanding of volatile complexity of flue-cured tobacco leaves. Non-targeted metabolic profiling of GC-MS shows that the extraction condition of HS-SPME at 100?C for 30 min provides a better metabolite profile than other extraction conditions tested. GC-MS and principal component analyses (PCA) show that among five types of fibers tested, 100 μm polydimethylsiloxane (PMDS), 65 μm polydimethylsiloxane/divinylbenzene (PMDS/DVB) and 75 μm carboxen/polydimethylsiloxane (CAR/ PMS) provide a better reproducible metabolite profile. Based on an appropriate PDMS extraction condition optimized, we use GC-MS analysis and PCA to compare metabolite profiles in flue-cured leaves of tobacco plants grown in North Carolina, India and Brazil, respectively. The resulting data of PCA show that the global metabolic profiles in North Carolina samples are separated from those in Brazil and India samples, two groups of which are characterized by a partially overlapped pattern. Several peaks that were differentially accumulated in samples were annotated to known metabolites by deconvolution analysis, such as norsolanadione, solavetivone and rishtin. Norsolanadione is detected only in Brazil samples. Solavetivone is detected in samples of India and Brazil but not in those of North Carolina. Rishtin is detected in samples of North Carolina and India but not in Brazil samples. These data indicate that not only can a non-targeted metabolic profiling approach enhance the understanding of volatile complexity, but also can identify marker volatile metabolites in tobacco leaves produced in different growth regions.展开更多
Urinary 8-hydroxy-2 -deoxyguanosine(8-OHdG) is an excellent marker of oxidative DNA damage.In this study,employing guanosine as dummy template a novel molecularly imprinted(MIP) monolithic capillary column had been sy...Urinary 8-hydroxy-2 -deoxyguanosine(8-OHdG) is an excellent marker of oxidative DNA damage.In this study,employing guanosine as dummy template a novel molecularly imprinted(MIP) monolithic capillary column had been synthesized,and that was used as medium of in-tube solid phase microextraction(SPME).Coupled with capillary electrophoresis-electrochemical detection(CE-ECD),the system of extraction and detection of 8-OHdG in urinary sample had been developed.Because of its greater phase ratio combined with conv...展开更多
基金Project(21277175) supported by the National Natural Science Foundation of ChinaProject(JCYJ20120618164317119) supported by Shenzhen Special Fund for Development of Strategic Emerging,China
文摘A simple and sensitive analytical procedure for the determination of multi-component compounds in water samples was developed and optimized using the headspace solid-phase microextraction(HSSPME) coupled with gas chromatography-mass spectrometry(GC-MS). Ten off-flavor compounds, including geosmin(GSM), 2-methylisoborneol(2-MIB), 2-isopropyl-3-methoxypyrazine(IPMP), 2-isobutyl-3-methoxypyrazine(IBMP), β-ionone, trans-2,cis-6-nonadienal(NDE), 2,3,4-trichloroanisole(2,3,4-TCA), 2,3,6-trichroloanisole(2,3,6-TCA), 2,4,6-trichloroanisole(2,4,6-TCA), and 2,4,6-tribromoanisole(2,4,6-TBA) were used as the target analytes. The optimization of extraction parameters including fibers types, extraction time, extraction temperature, stirring rate, sample volume, and ionic strength was carried out through the univariate approach. Ten off-flavor compounds were quantified within 50 min under the optimal conditions. Calibration curves with good linearity(r^2=0.990-0.998) were obtained in the range 1.0/2.0-100 ng/L, while the limits of detection for all compounds were lower than or close to the odor threshold concentration. Furthermore, the proposed method was applied to analyzing and determining the off-flavor compounds in real water samples from water-treatment plants.
文摘A fast and simple method for determination of α, β, γ-hexachlorocyclohexanes (HCHs) in water using activated carbon fiber-solid phase microextraction(ACF-SPME) were studied. Results showed the performance of adsorption and desorption of three HCHs on ACF were excellent. A wide linear range from 10 to 100 μg/L and detection limits of the ng/L level were obtained using ACF-SPME with GC-MS in selected ion monitoring(SIM) acquisition mode. The proposed method was also successfully applied for determination of three HCHs in tap water. Compared to commercial fibers, ACF showed some advantages such as better resistance to solvents, higher thermal stability, longer lifetime and lower cost. The data demonstrated that GC-MS with ACF-SPME is well suitable for the analysis of HCHs in water.
基金Financial support from the National Natural Science Foundation of China(No.31171698)the Innovation Research Group Program of Department of Education of Hebei for Hebei Provincial Universities(No.LJRC009)the Natural Science Foundation of Hebei Province(No.B2012204028)
文摘In this work, solid-phase microextraction coupled with gas chromatography–mass spectrometry was developed to determine trace levels of nitrobenzene compounds in water and soil samples. Graphene was chosen as the extraction material and its composite was coated on a stainless steel wire through sol–gel technique for the solid phase microextraction. The key parameters influencing the extraction efficiency were optimized. Under the optimal conditions, the linearity for the compounds was observed in the range of 0.02–15.0 mg/L for water samples, and 0.2–60.0 mg/kg for soil samples, with the correlation coefficients(r) of 0.9966–0.9987. The limits of detection of the method were 0.0025–0.005 mg/L for water samples, and 0.02–0.04 mg/kg for soil samples. The recoveries for the spiked samples were in the range of 72.0%–113.2%, and the precision, expressed as the relative standard deviations, was less than 12.1%.
文摘Dispersive liquid-liquid microextraction (DLLME) followed by gas chromatography–flame ionization detection (GC-FID), as a simple, rapid and efficient method, was developed for the determination of amitraz in honey samples. This method involves the use of an appropriate mixture of the extraction and disperser solvents for the formation of a cloudy solution in 5.0 mL aqueous sample containing amitraz. After extraction, phase separation was performed by centrifugation and the concentrated amitraz in the sedimented phase was determined by gas chromatography—flame ionization detection (GC-FID). Some important parameters such as the type and volume of extraction and disperser solvents, and the effect of pH and salt on the extraction recovery of amitraz were investigated. Under the optimum conditions (13 μL of carbon tetrachloride as an extraction solvent, 1 mL of acetonitrile as a disperser solvent, no salt addition and pH 6) preconcentration factor and the extraction recovery were 955 and 95.5%, respectively. The linear range was 0.01 - 1.0 mg?kg–1 and the limit of detection was 0.0015 mg?kg–1. The relative standard deviation (RSD, n = 4) for 0.1 mg?kg–1 of amitraz was 3.2%. The recoveries of amitraz from honey samples at the spiking levels of 0.1 mg?kg-1 were 78.8 and 98.2%. The results indicated that DLLME is an efficient technique for the extraction of amitraz in honey samples.
基金Contract No.200-2009-31933,awarded by the National Institute for Occupational Safety and Health(NIOSH)
文摘Solid phase microextraction (SPME) is a solvent-flee method of sample collection. SPME is an appealing method for sample collection because it is designed for the sampling of trace level analytes with short sampling times in a variety of environments. Additionally, SPME can be used to directly deliver a sample to a gas chromatograph (GC) for analysis by means of thermal desorption. In this paper, the performance of SPME under dynamic conditions was investigated. Additionally, the competence of SPME sampling for the simultaneous analysis of multiple trace analytes was also evaluated. This work is discussed in the context of underground mine ventilation surveys but is applicable to any industry in which ventilation circuits must be evaluated. The results of this paper showed that the performance of the 100 ~m PDMS SPME fiber was both precise and rapid under dynamic conditions. This SPME fiber was also able to simultaneously collect sulfur hexafluoride (SF6) and perfluoromethylcyclohexane (PMCH) with adequate sensitivity.
基金Supported by the National Natural Science Foundation of China(No.30901007)the Fund of the Ministry of Education of China(No.081025)
文摘Headspace solid-phase microextraction(HS-SPME) with sol-gel calix[6]arene-containing fiber followed by gas chromatography with a flame ionization detector was used to examine the composition and distribution of seven polycyclic aromatic hydrocarbons(PAHs) in water. The novel SPME fiber exhibited higher extraction efficiency to PAHs compared with poly(dimethylsiloxane) and other calixarene-containing fibers. Extraction/retention mechanism based on the interactions between calixarenes and PAHs was discussed. Owing to the good selectivity and high extraction capability of this calixarene fiber, low detection limits were obtained in a range of 0.34―6.50 ng/L and the relative standard deviation values were ≤12.3% for all of the analytes. The linear ranges of the proposed method were five orders of magnitude for the tested compounds, with linear correlation coefficients(r) greater than 0.998. The method was applied to the determination of polycyclic aromatic hydrocarbons in nine water sources in Wuhan City, China. Standard addition method was selected for the quantification and the recovery values were in a satisfactory range. Total PAHs concentrations in the nine surface water samples were found to vary between undetectable and 8.840 μg/L with two- and three-ring PAHs predominating.
基金Supported by the National Natural Science Foundation of China(No.21105088)the Program for Science and Technology Projects of the Education Department of Fujian Province,China(No.JA10211)
文摘A new liquid-liquid microextraction method based on the solidification of floating organic drops coupled with gas chromatography was developed for the determination of trace benzene, toluene and xylene(BTX) in water samples. In the microextraction procedure, a microdrop of n-decanol was delivered to the surface of the analytes’ solution, and stirred for a desired time. Following the absolute extraction, the sample vial was cooled in an ice bath for 10 min. The solidified n-decanol was then transferred into a plastic tube and melted naturally; and 1 μL of it was injected into gas chromatography for analysis. Factors relevant to the extraction efficiency were studied and optimized. The optimal experimental conditions were: 15 μL of n-decanol as extractive solvent, 30 mL of solution containing analytes, no salt, the stirring rate 400 r/min, the extraction temperature 30 °C, and the extraction time 30 min. Under those optimized conditions, the detection limit(LOD) of analytes was in a range of 0.05―0.10 ng/mL by the developed method. A good linearity(r0.99) in a calibration range of 0.01―100 μg/mL was obtained. The recoveries of the real samples at different spiked levels of BTX were in the range from 92.2% to 103.4%.
文摘The chlorination process is one of the water treatment method used for the disinfection of water. The disinfection by products are trihalomethanes such as chloroform, dichloromethane, dibromochloromethane and bromoform. A headspace solid-phase microextraction method has been developed for determination oftrihalomethanes in water samples. The experimental parameters such as the stirring rate, extraction time, extraction temperature and desorption time were investigated. The linearity, detection limits and percentage recovery were evaluated. The optimum conditions were stirring rate 800 rpm/min, extraction time 6 min, extraction temperature 20 ~C, desorption time 2.5 min and desorption temperature 220 ~C. The detection limits were 0.01 ~g/L and the recoveries were in the range of 86-110 %, The proposed method was successfully applied to determination of THM4 in tap water samples. The THM4 contents were varied depending on the sample sites and the season. The total THM4 contents in cool, summer and rainy season were in the range of 27.58-41.89, 32.06-60.73 and 46.26-69.87 p.g/L, respectively. Confirmation of the detected compounds in water samples were performed by gas chromatograph-mass spectrometer. The mass spectra of the target compounds in water samples is in good agreement with trihalomethanes standard spectra.
文摘In this work, biphenyl and biphenyl oxide were extracted by direct single drop microextraction (di- rect-SDME) and analyzed by gas chromatography flame ionization detection. The extraction occurred by suspending a 7 μL drop of toluene (as extracting solvent) containing acetonaphton (as internal standard) from the tip of a microsyringe in direct-SDME, respectively. The effect of different parameters such as nature of extraction solvent, microdrop and sample temperatures, stirring rate, microdrop and sample volumes, ionic strength and extracting time on the extraction efficiency of the analytes were investigated and optimized. Under optimized conditions the detection limits (S/N = 3) of the biphenyl and biphenyl oxide were 1.80 ± 0.03 and 1.10 ± 0.02 μg?mL–1, respectively. Good linearity was obtained for both analytes using extraction techniques with the correlation coefficients at least 0.997 and the relative standard deviations (R.S.D.) were in the range of 1% - 3%. The percent recoveries of the analytes from spiked water samples were near to 100%
基金Nonprofit Institute Research Grant of Xinjiang Uygur Autonomous Region(KY2019056).
文摘[Objectives]This study aimed to determine the volatile components in Santalum album Linn and gradually clarify the aroma composition of S.album Linn.[Methods]Solid-phase microextraction method was used to obtain the volatile components of S.album Linn.The aroma components were analyzed by gas chromatography-mass spectrometry and their relative contents were calculated using the area normalization method.[Results]In a dry state at room temperature,39 chemical components were identified from S.album Linn,mainly olefins(91.15%),alkanes(3.00%),alcohols(2.56%),esters(2.19%),ketones(0.55%),aldehydes(0.41%)and heterocyclics(0.14%).[Conclusions]This method has the advantages of low sample consumption,easy operation,rapid identification of aroma components and high sensitivity,and can effectively separate and determine volatile components in S.album Linn,realizing the rapid identification of different S.album Linn varieties and providing technical support for further research on Chinese medicinal materials.
基金financial support provided by the Natural Science Foundation of Hebei Province,China(No.E2024105036)the Tangshan Talent Funding Project,China(Nos.B202302007 and A2021110015)+1 种基金the National Natural Science Foundation of China(No.52264042)the Australian Research Council(No.IH230100010)。
文摘Automated classification of gas flow states in blast furnaces using top-camera imagery typically demands a large volume of labeled data,whose manual annotation is both labor-intensive and cost-prohibitive.To mitigate this challenge,we present an enhanced semi-supervised learning approach based on the Mean Teacher framework,incorporating a novel feature loss module to maximize classification performance with limited labeled samples.The model studies show that the proposed model surpasses both the baseline Mean Teacher model and fully supervised method in accuracy.Specifically,for datasets with 20%,30%,and 40%label ratios,using a single training iteration,the model yields accuracies of 78.61%,82.21%,and 85.2%,respectively,while multiple-cycle training iterations achieves 82.09%,81.97%,and 81.59%,respectively.Furthermore,scenario-specific training schemes are introduced to support diverse deployment need.These findings highlight the potential of the proposed technique in minimizing labeling requirements and advancing intelligent blast furnace diagnostics.
基金The study was supported by the National Natural Science Foundation of China (30471196).
文摘Volatile constituents in fully mature fruits of apricot (Prunus armeniaca L.) cultivar Xinshiji were extracted using headspace solid-phase microextraction (HS-SPME) and simultaneous steam distillation extraction (SSDE) and then analyzed using capillary gas chromatography and gas chromatography-mass spectrometry. A total of 70 components were identified by HSSPME, including 20 esters, 19 hydrocarbons, 5 alcohols, 5 ketones, 4 acids, 4 lactones, 3 aldehydes, and 10 miscellaneous components, with the esters being the dominant constituent. On the basis of the odor unit values, it is believed that the following compounds probably contributed to the fresh apricot odor: hexyl acetate, β-ionone, butyl acetate, (E)-2-hexenal, linalool, limonene, γ-decalactone, and hexanal. A total of 49 components were also detected by SSDE, including 13 hydrocarbons, 9 alcohols, 7 aldehydes, 9 esters, 4 ketones, 4 lactones, 2 acids, and 1 miscellaneous component, of which the monoterpene alcohols were the dominant constituents. It could be judged from the odor unit values that the following compounds were the major contributors to boiled apricot aroma: β-ionone, linalool, hexyl acetate, γ-dodecalactone, γ- decalactone, (E)-2-hexenal, hexanal, γ-octalactone, phenylacetaldehyde, butyl acetate, limonene, α-terpineol, and δ-decalactone. The results show that HS-SPME is a simple, rapid, and solvent-free method, which is an alternative to the classical SSDE.
基金financial support of Department of Pharmaceutics, Faculty of Pharmacy, Kerman Medical Science University
文摘This paper describes the electrodeposition of polyphosphate-doped polypyrrole/nanosilica nano-composite coating on steel wire for direct solid-phase microextraction of bisphenol A and five phthalates. We optimized influencing parameters on the extraction efficiency and morphology of the nanocomposite such as deposition potential, concentration of pyrrole and polyphosphate, deposition time and the nanosilica amount. Under the optimized conditions, characterization of the nanocomposite was inves-tigated by scanning electron microscopy and Fourier transform infra-red spectroscopy. Also, the factors related to the solid-phase microextraction method including desorption temperature and time, extrac-tion temperature and time, ionic strength and pH were studied in detail. Subsequently, the proposed method was validated by gas chromatography-mass spectrometry by thermal desorption and acceptable figures of merit were obtained. The linearity of the calibration curves was between 0.01 and 50 ng/mL with acceptable correlation coefficients (0.9956-0.9987) and limits of detection were in the range 0.002-0.01 ng/mL. Relative standard deviations in terms of intra-day and inter-day by five replicate analyses from aqueous solutions containing 0.1 ng/mL of target analytes were in the range 3.3%-5.4% and 5%-7.1%, respectively. Fiber-to-fiber reproducibilities were measured for three different fibers prepared in the same conditions and the results were between 7.3% and 9.8%. Also, extraction recoveries at two different concentrations were ≥96%. Finally, the suitability of the proposed method was demonstrated through its application to the analysis of some eye drops and injection solutions.
基金Supported by Key Science and Technology Project of Gansu Province(1302NKDA028)Science and Technology Planning Project of Lanzhou(2010-1-239+2 种基金 2016-3-4)Talent Project of Lanzhou Science and Technology Bureau(2015-RC-87)Project of Science and Technology Cooperation between Gansu Academy of Agricultural Sciences and Local Areas(2017GAAS63)
文摘[Objectives] To determine the aromatic components of Rosa davurica Pall. [Methods] 42 kinds of aromatic components were identified from the flowers of R. davurica by headspace solid phase microextraction( HS-SPME) combined with gas chromatography-mass spectrometry( GC-MS). The main compounds were alcohols( 54. 88%) and aldehydes( 19. 55%). [Results] The top five components with the highest relative content were phenylethyl alcohol( 12. 69%),geraniol( 9. 85%),citronellol( 8. 80%),nerol( 7. 84%) and 2-n-pentylfuran( 7. 45%). [Conclusions] Headspace solid phase microextraction( HS-SPME) combined with gas chromatography-mass spectrometry( GC-MS) can provide basis for further development and utilization of R. davurica.
基金The study was financially supported by the National Science and Technology Support Program of China(Grant No.2013BAD16B08).
文摘A convenient,cost-effective and fast method using dynamic microwave-assisted extraction and liquid phase microextraction based on the solidification of a floating drop was proposed to analyze organochlorine pesticides in grains including rice,maize and millet.Twelve samples can be processed simultaneously in the method.During the extraction process,10%acetonitrile-water solutions containing 110μL of n-hexadecane were used to extract organochlorine pesticides.Subsequently,1.0 g sodium chloride was placed in the extract,and then centrifuged and cooled.The n-hexadecane drops containing the analytes were solidifi ed and transferred for determination by gas chromatography-electron capture detector without any further filtration or cleaning process.Limits of detection for organochlorine pesticides were 0.97–1.01μg/kg and the RSDs were in the range of 2.6%–8.5%.The developed technology has succeeded in analyzing six real grains samples and the recoveries of the organochlorine pesticides were 72.2%–94.3%.Compared with the published extraction methods,the developed method was used to analyze organochlorine pesticides in grains,being more environmentally friendly,which is suitable for the daily determination of organochlorine pesticides.
基金supported both by the Natural Science Foundations of Hebei(No.B2008000210)the Scientific Research Foundation of Agricultural University of Hebei.
文摘A novel method for the determination of five carbamate pesticides (metolcarb, carbofuran, carbaryl, isoprocard and diethofencard) in water samples was developed by dispersive liquid-liquid microextraction (DLLME) coupled with high performance liquid chromatography-diode array detector (HPLC-DAD). Some experimental parameters that influence the extraction efficiency were studied and optimized to obtain the best extraction results. Under the optimum conditions for the method, the calibration curve was linear in the concentration range from 5 to 1000 ng mL^-1 for all the five carbamate pesticides, with the correlation coefficients (r^2) varying from 0.9984 to 0.9994. Good enrichment factors were achieved ranging from 80 to 177- fold, depending on the compound. The limits of detection (LODs) (S/N = 3) were ranged from 0.1 to 0.5 ng mL^-1. The method has been successfully applied to the analysis of the pesticide residues in environmental water samples.
基金the National Natural Science Foundation of China(Nos.20375035,20527005,20775070)by Zhejiang Provincial Natural Science Foundation of China(Nos.Z404105,Y507252).
文摘In this work, a new microextraction method termed ionic liquid based dispersive liquid-liquid microextraction (IL-DLLME) was demonstrated for the extraction of 2-methylaniline, 4-chloroaniline, 1-naphthylamine and 4-aminobiphenyl in aqueous matrices. After extraction the ionic liquid (IL) phase was injected directly into the high performance liquid chromatography (HPLC) system for determination. Some parameters that might affect the extraction efficiency were optimized. Under the optimum conditions, good linear relationship, sensitivity and reproducibility were obtained. The limits of detection (LOD, S/N = 3) for the four analytes were in the range of 0.45-2.6 μg L^-1. The relative standard deviations (R.S.D., n = 6) were in the range of 6.2-9.8%. This method was applied for the analysis of the real water samples. The recoveries ranged from 93.4 to 106.4%. The main advantages of the method are high speed, high recovery, good repeatability and volatile organic solvent-free.
文摘In this report, gas chromatography-mass spectrometry (GC-MS) based non-targeted metabolomics is used to develop appropriate headspace solid phase microextractions (HS-SPME) to enhance the understanding of volatile complexity of flue-cured tobacco leaves. Non-targeted metabolic profiling of GC-MS shows that the extraction condition of HS-SPME at 100?C for 30 min provides a better metabolite profile than other extraction conditions tested. GC-MS and principal component analyses (PCA) show that among five types of fibers tested, 100 μm polydimethylsiloxane (PMDS), 65 μm polydimethylsiloxane/divinylbenzene (PMDS/DVB) and 75 μm carboxen/polydimethylsiloxane (CAR/ PMS) provide a better reproducible metabolite profile. Based on an appropriate PDMS extraction condition optimized, we use GC-MS analysis and PCA to compare metabolite profiles in flue-cured leaves of tobacco plants grown in North Carolina, India and Brazil, respectively. The resulting data of PCA show that the global metabolic profiles in North Carolina samples are separated from those in Brazil and India samples, two groups of which are characterized by a partially overlapped pattern. Several peaks that were differentially accumulated in samples were annotated to known metabolites by deconvolution analysis, such as norsolanadione, solavetivone and rishtin. Norsolanadione is detected only in Brazil samples. Solavetivone is detected in samples of India and Brazil but not in those of North Carolina. Rishtin is detected in samples of North Carolina and India but not in Brazil samples. These data indicate that not only can a non-targeted metabolic profiling approach enhance the understanding of volatile complexity, but also can identify marker volatile metabolites in tobacco leaves produced in different growth regions.
基金the support of the National Natural Science Foundation of China(No.20575051).
文摘Urinary 8-hydroxy-2 -deoxyguanosine(8-OHdG) is an excellent marker of oxidative DNA damage.In this study,employing guanosine as dummy template a novel molecularly imprinted(MIP) monolithic capillary column had been synthesized,and that was used as medium of in-tube solid phase microextraction(SPME).Coupled with capillary electrophoresis-electrochemical detection(CE-ECD),the system of extraction and detection of 8-OHdG in urinary sample had been developed.Because of its greater phase ratio combined with conv...