Understanding microcracking near coalesced fracture generation is critically important for hydrocarbon and geothermal reservoir characterization as well as damage evaluation in civil engineering structures. Dense and ...Understanding microcracking near coalesced fracture generation is critically important for hydrocarbon and geothermal reservoir characterization as well as damage evaluation in civil engineering structures. Dense and sometimes random microcracking near coalesced fracture formation alters the mechanical properties of the nearby virgin material. Individual microcrack characterization is also significant in quantifying the material changes near the fracture faces (i.e. damage). Acoustic emission (AE) monitoring and analysis provide unique information regarding the microcracking process temporally, and infor- mation concerning the source characterization of individual microcracks can be extracted. In this context, laboratory hydraulic fracture tests were carried out while monitoring the AEs from several piezoelectric transducers. In-depth post-processing of the AE event data was performed for the purpose of under- standing the individual source mechanisms. Several source characterization techniques including moment tensor inversion, event parametric analysis, and volumetric deformation analysis were adopted. Post-test fracture characterization through coring, slicing and micro-computed tomographic imaging was performed to determine the coalesced fracture location and structure. Distinct differences in fracture characteristics were found spatially in relation to the openhole injection interval. Individual microcrack AE analysis showed substantial energy reduction emanating spatially from the injection interval. It was quantitatively observed that the recorded AE signals provided sufficient information to generalize the damage radiating spatially away from the injection wellbore.展开更多
For decades, nacre has inspired researchers because of its sophisticated hierarchical structure and remarkable mechanical properties, especially its extreme fracture toughness compared with that of its predominant con...For decades, nacre has inspired researchers because of its sophisticated hierarchical structure and remarkable mechanical properties, especially its extreme fracture toughness compared with that of its predominant constituent,CaCO3, in the form of aragonite. Crack deflection has been extensively reported and regarded as the principal toughening mechanism for nacre. In this paper, our attention is focused on crack evolution in nacre under a quasi-static state. We use the notched three-point bending test of dehydrated nacre in situ in a scanning electron microscope(SEM) to monitor the evolution of damage mechanisms ahead of the crack tip. The observations show that the crack deflection actually occurs by constrained microcracking. On the basis of our findings, a crack propagation model is proposed, which will contribute to uncovering the underlying mechanisms of nacre’s fracture toughness and its damage evolution. These investigations would be of great value to the design and synthesis of novel biomimetic materials.展开更多
This paper addresses the conservation laws in finite brittle solids with microcracks. The discussion is limited to the 2-D cases. First, after considering the combination of the Pseudo-Traction Method and the indirect...This paper addresses the conservation laws in finite brittle solids with microcracks. The discussion is limited to the 2-D cases. First, after considering the combination of the Pseudo-Traction Method and the indirect Boundary Element Method, a versatile method for solving multi-crack interacting problems in finite plane solids is proposed, by which the fracture parameters (SIF and path-independent integrals) can be calculated with a desirable accuracy. Second, with the aid of the method proposed, the roles the conservation laws play in the fracture analysis for finite microcracking solids are studied. It is concluded that the conservation laws do play important roles in not only the fracture analysis but also the analysis of damage and stability for the finite microcracking system. Finally, the physical interpretation of the M-integral is discussed further. An explicit relation between the M-integral and the crack face area, i.e., M = GS, has been discovered using the analytical method, which can shed some light on the Damage Mechanics issues from a different perspective.展开更多
This study develops a mesoscopic framework and methodology for the modeling of microcracks in concrete. A new algorithm is first proposed for the generation of random concrete meso-structure including microcracks and ...This study develops a mesoscopic framework and methodology for the modeling of microcracks in concrete. A new algorithm is first proposed for the generation of random concrete meso-structure including microcracks and then coupled with the extended finite element method to simulate the heterogeneities and discontinuities present in the meso-structure of concrete. The proposed procedure is verified and exemplified by a series of numerical simulations. The simulation results show that microcracks can exert considerable impact on the fracture performance of concrete. More broadly, this work provides valuable insight into the initiation and propagation mechanism of microcracks in concrete and helps to foster a better understanding of the micro-mechanical behavior of cementitious materials.展开更多
The mineralogy and texture of granite have been found to have a pronounced effect on its mechanical behavior.However,the precise manner in which the texture of granite affects the shear behavior of fractures remains e...The mineralogy and texture of granite have been found to have a pronounced effect on its mechanical behavior.However,the precise manner in which the texture of granite affects the shear behavior of fractures remains enigmatic.In this study,fine-grained granite(FG)and coarse-grained granite(CG)were used to create tensile fractures with surface roughness(i.e.joint roughness coefficient(JRC))within the range of 5.48-8.34 and 12.68-16.5,respectively.The pre-fractured specimens were then subjected to direct shear tests under normal stresses of 1-30 MPa.The results reveal that shear strengths are smaller and stick-slip behaviors are more intense for FG fractures than for CG fractures,which is attributed to the different conditions of the shear surface constrained by the grain size.The smaller grain size in FG contributes to the smoother fracture surface and lower shear strength.The negative friction rate parameter a-b for both CG and FG fractures and the larger shear stiffness for FG than for CG fractures can account for the more intense stick-slip behaviors in FG fractures.The relative crack density for the post-shear CG fractures is greater than that of the FG fractures under the same normal stress,both of which decrease with the distance away from the shear surface following the power law.Moreover,the damage of CG fracture extends to a larger extent beneath the surface compared with the FG fracture.Our findings demonstrate that the grain size of the host rock exerts a significant influence on the fracture roughness,and thus should be incorporated into the assessment of fault slip behavior to better understand the role of mineralogy and texture in seismic activities.展开更多
Rolling contact fatigue performance is among the most important issues for applications of bearing steels.In this work,a recently developed surface modification technique,surface mechanical rolling treatment,was appli...Rolling contact fatigue performance is among the most important issues for applications of bearing steels.In this work,a recently developed surface modification technique,surface mechanical rolling treatment,was applied on a rare-earth addition bearing steel.And rolling contact fatigue behavior of treated samples was compared with that of as-received counterparts at different contacting stresses.The results demonstrated that a 700μm-thick gradient nanostructured surface layer is produced on samples by surface mechanical rolling treatment.The grain size decreases while the microhardness increases gradually with decreasing depth,reaching~23 nm and~10.2 GPa,respectively,at the top surface.Consequently,the rolling contact fatigue property is significantly enhanced.The characteristic life of treated samples is~3.2 times that of untreated counterparts according to Weibull curves at 5.6 GPa.Analyses of fatigue mechanisms demonstrated that the gradient nanostructured surface layer might not only retard material degradation and microcrack formation,but also prolong the steady-state elastic response stage under rolling contact fatigue.展开更多
Ultrahigh nickel oxides(Ni content>90%)hold great promise for high-performance cathodes for the future generation of lithium-ion batteries(LIBs).However,these cathode materials cause problems such as harmful parasi...Ultrahigh nickel oxides(Ni content>90%)hold great promise for high-performance cathodes for the future generation of lithium-ion batteries(LIBs).However,these cathode materials cause problems such as harmful parasitic reactions at the cathode/electrolyte interface,degradation of the layered structure,and the creation of microcracks.Herein,a microstructural refinement and intergranular coating strategy is proposed to engineer ultrahigh nickel cathode LiNi_(0.96)Co_(0.03)Mn_(0.01)O_(2)(NCM).The W-doping-induced fine-grained microstructure not only endows NCM with excellent mechanical properties but also promotes infiltration of the fluoride-containing coating along the grain boundaries inside the secondary particles,thereby forming intergranular coatings.This combined fine-grained microstructure and intergranular coating strategy reduces the formation of microcracks and suppresses the additional parasitic electrolyte reactions caused by them,thereby inhibiting the degradation of the layered phase.Consequently,the modified NCM cathode achieved exceptional electrochemical properties,especially delivering a high initial capacity of 230.8 mA h g^(-1)(0.1 C)and a capacity retention exceeding 96% after100 cycles at 0.5 C in half cells.After 500 cycles in full cells,the capacity retention increases by 21.2% compared with NCM.This strategy mitigates multiple degradation mechanisms in Ni-rich cathodes and provides a generalized strategy for developing advanced ultrahigh-nickel cathodes for industrial application.展开更多
LiNixCoyMn_(2)O_(2)(NCM,x≥0.8,x+y+z=1)cathodes have attracted much attention due to their high specific capacity and low cost.However,severe anisotropic volume changes and oxygen evolution induced capacity decay and ...LiNixCoyMn_(2)O_(2)(NCM,x≥0.8,x+y+z=1)cathodes have attracted much attention due to their high specific capacity and low cost.However,severe anisotropic volume changes and oxygen evolution induced capacity decay and insecurity have hindered their commercial application at scale.In order to overcome these challenges,a kind of tantalum(Ta)doped nickel-rich cathode with reduced size and significantly increased number of primary particles is prepared by combining mechanical fusion with high temperature co-calcination.The elaborately designed micro-morphology of small and uniform primary particles effectively eliminates the local strain accumulation caused by the random orientation of primary particles.Moreover,the uniform distribution of small primary particles stabilizes the spherical secondary particles,thus effectively inhibiting the formation and extension of microcracks.In addition,the formed strong Ta-O bonds restrain the release of lattice oxygen,which greatly increases the structural stability and safety of NCM materials.Therefore,the cathode material with the designed primary particle morphology shows superior electrochemical performance.The 1 mol%Ta-modified cathode(defined as1%Ta-NCM)shows a capacity retention of 97.5%after 200 cycles at 1 C and a rate performance of 137.3 mAh g^(-1)at 5 C.This work presents promising approach to improve the structural stability and safety of nickel-rich NCM.展开更多
The as-deposited coating-substrate microstructure has been identified to substantially influence the high-cycle fatigue(HCF)behavior of Ni-based single-crystal(SX)superalloys at 900℃,but the impact of degraded micros...The as-deposited coating-substrate microstructure has been identified to substantially influence the high-cycle fatigue(HCF)behavior of Ni-based single-crystal(SX)superalloys at 900℃,but the impact of degraded microstructure on the HCF behavior remains unclear.In this work,a PtAl-coated third-generation SX superalloy with sheet specimen was thermal-exposed at 1100℃ with different durations and then subjected to HCF tests at 900℃.The influence of microstructural degradation on the HCF life and crack initiation were clarified by analyzing the development of microcracks and coating-substrate microstructure.Notably,the HCF life of the thermal-exposed coated alloy increased abnormally,which was attributed to the transformation of the fatigue crack initiation site from surface mi-crocracks to internal micropores compared to the as-deposited coated alloy.Although the nucleation and growth of surface microcracks occurred along the grain boundaries in the coating and the interdiffusion zone(IDZ)for both the as-deposited and the thermal-exposed coated alloys,remarkable differences of the microcrack growth into the substrate adjacent to the IDZ were observed,changing the crack initiation site.Specifically,the surface microcracks grew into the substrate through the cracking of the non-protective oxide layers in the as-deposited coated alloy.In comparison,the hinderance of the surface microcracks growth was found in the thermal-exposed coated al-loy,due to the formation of a protective Al_(2)O_(3) layer within the microcrack and theγ′rafting in the substrate close to the IDZ.This study will aid in improving the HCF life prediction model for the coated SX superalloys.展开更多
During the excavation of deep engineering,high in situ stress is one prominent feature that often causes instability in the vicinity of underground openings.The propagation and coalescence of cracks in the surrounding...During the excavation of deep engineering,high in situ stress is one prominent feature that often causes instability in the vicinity of underground openings.The propagation and coalescence of cracks in the surrounding rock are characterized by anisotropy under a true triaxial stress state and play a crucial role in the development of stress-induced engineering disasters.Thus,a three-dimensional anisotropic fracturing model of hard rock is proposed to interpret fracturing activities and evaluate the mechanical property deterioration under complex stress conditions.This anisotropic fracturing model is derived from the evolution of microcracks and attributes the inelastic deformation of hard rock to crack propagation and coalescence.Through analyzing the competitive process of crack propagation in different orientations,the stress-induced anisotropic fracturing characteristics and the post-peak brittle-ductile transition could be revealed.Finally,the accuracy and effectiveness of this model are validated.Results show that this proposed anisotropic fracturing model can elucidate the primary characteristics observed in triaxial compression tests,which offers a fresh perspective on comprehending the failure process of hard rock.展开更多
The commonly used method for estimating crack opening displacement(COD)is based on analytical models derived from strain transferring.However,when large background noise exists in distributed fiber optic sensing(DFOS)...The commonly used method for estimating crack opening displacement(COD)is based on analytical models derived from strain transferring.However,when large background noise exists in distributed fiber optic sensing(DFOS)data,estimating COD through an analytical model is very difficult even if the DFOS data have been denoised.To address this challenge,this study proposes a machine learning(ML)-based methodology to complete rock's COD estimation from establishment of a dataset with one-to-one correspondence between strain sequence and COD to the optimization of ML models.The Bayesian optimization is used via the Hyperopt Python library to determine the appropriate hyper-parameters of four ML models.To ensure that the best hyper-parameters will not be missing,the configuration space in Hyperopt is specified by probability distribution.The four models are trained using DFOS data with minimal noise while being examined on datasets with different noise levels to test their anti-noise robustness.The proposed models are compared each other in terms of goodness of fit and mean squared error.The results show that the Bayesian optimization-based random forest is promising to estimate the COD of rock using noisy DFOS data.展开更多
The stress shielding effect of profuse microcracks at the tip of a macroscopic stationary mode Ⅰ crack is studied. The analysis method adopted combines the micromechanical approach with the effective elastic med...The stress shielding effect of profuse microcracks at the tip of a macroscopic stationary mode Ⅰ crack is studied. The analysis method adopted combines the micromechanical approach with the effective elastic medium approach. The anisotropic constitutive relation of the effective elastic medium is based on the DMG damage model developed by the authors for microcrack weakened brittle materials undergoing damage in form of elastic modulus degradation as a result of stable microcrack growth. The stress and strain fields at the crack tip and the condition of path independence of J integral in the damage zone are discussed under some reasonable approximations. A modified J integral method is thereby proposed to calculate the ratio of near tip to remote stress intensity factors and compared with the conventional method of J conservation.展开更多
This study introduces a coupled electromagnetic–thermal–mechanical model to reveal the mechanisms of microcracking and mineral melting of polymineralic rocks under microwave radiation.Experimental tests validate the...This study introduces a coupled electromagnetic–thermal–mechanical model to reveal the mechanisms of microcracking and mineral melting of polymineralic rocks under microwave radiation.Experimental tests validate the rationality of the proposed model.Embedding microscopic mineral sections into the granite model for simulation shows that uneven temperature gradients create distinct molten,porous,and nonmolten zones on the fracture surface.Moreover,the varying thermal expansion coefficients and Young's moduli among the minerals induce significant thermal stress at the mineral boundaries.Quartz and biotite with higher thermal expansion coefficients are subjected to compression,whereas plagioclase with smaller coefficients experiences tensile stress.In the molten zone,quartz undergoes transgranular cracking due to theα–βphase transition.The local high temperatures also induce melting phase transitions in biotite and feldspar.This numerical study provides new insights into the distribution of thermal stress and mineral phase changes in rocks under microwave irradiation.展开更多
Understanding the thermal conductivity of granite is critical for many geological and deep engineering applications.The heated granite was subjected to air-,water-,and liquid nitrogen(LN2-)coolings in this context.The...Understanding the thermal conductivity of granite is critical for many geological and deep engineering applications.The heated granite was subjected to air-,water-,and liquid nitrogen(LN2-)coolings in this context.The transient hot-wire technique was used to determine the equivalent thermal conductivity(ETC)of the granite before and after treatment.The deterioration mechanism of ETC is analyzed from the meso-perspective.Finally,the numerical model is used to quantitatively study the impact of cooling rate on the microcrack propagation and heat conduction characteristics of granite.The results show that the ETC of granite is not only related to the heating temperature,but also affected by the cooling rate.The ETC of granite decreases nonlinearly with increasing heating temperature.A faster cooling rate causes a greater decrease in ETC at the same heating temperature.The higher the heating temperature,the stronger the influence of cooling rate on ETC.The main explanation for the decrease in ETC of granite is the increase in porosity and microcrack density produced by the formation and propagation of pore structure and microcracks during heating and cooling.Further analysis displays that the damage of granite at the heating stage is induced by the difference in thermal expansion and elastic properties of mineral particles.At the cooling stage,the faster cooling rate causes a higher temperature gradient,which in turn produces greater thermal stress.As a result,it not only causes new cracks in the granite,but also aggravates the damage at the heating stage,which induces a further decrease in the heat conduction performance of granite,and this scenario is more obvious at higher temperatures.展开更多
Due to the presence of ice and unfrozen water in pores of frozen rock,the rock fracture behaviors are susceptible to temperature.In this study,the potential thawing-induced softening effects on the fracture behaviors ...Due to the presence of ice and unfrozen water in pores of frozen rock,the rock fracture behaviors are susceptible to temperature.In this study,the potential thawing-induced softening effects on the fracture behaviors of frozen rock is evaluated by testing the tension fracture toughness(KIC)of frozen rock at different temperatures(i.e.-20℃,-15℃,-12℃,-10℃,-8℃,-6℃,-4℃,-2℃,and 0℃).Acoustic emission(AE)and digital image correlation(DIC)methods are utilized to analyze the microcrack propagation during fracturing.The melting of pore ice is measured using nuclear magnetic resonance(NMR)method.The results indicate that:(1)The KIC of frozen rock decreases moderately between-20℃ and-4℃,and rapidly between-4℃ and 0℃.(2)At-20℃ to-4℃,the fracturing process,deduced from the DIC results at the notch tip,exhibits three stages:elastic deformation,microcrack propagation and microcrack coalescence.However,at-4℃e0℃,only the latter two stages are observed.(3)At-4℃e0℃,the AE activities during fracturing are less than that at-20℃ to-4℃,while more small events are reported.(4)The NMR results demonstrate a reverse variation trend in pore ice content with increasing temperature,that is,a moderate decrease is followed by a sharp decrease and-4℃ is exactly the critical temperature.Next,we interpret the thawing-induced softening effect by linking the evolution in microscopic structure of frozen rock with its macroscopic fracture behaviors as follow:from-20℃ to-4℃,the thickening of the unfrozen water film diminishes the cementation strength between ice and rock skeleton,leading to the decrease in fracture parameters.From-4℃ to 0℃,the cementation effect of ice almost vanishes,and the filling effect of pore ice is reduced significantly,which facilitates microcrack propagation and thus the easier fracture of frozen rocks.展开更多
In this study,the axial swelling strain of red-bed mudstone under different vertical stresses are measured by swell-under-load method,and the microstructure of mudstone after hygroscopic swelling is studied by mercury...In this study,the axial swelling strain of red-bed mudstone under different vertical stresses are measured by swell-under-load method,and the microstructure of mudstone after hygroscopic swelling is studied by mercury intrusion porosimetry(MIP).The weakening coefficient and Weibull distribution function are introduced into the coupling model of mudstone moisture diffusion-swelling deformation-fracture based on finite-discrete element method(FDEM).The weakening effect of moisture on mudstone's mechanical parameters,as well as the heterogeneity of swelling deformation and stress distribution,is considered.The microcrack behavior and energy evolution of mudstone during hygroscopic swelling deformation under different vertical stresses are studied.The results show that the axial swelling strain of mudstone decreases with increase of the vertical stress.At low vertical stresses,moisture absorption in mudstone leads to formation of cracks caused by hydration-induced expansion.Under high vertical stresses,a muddy sealing zone forms on the mudstone surface,preventing further water infiltration.The simulation results of mudstone swelling deformation also demonstrate that it involves both swelling of the mudstone matrix and swelling caused by crack expansion.Notably,crack expansion plays a dominant role in mudstone swelling.With increasing vertical stress,the cracks in mudstone change from tensile cracks to shear cracks,resulting in a significant reduction in the total number of cracks.While the evolution of mudstone kinetic energy shows similarities under different vertical stresses,the evolution of strain energy varies significantly due to the presence of different types of cracks in the mudstone.The findings provide a theoretical basis for understanding the hygroscopic swelling deformation mechanism of red-bed mudstone at various depths.展开更多
Surrounding rocks of underground engineering are subjected to long-term seepage pressure,which can deteriorate the mechanical properties and cause serious disasters.In order to understand the impact of seepage pressur...Surrounding rocks of underground engineering are subjected to long-term seepage pressure,which can deteriorate the mechanical properties and cause serious disasters.In order to understand the impact of seepage pressure on the mechanical property of sandstone,uniaxial compression tests,P-wave velocity measurements,and nuclear magnetic resonance(NMR)tests were conducted on saturated sandstone samples with varied seepage pressures(i.e.0 MPa,3 MPa,4 MPa,5 MPa,6 MPa,7 MPa).The results demonstrate that the mechanical parameters(uniaxial compressive strength,peak strain,elastic modulus,and brittleness index),total energy,elastic strain energy,as well as elastic strain energy ratio,decrease with increasing seepage pressure,while the dissipation energy and dissipation energy ratio increase.Moreover,as seepage pressure increases,the micro-pores gradually transform into meso-pores and macro-pores.This increases the cumulative porosity of sandstone and decreases P-wave velocity.The numerical results indicate that as seepage pressure rises,the number of tensile cracks increases progressively,the angle range of microcracks is basically from 50-120to 80-100,and as a result,the failure mode transforms to the tensile-shear mixed failure mode.Finally,the effects of seepage pressure on mechanical properties were discussed.The results show that decrease in the effective stress and cohesion under the action of seepage pressure could lead to deterioration of strength behaviors of sandstone.展开更多
Hydraulic-electric rock fragmentation(HERF)plays a significant role in improving the efficiency of high voltage pulse rock breaking.However,the underlying mechanism of HERF remains unclear.In this study,considering th...Hydraulic-electric rock fragmentation(HERF)plays a significant role in improving the efficiency of high voltage pulse rock breaking.However,the underlying mechanism of HERF remains unclear.In this study,considering the heterogeneity of the rock,microscopic thermodynamic properties,and shockwave time domain waveforms,based on the shockwave model,digital imaging technology and the discrete element method,the cyclic loading numerical simulations of HERF is achieved by coupling electrical,thermal,and solid mechanics under different formation temperatures,confining pressure,initial peak voltage,electrode bit diameter,and loading times.Meanwhile,the HERF discharge system is conducive to the laboratory experiments with various electrical parameters and the resulting broken pits are numerically reconstructed to obtain the geometric parameters.The results show that,the completely broken area consists of powdery rock debris.In the pre-broken zone,the mineral cementation of the rock determines the transition of type CⅠcracks to type CⅡand type CⅢcracks.Furthermore,the peak pressure of the shockwave increased with initial peak voltage but decreased with electrode bit diameter,while the wave front time reduced.Moreover,increasing well depth,formation temperature and confining pressure augment and inhibit HERF,but once confining pressure surpassed the threshold of 60 MPa for 152.40,215.90,and 228.60 mm electrode bits,and 40 MPa for 309.88 mm electrode bits,HERF is promoted.Additionally,for the same kind of rock,the volume and width of the broken pit increase with higher initial peak voltage and rock fissures will promote HERF.Eventually,the electrode drill bit with a 215.90 mm diameter is more suitable for drilling pink granite.This research contributes to a better microscopic understanding of HERF and provides valuable insights for electrode bit selection,as well as the optimization of circuit parameters for HERF technology.展开更多
P-and SV-wave dispersion and attenuation have been extensively investigated in saturated poroelastic media with aligned fractures.However,there are few existing models that incorporate the multiple wave attenuation me...P-and SV-wave dispersion and attenuation have been extensively investigated in saturated poroelastic media with aligned fractures.However,there are few existing models that incorporate the multiple wave attenuation mechanisms from the microscopic scale to the macroscopic scale.Hence,in this work,we developed a unified model to incorporate the wave attenuation mechanisms at different scales,which includes the microscopic squirt flow between the microcracks and pores,the mesoscopic wave-induced fluid flow between fractures and background(FB-WIFF),and the macroscopic Biot's global flow and elastic scattering(ES)from the fractures.Using Tang's modified Biot's theory and the mixed-boundary conditions,we derived the exact frequency-dependent solutions of the scattering problem for a single penny-shaped fracture with oblique incident P-and SV-waves.We then developed theoretical models for a set of aligned fractures and randomly oriented fractures using the Foldy approximation.The results indicated that microcrack squirt flow considerably influences the dispersion and attenuation of P-and SV-wave velocities.The coupling effects of microcrack squirt flow with the FB-WIFF and ES of fractures cause much higher velocity dispersion and attenuation for P waves than for SV waves.Randomly oriented fractures substantially reduce the attenuation caused by the FB-WIFF and ES,particularly for the ES attenuation of SV waves.Through a comparison with existing models in the limiting cases and previous experimental measurements,we validated our model.展开更多
The occurrence of geological hazards and the instability of geotechnical engineering structures are closely related to the time-dependent behavior of rock.However,the idealization boundary condition for constant stres...The occurrence of geological hazards and the instability of geotechnical engineering structures are closely related to the time-dependent behavior of rock.However,the idealization boundary condition for constant stress in creep or constant strain in relaxation is not usually attained in natural geological systems.Therefore,generalized relaxation tests that explore the simultaneous changes of stress and strain with time under different stress levels with constant pore-water pressure are conducted in this study.The results show that in area Ⅰ,area Ⅱ,and area Ⅲ,the stress and strain both change synchronously with time and show similar evolutionary laws as the strain-time curve for creep or the stress-time curve for relaxation.When the applied stress level surpasses the δ_(ci) or δ_(cd) threshold,the variations in stress and strain and their respective rates of change exhibit a significant increase.The radial deformation and its rate of change exhibit greater sensitivity in response to stress levels.The apparent strain deforms homogeneously at the primary stage,and subsequently,gradually localizes due to the microcrack development at the secondary stage.Ultimately,interconnection of the microcracks causes the formation of a shear-localization zone at the tertiary stage.The strain-time responses inside and outside the localization zone are characterized by local strain accumulation and inelastic unloading during the secondary and tertiary stages,respectively.The width of the shear-localization zone is found to range from 4.43 mm to 7.08 mm and increased with a longer time-to-failure.Scanning electron microscopy(SEM)reveals a dominant coalescence of intergranular cracks on the fracture surface,and the degree of physiochemical deterioration caused by water-rock interaction is more severe under a longer lifetime.The brittle sandstone’s time-dependent deformation is essentially controlled by microcrack development during generalized relaxation,and its expectancy-life is determined by its initial microstructural state and the rheological path.展开更多
基金financial support for much of the early development of the AE analysis methods was provided by the U.S. Department of Energy (DOE) (Grant No. DE-FE0002760)
文摘Understanding microcracking near coalesced fracture generation is critically important for hydrocarbon and geothermal reservoir characterization as well as damage evaluation in civil engineering structures. Dense and sometimes random microcracking near coalesced fracture formation alters the mechanical properties of the nearby virgin material. Individual microcrack characterization is also significant in quantifying the material changes near the fracture faces (i.e. damage). Acoustic emission (AE) monitoring and analysis provide unique information regarding the microcracking process temporally, and infor- mation concerning the source characterization of individual microcracks can be extracted. In this context, laboratory hydraulic fracture tests were carried out while monitoring the AEs from several piezoelectric transducers. In-depth post-processing of the AE event data was performed for the purpose of under- standing the individual source mechanisms. Several source characterization techniques including moment tensor inversion, event parametric analysis, and volumetric deformation analysis were adopted. Post-test fracture characterization through coring, slicing and micro-computed tomographic imaging was performed to determine the coalesced fracture location and structure. Distinct differences in fracture characteristics were found spatially in relation to the openhole injection interval. Individual microcrack AE analysis showed substantial energy reduction emanating spatially from the injection interval. It was quantitatively observed that the recorded AE signals provided sufficient information to generalize the damage radiating spatially away from the injection wellbore.
基金supported by the National Natural Science Foundation of China (Grants 91216108, 11432014, 11672301, 11372318, and 11502273)the Strategic Priority Research Program of the Chinese Academy of Sciences (Grant XDB22040501)
文摘For decades, nacre has inspired researchers because of its sophisticated hierarchical structure and remarkable mechanical properties, especially its extreme fracture toughness compared with that of its predominant constituent,CaCO3, in the form of aragonite. Crack deflection has been extensively reported and regarded as the principal toughening mechanism for nacre. In this paper, our attention is focused on crack evolution in nacre under a quasi-static state. We use the notched three-point bending test of dehydrated nacre in situ in a scanning electron microscope(SEM) to monitor the evolution of damage mechanisms ahead of the crack tip. The observations show that the crack deflection actually occurs by constrained microcracking. On the basis of our findings, a crack propagation model is proposed, which will contribute to uncovering the underlying mechanisms of nacre’s fracture toughness and its damage evolution. These investigations would be of great value to the design and synthesis of novel biomimetic materials.
基金Project supported by the National Natural Science Foundation of China (No. 19472053).
文摘This paper addresses the conservation laws in finite brittle solids with microcracks. The discussion is limited to the 2-D cases. First, after considering the combination of the Pseudo-Traction Method and the indirect Boundary Element Method, a versatile method for solving multi-crack interacting problems in finite plane solids is proposed, by which the fracture parameters (SIF and path-independent integrals) can be calculated with a desirable accuracy. Second, with the aid of the method proposed, the roles the conservation laws play in the fracture analysis for finite microcracking solids are studied. It is concluded that the conservation laws do play important roles in not only the fracture analysis but also the analysis of damage and stability for the finite microcracking system. Finally, the physical interpretation of the M-integral is discussed further. An explicit relation between the M-integral and the crack face area, i.e., M = GS, has been discovered using the analytical method, which can shed some light on the Damage Mechanics issues from a different perspective.
基金supported by the National Basic Research Program of China(2014CB046904)the Hubei Provincial Key Laboratory of Safety for Geotechnical and Structural Engineering at Wuhan University(HBKLCIV201207)the China Postdoctoral Science Foundation(2013M540604)
文摘This study develops a mesoscopic framework and methodology for the modeling of microcracks in concrete. A new algorithm is first proposed for the generation of random concrete meso-structure including microcracks and then coupled with the extended finite element method to simulate the heterogeneities and discontinuities present in the meso-structure of concrete. The proposed procedure is verified and exemplified by a series of numerical simulations. The simulation results show that microcracks can exert considerable impact on the fracture performance of concrete. More broadly, this work provides valuable insight into the initiation and propagation mechanism of microcracks in concrete and helps to foster a better understanding of the micro-mechanical behavior of cementitious materials.
基金the National Natural Science Foundation of China(Grant No.52309130)the Natural Science Foundation of Shandong Province(Grant No.ZR2022QD004).
文摘The mineralogy and texture of granite have been found to have a pronounced effect on its mechanical behavior.However,the precise manner in which the texture of granite affects the shear behavior of fractures remains enigmatic.In this study,fine-grained granite(FG)and coarse-grained granite(CG)were used to create tensile fractures with surface roughness(i.e.joint roughness coefficient(JRC))within the range of 5.48-8.34 and 12.68-16.5,respectively.The pre-fractured specimens were then subjected to direct shear tests under normal stresses of 1-30 MPa.The results reveal that shear strengths are smaller and stick-slip behaviors are more intense for FG fractures than for CG fractures,which is attributed to the different conditions of the shear surface constrained by the grain size.The smaller grain size in FG contributes to the smoother fracture surface and lower shear strength.The negative friction rate parameter a-b for both CG and FG fractures and the larger shear stiffness for FG than for CG fractures can account for the more intense stick-slip behaviors in FG fractures.The relative crack density for the post-shear CG fractures is greater than that of the FG fractures under the same normal stress,both of which decrease with the distance away from the shear surface following the power law.Moreover,the damage of CG fracture extends to a larger extent beneath the surface compared with the FG fracture.Our findings demonstrate that the grain size of the host rock exerts a significant influence on the fracture roughness,and thus should be incorporated into the assessment of fault slip behavior to better understand the role of mineralogy and texture in seismic activities.
基金The financial supports by the Chinese Academy of Sciences(Nos.XDC04030300 and XDB0510303)CAS-HK Joint Laboratory of Nanomaterials and MechanicsShenyang National Laboratory for Materials Science are acknowledged.
文摘Rolling contact fatigue performance is among the most important issues for applications of bearing steels.In this work,a recently developed surface modification technique,surface mechanical rolling treatment,was applied on a rare-earth addition bearing steel.And rolling contact fatigue behavior of treated samples was compared with that of as-received counterparts at different contacting stresses.The results demonstrated that a 700μm-thick gradient nanostructured surface layer is produced on samples by surface mechanical rolling treatment.The grain size decreases while the microhardness increases gradually with decreasing depth,reaching~23 nm and~10.2 GPa,respectively,at the top surface.Consequently,the rolling contact fatigue property is significantly enhanced.The characteristic life of treated samples is~3.2 times that of untreated counterparts according to Weibull curves at 5.6 GPa.Analyses of fatigue mechanisms demonstrated that the gradient nanostructured surface layer might not only retard material degradation and microcrack formation,but also prolong the steady-state elastic response stage under rolling contact fatigue.
基金financially supported by the National Natural Science Foundation of China(52071073)the Fundamental Research Funds for the Central Universities(2024GFZD002)+3 种基金the Natural Science Foundation of Hebei Province(E2024501015)the Liaoning Applied Basic Research Program(2023JH2/101300011)the Basic Scientific Research Project of Liaoning Province Department of Education(LJKZZ20220024)the Shenyang Science and Technology Project(23-407-3-13)。
文摘Ultrahigh nickel oxides(Ni content>90%)hold great promise for high-performance cathodes for the future generation of lithium-ion batteries(LIBs).However,these cathode materials cause problems such as harmful parasitic reactions at the cathode/electrolyte interface,degradation of the layered structure,and the creation of microcracks.Herein,a microstructural refinement and intergranular coating strategy is proposed to engineer ultrahigh nickel cathode LiNi_(0.96)Co_(0.03)Mn_(0.01)O_(2)(NCM).The W-doping-induced fine-grained microstructure not only endows NCM with excellent mechanical properties but also promotes infiltration of the fluoride-containing coating along the grain boundaries inside the secondary particles,thereby forming intergranular coatings.This combined fine-grained microstructure and intergranular coating strategy reduces the formation of microcracks and suppresses the additional parasitic electrolyte reactions caused by them,thereby inhibiting the degradation of the layered phase.Consequently,the modified NCM cathode achieved exceptional electrochemical properties,especially delivering a high initial capacity of 230.8 mA h g^(-1)(0.1 C)and a capacity retention exceeding 96% after100 cycles at 0.5 C in half cells.After 500 cycles in full cells,the capacity retention increases by 21.2% compared with NCM.This strategy mitigates multiple degradation mechanisms in Ni-rich cathodes and provides a generalized strategy for developing advanced ultrahigh-nickel cathodes for industrial application.
基金financial support provided by the National Natural Science Foundation of China(52271201)the Science and Technology Department of Sichuan Province(2025NSFTD0005,2022YFG0100,2022ZYD0045)。
文摘LiNixCoyMn_(2)O_(2)(NCM,x≥0.8,x+y+z=1)cathodes have attracted much attention due to their high specific capacity and low cost.However,severe anisotropic volume changes and oxygen evolution induced capacity decay and insecurity have hindered their commercial application at scale.In order to overcome these challenges,a kind of tantalum(Ta)doped nickel-rich cathode with reduced size and significantly increased number of primary particles is prepared by combining mechanical fusion with high temperature co-calcination.The elaborately designed micro-morphology of small and uniform primary particles effectively eliminates the local strain accumulation caused by the random orientation of primary particles.Moreover,the uniform distribution of small primary particles stabilizes the spherical secondary particles,thus effectively inhibiting the formation and extension of microcracks.In addition,the formed strong Ta-O bonds restrain the release of lattice oxygen,which greatly increases the structural stability and safety of NCM materials.Therefore,the cathode material with the designed primary particle morphology shows superior electrochemical performance.The 1 mol%Ta-modified cathode(defined as1%Ta-NCM)shows a capacity retention of 97.5%after 200 cycles at 1 C and a rate performance of 137.3 mAh g^(-1)at 5 C.This work presents promising approach to improve the structural stability and safety of nickel-rich NCM.
基金financially supported by National Key Research and Development Program of China(No.2022YFB 3708100)the Science Center for Gas Turbine Project,China(No.P2021-A-IV-002-001)+1 种基金the National Natural Science Foundation of China(Nos.52331005 and 52201100)the State Key Laboratory for Advanced Metals and Materials,China(No.2024-Z02).
文摘The as-deposited coating-substrate microstructure has been identified to substantially influence the high-cycle fatigue(HCF)behavior of Ni-based single-crystal(SX)superalloys at 900℃,but the impact of degraded microstructure on the HCF behavior remains unclear.In this work,a PtAl-coated third-generation SX superalloy with sheet specimen was thermal-exposed at 1100℃ with different durations and then subjected to HCF tests at 900℃.The influence of microstructural degradation on the HCF life and crack initiation were clarified by analyzing the development of microcracks and coating-substrate microstructure.Notably,the HCF life of the thermal-exposed coated alloy increased abnormally,which was attributed to the transformation of the fatigue crack initiation site from surface mi-crocracks to internal micropores compared to the as-deposited coated alloy.Although the nucleation and growth of surface microcracks occurred along the grain boundaries in the coating and the interdiffusion zone(IDZ)for both the as-deposited and the thermal-exposed coated alloys,remarkable differences of the microcrack growth into the substrate adjacent to the IDZ were observed,changing the crack initiation site.Specifically,the surface microcracks grew into the substrate through the cracking of the non-protective oxide layers in the as-deposited coated alloy.In comparison,the hinderance of the surface microcracks growth was found in the thermal-exposed coated al-loy,due to the formation of a protective Al_(2)O_(3) layer within the microcrack and theγ′rafting in the substrate close to the IDZ.This study will aid in improving the HCF life prediction model for the coated SX superalloys.
基金support from the National Natural Science Foundation of China(Grant No.52209125).
文摘During the excavation of deep engineering,high in situ stress is one prominent feature that often causes instability in the vicinity of underground openings.The propagation and coalescence of cracks in the surrounding rock are characterized by anisotropy under a true triaxial stress state and play a crucial role in the development of stress-induced engineering disasters.Thus,a three-dimensional anisotropic fracturing model of hard rock is proposed to interpret fracturing activities and evaluate the mechanical property deterioration under complex stress conditions.This anisotropic fracturing model is derived from the evolution of microcracks and attributes the inelastic deformation of hard rock to crack propagation and coalescence.Through analyzing the competitive process of crack propagation in different orientations,the stress-induced anisotropic fracturing characteristics and the post-peak brittle-ductile transition could be revealed.Finally,the accuracy and effectiveness of this model are validated.Results show that this proposed anisotropic fracturing model can elucidate the primary characteristics observed in triaxial compression tests,which offers a fresh perspective on comprehending the failure process of hard rock.
基金The Young Scientists Fund of the National Natural Science Foundation of China(Grant No.42407250)the Fund from Research Centre for Resources Engineering towards Carbon Neutrality(RCRE)of The Hong Kong Polytechnic University(Grant No.No.1-BBEM)the Fund from Natural Science Foundation of Jiangsu Province(Grant No.BK20241211)。
文摘The commonly used method for estimating crack opening displacement(COD)is based on analytical models derived from strain transferring.However,when large background noise exists in distributed fiber optic sensing(DFOS)data,estimating COD through an analytical model is very difficult even if the DFOS data have been denoised.To address this challenge,this study proposes a machine learning(ML)-based methodology to complete rock's COD estimation from establishment of a dataset with one-to-one correspondence between strain sequence and COD to the optimization of ML models.The Bayesian optimization is used via the Hyperopt Python library to determine the appropriate hyper-parameters of four ML models.To ensure that the best hyper-parameters will not be missing,the configuration space in Hyperopt is specified by probability distribution.The four models are trained using DFOS data with minimal noise while being examined on datasets with different noise levels to test their anti-noise robustness.The proposed models are compared each other in terms of goodness of fit and mean squared error.The results show that the Bayesian optimization-based random forest is promising to estimate the COD of rock using noisy DFOS data.
文摘The stress shielding effect of profuse microcracks at the tip of a macroscopic stationary mode Ⅰ crack is studied. The analysis method adopted combines the micromechanical approach with the effective elastic medium approach. The anisotropic constitutive relation of the effective elastic medium is based on the DMG damage model developed by the authors for microcrack weakened brittle materials undergoing damage in form of elastic modulus degradation as a result of stable microcrack growth. The stress and strain fields at the crack tip and the condition of path independence of J integral in the damage zone are discussed under some reasonable approximations. A modified J integral method is thereby proposed to calculate the ratio of near tip to remote stress intensity factors and compared with the conventional method of J conservation.
基金the National Natural Science Foundation of China(No.52074349)the Graduate Research Innovation Project of Hunan Province,China(No.CX20230194)。
文摘This study introduces a coupled electromagnetic–thermal–mechanical model to reveal the mechanisms of microcracking and mineral melting of polymineralic rocks under microwave radiation.Experimental tests validate the rationality of the proposed model.Embedding microscopic mineral sections into the granite model for simulation shows that uneven temperature gradients create distinct molten,porous,and nonmolten zones on the fracture surface.Moreover,the varying thermal expansion coefficients and Young's moduli among the minerals induce significant thermal stress at the mineral boundaries.Quartz and biotite with higher thermal expansion coefficients are subjected to compression,whereas plagioclase with smaller coefficients experiences tensile stress.In the molten zone,quartz undergoes transgranular cracking due to theα–βphase transition.The local high temperatures also induce melting phase transitions in biotite and feldspar.This numerical study provides new insights into the distribution of thermal stress and mineral phase changes in rocks under microwave irradiation.
基金the Natural Science Foundation of China(Grant No.42241145)supported by the Natural Science Foundation of China(Grant No.41941018)General Projects for Scientific and Technological Innovation of China Coal Science and Industry Group(Grant No.2022-MS001).
文摘Understanding the thermal conductivity of granite is critical for many geological and deep engineering applications.The heated granite was subjected to air-,water-,and liquid nitrogen(LN2-)coolings in this context.The transient hot-wire technique was used to determine the equivalent thermal conductivity(ETC)of the granite before and after treatment.The deterioration mechanism of ETC is analyzed from the meso-perspective.Finally,the numerical model is used to quantitatively study the impact of cooling rate on the microcrack propagation and heat conduction characteristics of granite.The results show that the ETC of granite is not only related to the heating temperature,but also affected by the cooling rate.The ETC of granite decreases nonlinearly with increasing heating temperature.A faster cooling rate causes a greater decrease in ETC at the same heating temperature.The higher the heating temperature,the stronger the influence of cooling rate on ETC.The main explanation for the decrease in ETC of granite is the increase in porosity and microcrack density produced by the formation and propagation of pore structure and microcracks during heating and cooling.Further analysis displays that the damage of granite at the heating stage is induced by the difference in thermal expansion and elastic properties of mineral particles.At the cooling stage,the faster cooling rate causes a higher temperature gradient,which in turn produces greater thermal stress.As a result,it not only causes new cracks in the granite,but also aggravates the damage at the heating stage,which induces a further decrease in the heat conduction performance of granite,and this scenario is more obvious at higher temperatures.
基金We acknowledge the funding support from the National Natural Science Foundation of China(Grant No.42271148).
文摘Due to the presence of ice and unfrozen water in pores of frozen rock,the rock fracture behaviors are susceptible to temperature.In this study,the potential thawing-induced softening effects on the fracture behaviors of frozen rock is evaluated by testing the tension fracture toughness(KIC)of frozen rock at different temperatures(i.e.-20℃,-15℃,-12℃,-10℃,-8℃,-6℃,-4℃,-2℃,and 0℃).Acoustic emission(AE)and digital image correlation(DIC)methods are utilized to analyze the microcrack propagation during fracturing.The melting of pore ice is measured using nuclear magnetic resonance(NMR)method.The results indicate that:(1)The KIC of frozen rock decreases moderately between-20℃ and-4℃,and rapidly between-4℃ and 0℃.(2)At-20℃ to-4℃,the fracturing process,deduced from the DIC results at the notch tip,exhibits three stages:elastic deformation,microcrack propagation and microcrack coalescence.However,at-4℃e0℃,only the latter two stages are observed.(3)At-4℃e0℃,the AE activities during fracturing are less than that at-20℃ to-4℃,while more small events are reported.(4)The NMR results demonstrate a reverse variation trend in pore ice content with increasing temperature,that is,a moderate decrease is followed by a sharp decrease and-4℃ is exactly the critical temperature.Next,we interpret the thawing-induced softening effect by linking the evolution in microscopic structure of frozen rock with its macroscopic fracture behaviors as follow:from-20℃ to-4℃,the thickening of the unfrozen water film diminishes the cementation strength between ice and rock skeleton,leading to the decrease in fracture parameters.From-4℃ to 0℃,the cementation effect of ice almost vanishes,and the filling effect of pore ice is reduced significantly,which facilitates microcrack propagation and thus the easier fracture of frozen rocks.
基金funded by the National Natural Science Foundation of China(No.42172308)the Youth Innovation Promotion Association CAS(No.2022331).
文摘In this study,the axial swelling strain of red-bed mudstone under different vertical stresses are measured by swell-under-load method,and the microstructure of mudstone after hygroscopic swelling is studied by mercury intrusion porosimetry(MIP).The weakening coefficient and Weibull distribution function are introduced into the coupling model of mudstone moisture diffusion-swelling deformation-fracture based on finite-discrete element method(FDEM).The weakening effect of moisture on mudstone's mechanical parameters,as well as the heterogeneity of swelling deformation and stress distribution,is considered.The microcrack behavior and energy evolution of mudstone during hygroscopic swelling deformation under different vertical stresses are studied.The results show that the axial swelling strain of mudstone decreases with increase of the vertical stress.At low vertical stresses,moisture absorption in mudstone leads to formation of cracks caused by hydration-induced expansion.Under high vertical stresses,a muddy sealing zone forms on the mudstone surface,preventing further water infiltration.The simulation results of mudstone swelling deformation also demonstrate that it involves both swelling of the mudstone matrix and swelling caused by crack expansion.Notably,crack expansion plays a dominant role in mudstone swelling.With increasing vertical stress,the cracks in mudstone change from tensile cracks to shear cracks,resulting in a significant reduction in the total number of cracks.While the evolution of mudstone kinetic energy shows similarities under different vertical stresses,the evolution of strain energy varies significantly due to the presence of different types of cracks in the mudstone.The findings provide a theoretical basis for understanding the hygroscopic swelling deformation mechanism of red-bed mudstone at various depths.
基金supported by the National Natural Science Foundation of China(Grant Nos.U22A20234 and 42277170)Hubei Province Key Research and Development Project(Grant No.2023BCB121).
文摘Surrounding rocks of underground engineering are subjected to long-term seepage pressure,which can deteriorate the mechanical properties and cause serious disasters.In order to understand the impact of seepage pressure on the mechanical property of sandstone,uniaxial compression tests,P-wave velocity measurements,and nuclear magnetic resonance(NMR)tests were conducted on saturated sandstone samples with varied seepage pressures(i.e.0 MPa,3 MPa,4 MPa,5 MPa,6 MPa,7 MPa).The results demonstrate that the mechanical parameters(uniaxial compressive strength,peak strain,elastic modulus,and brittleness index),total energy,elastic strain energy,as well as elastic strain energy ratio,decrease with increasing seepage pressure,while the dissipation energy and dissipation energy ratio increase.Moreover,as seepage pressure increases,the micro-pores gradually transform into meso-pores and macro-pores.This increases the cumulative porosity of sandstone and decreases P-wave velocity.The numerical results indicate that as seepage pressure rises,the number of tensile cracks increases progressively,the angle range of microcracks is basically from 50-120to 80-100,and as a result,the failure mode transforms to the tensile-shear mixed failure mode.Finally,the effects of seepage pressure on mechanical properties were discussed.The results show that decrease in the effective stress and cohesion under the action of seepage pressure could lead to deterioration of strength behaviors of sandstone.
基金supported by the National Natural Science Foundation of China(Nos.52034006,52004229,52225401,and 52274231)the Regional Innovation Cooperation Project of Sichuan Province(No.2022YFQ0059)+3 种基金Science and Technology Cooperation Project of the CNPC-SWPU Innovation Alliance(No.2020CX040301)Natural Science Foundation of Sichuan Province(No.2023NSFSC0431)Science and Technology Strategic Cooperation Project between Nanchong City and Southwest Petroleum University(No.SXHZ004)Research and innovation Fund for Graduate Students of Southwest Petroleum University(No.2022KYCX058).
文摘Hydraulic-electric rock fragmentation(HERF)plays a significant role in improving the efficiency of high voltage pulse rock breaking.However,the underlying mechanism of HERF remains unclear.In this study,considering the heterogeneity of the rock,microscopic thermodynamic properties,and shockwave time domain waveforms,based on the shockwave model,digital imaging technology and the discrete element method,the cyclic loading numerical simulations of HERF is achieved by coupling electrical,thermal,and solid mechanics under different formation temperatures,confining pressure,initial peak voltage,electrode bit diameter,and loading times.Meanwhile,the HERF discharge system is conducive to the laboratory experiments with various electrical parameters and the resulting broken pits are numerically reconstructed to obtain the geometric parameters.The results show that,the completely broken area consists of powdery rock debris.In the pre-broken zone,the mineral cementation of the rock determines the transition of type CⅠcracks to type CⅡand type CⅢcracks.Furthermore,the peak pressure of the shockwave increased with initial peak voltage but decreased with electrode bit diameter,while the wave front time reduced.Moreover,increasing well depth,formation temperature and confining pressure augment and inhibit HERF,but once confining pressure surpassed the threshold of 60 MPa for 152.40,215.90,and 228.60 mm electrode bits,and 40 MPa for 309.88 mm electrode bits,HERF is promoted.Additionally,for the same kind of rock,the volume and width of the broken pit increase with higher initial peak voltage and rock fissures will promote HERF.Eventually,the electrode drill bit with a 215.90 mm diameter is more suitable for drilling pink granite.This research contributes to a better microscopic understanding of HERF and provides valuable insights for electrode bit selection,as well as the optimization of circuit parameters for HERF technology.
基金This work was supported by the Laoshan National Laboratory Science and Technology Innovation Project(No.LSKJ202203407)the National Natural Science Foundation of China(Grant Nos.42174145,41821002,42274146)+1 种基金Guangdong Provincial Key Laboratory of Geophysical High-resolution Imaging Technology(2022B1212010002)Shenzhen Stable Support Plan Program for Higher Education Institutions(20220815110144003).
文摘P-and SV-wave dispersion and attenuation have been extensively investigated in saturated poroelastic media with aligned fractures.However,there are few existing models that incorporate the multiple wave attenuation mechanisms from the microscopic scale to the macroscopic scale.Hence,in this work,we developed a unified model to incorporate the wave attenuation mechanisms at different scales,which includes the microscopic squirt flow between the microcracks and pores,the mesoscopic wave-induced fluid flow between fractures and background(FB-WIFF),and the macroscopic Biot's global flow and elastic scattering(ES)from the fractures.Using Tang's modified Biot's theory and the mixed-boundary conditions,we derived the exact frequency-dependent solutions of the scattering problem for a single penny-shaped fracture with oblique incident P-and SV-waves.We then developed theoretical models for a set of aligned fractures and randomly oriented fractures using the Foldy approximation.The results indicated that microcrack squirt flow considerably influences the dispersion and attenuation of P-and SV-wave velocities.The coupling effects of microcrack squirt flow with the FB-WIFF and ES of fractures cause much higher velocity dispersion and attenuation for P waves than for SV waves.Randomly oriented fractures substantially reduce the attenuation caused by the FB-WIFF and ES,particularly for the ES attenuation of SV waves.Through a comparison with existing models in the limiting cases and previous experimental measurements,we validated our model.
基金financially supported by the National Natural Science Foundation of China(Grant Nos.52304099,52172625)Shenzhen Science and Technology Program(Grant No.RCYX20221008092903013).
文摘The occurrence of geological hazards and the instability of geotechnical engineering structures are closely related to the time-dependent behavior of rock.However,the idealization boundary condition for constant stress in creep or constant strain in relaxation is not usually attained in natural geological systems.Therefore,generalized relaxation tests that explore the simultaneous changes of stress and strain with time under different stress levels with constant pore-water pressure are conducted in this study.The results show that in area Ⅰ,area Ⅱ,and area Ⅲ,the stress and strain both change synchronously with time and show similar evolutionary laws as the strain-time curve for creep or the stress-time curve for relaxation.When the applied stress level surpasses the δ_(ci) or δ_(cd) threshold,the variations in stress and strain and their respective rates of change exhibit a significant increase.The radial deformation and its rate of change exhibit greater sensitivity in response to stress levels.The apparent strain deforms homogeneously at the primary stage,and subsequently,gradually localizes due to the microcrack development at the secondary stage.Ultimately,interconnection of the microcracks causes the formation of a shear-localization zone at the tertiary stage.The strain-time responses inside and outside the localization zone are characterized by local strain accumulation and inelastic unloading during the secondary and tertiary stages,respectively.The width of the shear-localization zone is found to range from 4.43 mm to 7.08 mm and increased with a longer time-to-failure.Scanning electron microscopy(SEM)reveals a dominant coalescence of intergranular cracks on the fracture surface,and the degree of physiochemical deterioration caused by water-rock interaction is more severe under a longer lifetime.The brittle sandstone’s time-dependent deformation is essentially controlled by microcrack development during generalized relaxation,and its expectancy-life is determined by its initial microstructural state and the rheological path.