Increased circulating branched-chain amino acids(BCAAs)have been involved in the pathogenesis of obesity and insulin resistance.However,evidence relating berberine(BBR),gut microbiota,BCAAs,and insulin resis⁃tance is ...Increased circulating branched-chain amino acids(BCAAs)have been involved in the pathogenesis of obesity and insulin resistance.However,evidence relating berberine(BBR),gut microbiota,BCAAs,and insulin resis⁃tance is limited.Here,we showed that BBR could effectively rectify steatohepatitis and glucose intolerance in high-fat diet(HFD)-fed mice.BBR reorganized gut microbiota populations under both the normal chow diet(NCD)and HFD.Particu⁃larly,BBR noticeably decreased the relative abundance of BCAA-producing bacteria,including order Clostridiales;fami⁃lies Streptococcaceae,Clostridiaceae,and Prevotellaceae;and genera Streptococcus and Prevotella.Compared with the HFD group,predictive metagenomics indicated a reduction in the proportion of gut microbiota genes involved in BCAA biosynthesis but the enrichment genes for BCAA degradation and transport by BBR treatment.Accordingly,the elevated serum BCAAs of HFD group were significantly decreased by BBR.Furthermore,the Western blotting results implied that BBR could promote the BCAA catabolism in the liver and epididymal white adipose tissues of HFD-fed mice by acti⁃vation of the multienzyme branched-chain α-ketoacid dehydrogenase complex,whereas by inhibition of the phosphoryla⁃tion state of BCKDHA(E1α subunit)and branched-chain α-ketoacid dehydrogenase kinase.The ex vivo assay further confirmed that BBR could increase BCAA catabolism in both AML12 hepatocytes and 3T3-L1 adipocytes.Finally,data from healthy subjects and diabetics confirmed that BBR could improve glycemic control and modulate circulating BCAAs.Besides,functional microbiomics integrated high-throughput microbial genomics,metabolomics and molecular biotechnology has also been successfully applied to reveal the anti-obesity mechanism of hydroxysafflor yellow A.展开更多
Esophageal cancer is a prevalent and aggressive malignancy associated with a poor prognosis.Metabolomics and microbiomics have emerged as promising approaches for investigating the tumor microenvironment and monitorin...Esophageal cancer is a prevalent and aggressive malignancy associated with a poor prognosis.Metabolomics and microbiomics have emerged as promising approaches for investigating the tumor microenvironment and monitoring dynamic changes throughout the treatment process.These methodologies facilitate the direct observation of phenotypic alterations with high sensitivity,throughput,and adaptability across diverse sample types.Microbial genomic data play a crucial role in predicting the metabolic potential of microorganisms,whereas metabolomics offers direct evidence of active metabolic pathways under specific conditions.This review presents novel insights into the pathogenesis,diagnosis,and treatment of esophageal cancer through the application of metabolomics and microbiomics.Future advancements in the integration of multi-omics data are expected to further elucidate the metabolic mechanisms and pathophysiological processes underlying esophageal cancer,thereby laying a robust scientific foundation for early diagnosis,prognostic assessment,and personalized treatment strategies.展开更多
Colorectal cancer(CRC)is a common malignant tumor with a high mortality rate worldwide.Advanced CRC often leads to liver metastasis,which has a poor prognosis,highlighting the need to investigate the underlying mechan...Colorectal cancer(CRC)is a common malignant tumor with a high mortality rate worldwide.Advanced CRC often leads to liver metastasis,which has a poor prognosis,highlighting the need to investigate the underlying mechanisms.Omics,encompassing genomics,epigenomics,transcriptomics,proteomics,metabolomics,and microbiomics,enables comprehensive molecular analysis of cells and tissues.Tumor-omics research has advanced rapidly,with growing attention on CRC-related omics.However,systematic reviews on omics research specific to colorectal cancer liver metastasis(CRLM)are limited.This review summarizes the current status and progress of multi-omics research on CRLM and discusses the application of multi-omics technologies in basic research and the significant clinical implications.展开更多
Background Sow longevity and reproductivity are essential in the modern swine industry.Although many studies have focused on the genetic and genomic factors for selection,little is known about the associations between...Background Sow longevity and reproductivity are essential in the modern swine industry.Although many studies have focused on the genetic and genomic factors for selection,little is known about the associations between the microbiome and sows with longevity in reproduction.Results In this study,we collected and sequenced rectal and vaginal swabs from 48 sows,nine of which completed up to four parities(U4P group),exhibiting reproductive longevity.We first identified predictors of sow longevity in the rectum(e.g.,Akkermansia)and vagina(e.g.,Lactobacillus)of the U4P group using RandomForest in the early breeding stage of the first parity.Interestingly,these bacteria in the U4P group showed decreased predicted KEGG gene abundance involved in the biosynthesis of amino acids.Then,we tracked the longitudinal changes of the micro-biome over four parities in the U4P sows.LEfSe analysis revealed parity-associated bacteria that existed in both the rectum and vagina(e.g.,Streptococcus in Parity 1,Lactobacillus in Parity 2,Veillonella in Parity 4).We also identi-fied patterns of bacterial change between the early breeding stage(d 0)and d 110,such as Streptococcus,which was decreased in all four parties.Furthermore,sows in the U4P group with longevity potential also showed better reproductive performance.Finally,we discovered bacterial predictors(e.g.,Prevotellaceae NK3B31 group)for the total number of piglets born throughout the four parities in both the rectum and vagina.Conclusions This study highlights how the rectal and vaginal microbiome in sows with longevity in reproduc-tion changes within four parities.The identification of parity-associated,pregnancy-related,and reproductive performance-correlated bacteria provides the foundation for targeted microbiome modulation to improve animal production.展开更多
BACKGROUND Colorectal cancer is the third most common malignancy and the fourth leading cause of cancer-related deaths worldwide.Several studies have shown an association between gut microbiota and colorectal cancer.G...BACKGROUND Colorectal cancer is the third most common malignancy and the fourth leading cause of cancer-related deaths worldwide.Several studies have shown an association between gut microbiota and colorectal cancer.Gut microbiota is unique and can be influenced by geographic factors and habits.This study aimed to determine the diversity and composition of colonic mucosal microbiota in patients with and without colorectal cancer.AIM To determine the diversity and composition of colonic mucosal microbiota in patients with and without colorectal cancer in Indonesia.METHODS This case-control study included 59 subjects(35 colorectal cancer patients and 24 non-colorectal cancer patients indicated for colonoscopy at Dr.Cipto Mangunkusumo Gastrointestinal Endoscopy Center and Fatmawati Hospital.Microbiota examination was performed using 16S rRNA sequencing.Bioinformatics analysis was performed using the wf-metagenomics pipeline from EPI2Me-Labs(Oxford Nanopore Technologies platform).RESULTS Patients with colorectal cancer had a higher median index value on the Shannon index(3.28 vs 2.82,P>0.05)and a lower value on the Simpson index(0.050 vs 0.060,P>0.05).Significant differences in beta diversity were observed at the genus(P=0.002)and species levels(P=0.001).Firmicutes,Proteobacteria,Bacteroidetes,and Fusobacteria were the dominant phyla.The genera Bacteroides,Campylobacter,Peptostreptococcus,and Parvimonas were found more frequently in colorectal cancer,while Faecalibacterium,Haemophilus,and Phocaeicola were more frequently found in non-colorectal cancer.The relative abundance of Fusobacterium nucleatum,Bacteroides fragilis,Enterococcus faecalis,Campylobacter hominis,and Enterococcus faecalis species was significantly elevated in patients with colorectal cancer.Meanwhile,Faecalibacterium prausnitzii,Faecalibacterium duncaniae,and Prevotella copri were more commonly found in non-colorectal cancer.CONCLUSION Patients with colorectal cancer exhibit distinct differences in the composition and diversity of their colonic mucosal microbiota compared to those with non-colorectal cancer.This study was reviewed and approved by the Ethics Committee of Faculty of Medicine,Universitas Indonesia(No.KET-1517/UN2.F1/ETIK/PPM.00.02/2023).展开更多
As a major contributor to methane production in agriculture,there is a need for a suitable methane inhibitor to reduce ruminant methane emissions and minimize the impact on the climate.This work aimed to explore the i...As a major contributor to methane production in agriculture,there is a need for a suitable methane inhibitor to reduce ruminant methane emissions and minimize the impact on the climate.This work aimed to explore the influence of cordycepin on rumen fermentation,gas production,microbiome and their metabolites.A total of 0.00,0.08,0.16,0.32,and 0.64 g L^(–1)cordycepin were added into fermentation bottles containing 2 g total mixed ration for in vitro ruminal fermentation,and then the gas produced and fermentation parameters were measured for each bottle.Samples from the 0 and 0.64 g L^(–1)cordycepin addition were selected for 16S rRNA gene sequencing and metabolome analysis.The result of this experiment indicated that the addition of cordycepin could linearly increase the concentration of total volatile fatty acid,ammonia nitrogen,the proportion of propionate,valerate,and isovalerate,and linearly reduce ruminal pH and methane,carbon dioxide,hydrogen and total gas production,as well as the methane proportion,carbon dioxide proportion and proportion of butyrate.In addition,there was a quadratic relationship between hydrogen and cordycepin addition.At the same time,the relative abundance of Succiniclasticum,Prevotella,Rikenellaceae_RC9_gut_group,NK4A214_group,Christensenellaceae_R_(7)_group,unclassified_F082,Veillonellaceae_UCG_001,Dasytricha,Ophryoscolex,Isotricha,unclassified_Eukaryota,Methanobrevibacter,and Piromyces decreased significantly after adding the maximum dose of cordycepin.In contrast,the relative abundance of Succinivibrio,unclassified_Succinivibrionaceae,Prevotellaceae_UCG_001,unclassified_Lachnospiraceae,Lachnospira,Succinivibrionaceae_UCG_002,Pseudobutyrivibrio,Entodinium,Polyplastron,unclassified_Methanomethylophilaceae,Methanosphaera,and Candidatus_Methanomethylophilus increased significantly.Metabolic pathways such as biosynthesis of unsaturated fatty acids and purine metabolism and metabolites such as arachidonic acid,adenine,and 2′-deoxyguanosine were also affected by the addition of cordycepin.Based on this,we conclude that cordycepin is an effective methane emission inhibitor that can change the rumen metabolites and fermentation parameters by influencing the rumen microbiome,thus regulating rumen methane production.This experiment may provide a potential theoretical reference for developing Cordyceps byproduct or additives containing cordycepin as methane inhibitors.展开更多
Probiotic supplementation enhances the abundance of gutassociated Rhodobacteraceae species,critical symbionts contributing to the health and physiological fitness of Litopenaeus vannamei.Understanding the role of Rhod...Probiotic supplementation enhances the abundance of gutassociated Rhodobacteraceae species,critical symbionts contributing to the health and physiological fitness of Litopenaeus vannamei.Understanding the role of Rhodobacteraceae in shaping the shrimp gut microbiota is essential for optimizing probiotic application.This study investigated whether probiotics benefit shrimp health and fitness via the recruitment of Rhodobacteraceae commensals in the gut.Probiotic supplementation significantly enhanced feed conversion efficiency,digestive enzyme activity,and immune responses,thereby promoting shrimp growth.Additionally,probiotics induced pronounced shifts in gut microbial composition,enriched gut Rhodobacteraceae abundance,and reduced community variability,leading to a more stable gut microbiome.Network analysis revealed that the removal of Rhodobacteraceae nodes disrupted gut microbial connectivity more rapidly than the removal of nonRhodobacteraceae nodes,indicating a disproportionate role of Rhodobacteraceae in maintaining network stability.Probiotic supplementation facilitated the migration of Rhodobacteraceae taxa from the aquatic environment to the shrimp gut while reinforcing deterministic selection in gut microbiota assembly.Transcriptomic analysis revealed that up-regulation of amino acid metabolism and NF-κB signaling pathways was positively correlated with Rhodobacteraceae abundance.These findings demonstrate that probiotic supplementation enriches key Rhodobacteraceae taxa,stabilizes gut microbial networks,and enhances host digestive and immune functions,ultimately improving shrimp growth performance.This study provides novel perspectives on the ecological and molecular mechanisms underlying the beneficial effects of probiotics on shrimp fitness.展开更多
Artificial intelligence(AI)is driving a paradigm shift in gastroenterology and hepa-tology by delivering cutting-edge tools for disease screening,diagnosis,treatment,and prognostic management.Through deep learning,rad...Artificial intelligence(AI)is driving a paradigm shift in gastroenterology and hepa-tology by delivering cutting-edge tools for disease screening,diagnosis,treatment,and prognostic management.Through deep learning,radiomics,and multimodal data integration,AI has achieved diagnostic parity with expert cli-nicians in endoscopic image analysis(e.g.,early gastric cancer detection,colorectal polyp identification)and non-invasive assessment of liver pathologies(e.g.,fibrosis staging,fatty liver typing)while demonstrating utility in personalized care scenarios such as predicting hepatocellular carcinoma recurrence and opti-mizing inflammatory bowel disease treatment responses.Despite these advance-ments challenges persist including limited model generalization due to frag-mented datasets,algorithmic limitations in rare conditions(e.g.,pediatric liver diseases)caused by insufficient training data,and unresolved ethical issues related to bias,accountability,and patient privacy.Mitigation strategies involve constructing standardized multicenter databases,validating AI tools through prospective trials,leveraging federated learning to address data scarcity,and de-veloping interpretable systems(e.g.,attention heatmap visualization)to enhance clinical trust.Integrating generative AI,digital twin technologies,and establishing unified ethical/regulatory frameworks will accelerate AI adoption in primary care and foster equitable healthcare access while interdisciplinary collaboration and evidence-based implementation remain critical for realizing AI’s potential to redefine precision care for digestive disorders,improve global health outcomes,and reshape healthcare equity.展开更多
The kitchen-oil wastewater is characterized by a high concentration of organicmatter,complex composition and refractory pollutants,which make wastewater treatment more difficult.Based on the study of using micro-elect...The kitchen-oil wastewater is characterized by a high concentration of organicmatter,complex composition and refractory pollutants,which make wastewater treatment more difficult.Based on the study of using micro-electric field characteristic catalyst HCLL-S8-M to enhance the electron transfer between microorganisms in kitchen-oil wastewater which further improved the COD removal rate,we focus on themicrobial community,intracellular metabolism and extracellular respiration,and make an in-depth analysis of the molecular biological mechanisms to microbial treatment in wastewater.It is found that electroactive microorganisms are enriched on the material surface,and the expression levels of cytochrome c and riboflavin genes related to electron transfer are up-regulated,confirming that the surface micro-electric field structure could enhance the electron transfer between microbial species and improve the efficiency ofwastewater degradation.This study provides a new idea for the treatment of refractory organic wastewater.展开更多
PURPOSE:To investigate the differences in gut microbial characteristics between two traditional Chinese syndromes of premature ovarian insufficiency(POI).METHODS:Forty women with POI were recruited from the Department...PURPOSE:To investigate the differences in gut microbial characteristics between two traditional Chinese syndromes of premature ovarian insufficiency(POI).METHODS:Forty women with POI were recruited from the Department of Traditional Chinese Medicine at Shenzhen Maternity and Child Healthcare Hospital between June and December 2020.Women with POI were divided into the kidney deficiency and blood stasis syndrome(SDBS)and Qi and blood deficiency syndrome(QBDS)groups.Gut microbial community profiles were analyzed by 16S rRNA gene sequencing using an Illumina Mi Seq system.A retrospective study comparing hormone levels and gut microbiota information was performed between the SDBS and QBDS groups.RESULTS:Compared with the QBDS group,the serum levels of estradiol(E2)and anti-Müllerian hormone(AMH)were significantly decreased in the SDBS group.The quantities of Adlercreutzia,Eggerthella,Klebsiella,and Paraprevotella significantly increased in the SDBS group,whereas Lactobacillus decreased significantly.Moreover,alterations in the microbiome in the SDBS and QBDS groups were closely related to the levels of E2 and AMH.The area under the receiver operating characteristic curve for the classification of the two syndromes by the gut microbiome was 0.71.CONCLUSIONS:There were significant differences in the dominant microbiota between the SDBS and QBDS groups,and the change in Proteobacteria in the QBDS group was more significant.The characteristics of gut microbiota help us differentiate between the SDBS and QBDS groups,which may provide a basis for the objectification of TCM syndrome types.展开更多
This article comments on the work by Soresi and Giannitrapani.The authors have stated that one of the most novel and promising treatments for metabolic dysfunction-associated steatotic liver disease(MASLD)is the use o...This article comments on the work by Soresi and Giannitrapani.The authors have stated that one of the most novel and promising treatments for metabolic dysfunction-associated steatotic liver disease(MASLD)is the use of glucagon-like peptide 1 receptor agonists,especially when used in combination therapy.However,despite their notable efficacy,these drugs were not initially designed to target MASLD directly.In a groundbreaking development,the Food and Drug Administration has recently approved resmetirom,the first treatment specifically aimed at reducing liver fibrosis in metabolic-associated steatohepatitis.Resmetirom,an orally administered,liver-directed thyroid hormone beta-selective agonist,acts directly on intrahepatic pathways,enhancing its therapeutic potential and marking the beginning of a new era in the treatment of MASLD.Furthermore,the integration of lifestyle modifications into liver disease management is an essential component that should be considered and reinforced.By incorporating dietary changes and regular physical exercise into treatment,patients may achieve improved outcomes,reducing the need for pharmacological interventions and/or improving treatment efficacy.As a complement to medical therapies,lifestyle factors should not be overlooked in the broader strategy for managing MASLD.展开更多
Extensive research has investigated the etiology of Crohn’s disease(CD),encompassing genetic predisposition,lifestyle factors,and environmental triggers.Recently,the gut microbiome,recognized as the human body’s sec...Extensive research has investigated the etiology of Crohn’s disease(CD),encompassing genetic predisposition,lifestyle factors,and environmental triggers.Recently,the gut microbiome,recognized as the human body’s second-largest gene pool,has garnered significant attention for its crucial role in the patho-genesis of CD.This paper investigates the mechanisms underlying CD,focusing on the role of‘creeping fat’in disease progression and exploring emerging therapeutic strategies,including fecal microbiota transplantation,enteral nutri-tion,and therapeutic diets.Creeping fat has been identified as a unique patho-logical feature of CD and has recently been found to be associated with dysbiosis of the gut microbiome.We characterize this dysbiotic state by identi-fying key microbiome-bacteria,fungi,viruses,and archaea,and their contributions to CD pathogenesis.Additionally,this paper reviews contemporary therapies,empha-sizing the potential of biological therapies like fecal microbiota transplantation and dietary interventions.By elucidating the complex interactions between host-microbiome dynamics and CD pathology,this article aims to advance our under-standing of the disease and guide the development of more effective therapeutic strategies for managing CD.展开更多
The onset and progression of type 2 diabetes mellitus(T2DM)are strongly associated with imbalances in gut bacteria,making the gut microbiome a new potential therapeutic focus.This commentary examines the recent public...The onset and progression of type 2 diabetes mellitus(T2DM)are strongly associated with imbalances in gut bacteria,making the gut microbiome a new potential therapeutic focus.This commentary examines the recent publication in World Journal of Diabetes.The article explores the association between T2DM and gut microbiota,with a focus on the pathophysiological changes related to dysbiosis.It proposes innovative microbiome-targeted therapeutic strategies and evaluates the challenges and future directions of such approaches.This editorial summarizes the key points of their discussion of the role of the gut microbiome in T2DM and elaborates on the influence of specific gut microbial species on the disease through the host–microbiota metabolic axis.It provides new insights for future research on gut-microbiota-based interventions for T2DM.展开更多
The environments of tropical and subtropical coral reef regions(CRR)differ from each other;however,it is not known if these environmental differences influence coral polyp and skeleton microbiome composition.In this s...The environments of tropical and subtropical coral reef regions(CRR)differ from each other;however,it is not known if these environmental differences influence coral polyp and skeleton microbiome composition.In this study,Coelastrea palauensis corals were collected from tropical and subtropical CRR in the South China Sea,and bacterial,archaeal,and fungal communities in polyps and skeletons were analyzed.Results showed that the microbial diversity and composition of C.palauensis significantly differed between the polyps and skeletons,and between the tropical and subtropical CRR.Regarding bacteria associated with corals,C.palauensis was mainly associated with bacteria closely related to the nitrogen cycle in the subtropical CRR.The relative abundances of Terasakiellaceae and Chlorobium in both coral polyps and skeletons in the subtropical CRR were higher than those in the tropical CRR.In the tropical CRR,C.palauensis was mainly associated with opportunistic pathogenic bacteria.The relative abundances of Tenacibaculum and Vibrio in coral polyps and skeletons in the tropical CRR were higher than those in the subtropical CRR.Regarding archaea associated with corals,polyps and skeletons of C.palauensis in both tropical and subtropical reef areas were dominated by n_Woesearchaeales,and the relative abundance of n_Woesearchaeales in skeletons is significantly higher than that in polyps.In addition,the relative abundances of n_Woesearchaeales in polyps and skeletons in the subtropical CRR were significantly higher than those in the tropical CRR.Regarding fungi associated with corals,Ascomycota was dominant in polyps and skeletons in the subtropical CRR,while Sordariomycetes,Periconia,Cladosporium,and Aspergillus were dominant in polyps and skeletons in the tropical CRR.Besides,the diversity differences of coral-associated microorganisms were related to environmental factors such as nutrients and temperature that may affect the survival of coral-associated microorganisms.These results implied that corals may adjust the composition of microorganisms,conducive the coral holobiont to better adapting the environment.Our research will be beneficial in understanding the differences and adaptations of coral polyp and skeletal microbiome.展开更多
This study investigates the diversity of gut microbiota in Metaphire peguana,an earthworm species commonly found in agricultural areas of Thailand.Earthworms play a critical role in soil ecosystems by supporting nutri...This study investigates the diversity of gut microbiota in Metaphire peguana,an earthworm species commonly found in agricultural areas of Thailand.Earthworms play a critical role in soil ecosystems by supporting nutrient cycling and breaking down organic matter.Understanding the microbial diversity in their gut is essential for exploring their ecological contributions.Using Next Generation Sequencing(NGS),we analyzed the mycobiome in the gut of M.peguana.Our findings revealed a high diversity of fungal species,primarily belonging to two major phyla:Ascomycota and Basidiomycota.Ascomycota was the most abundant phylum,comprising 40.1% of the total fungal species identified.A total of 33 distinct fungal species were identified,which underscores the richness of microbial life within the earthworm gut.This study successfully created the first genetic database of the microbial community in M.peguana,providing a foundation for future research in agricultural applications.The microbial species identified,particularly siderophoreproducing fungi,could have significant implications for improving soil fertility and promoting sustainable agricultural practices.The use of NGS technology has enabled comprehensive profiling of microbial communities,allowing for precise identification of fungi that may play essential roles in soil health.Furthermore,the study paves the way for future studies on the potential applications of earthworm gut microbiomes in biotechnology,especially in enhancing soil nutrient availability and plant growth.The findings of this research contribute to the broader understanding of the ecological roles of earthworms and their microbiomes in soil ecosystems.展开更多
Menopause is characterized by the cessation of menstruation and a decline in reproductive function,which is an intrinsic component of the aging process.However,it has been a frequently overlooked field of women’s hea...Menopause is characterized by the cessation of menstruation and a decline in reproductive function,which is an intrinsic component of the aging process.However,it has been a frequently overlooked field of women’s health.The oral and gut microbiota,constituting the largest ecosystem within the human body,are important for maintaining human health and notably contribute to the healthy aging of menopausal women.Therefore,a comprehensive review elucidating the impact of the gut and oral microbiota on menopause for healthy aging is of paramount importance.This paper presents the current understanding of the microbiome during menopause,with a particular focus on alterations in the oral and gut microbiota.Our study elucidates the complex interplay between the microbiome and sex hormone levels,explores microbial crosstalk dynamics,and investigates the associations between the microbiome and diseases linked to menopause.Additionally,this review explores the potential of microbiome-targeting therapies for managing menopause-related diseases.Given that menopause can last for approximately 30 years,gaining insights into how the microbiome and menopause interact could pave the way for innovative interventions,which may result in symptomatic relief from menopause and an increase in quality of life in women.展开更多
Phyllosphere microbiome plays an irreplaceable role in maintaining plant health under stress,but its structure and functions in heavy metal-hyperaccumulating plants remain elusive.Here,the phyllosphere microbiome,inha...Phyllosphere microbiome plays an irreplaceable role in maintaining plant health under stress,but its structure and functions in heavy metal-hyperaccumulating plants remain elusive.Here,the phyllosphere microbiome,inhabiting hyperaccumulating(HE)and non-hyperaccumulating ecotype(NHE)of Sedum alfredii grown in soils with varying heavy metal concentration,was characterized.Compared with NHE,the microbial communityα-diversity was greater in HE.Core phyllosphere taxa with high relative abundance(>10%),including Streptomyces and Nocardia(bacteria),Cladosporium and Acremonium(fungi),were significantly related to cadmium(Cd)and zinc(Zn)concentration and biomass of host plants.Moreover,microbial co-occurrence networks in HE exhibited greater complexity than those in NHE.Additionally,proportions of positive associations in HE bacterial networks increased with the rising heavy metal concentration,indicating a higher resistance of HE phyllosphere microbiome to heavy metal stress.Furthermore,in contrast to NHE,microbial community functions,primarily involved in heavy metal stress resistance,were more abundant in HE,in which microbiome assisted hosts to resist heavy metal stress better.Collectively,this study indicated that phyllosphere microbiome of the hyperaccumulator played an indispensable role in assisting hosts to resist heavy metal stress,and provided new insights into phyllosphere microbial application potential in phytoremediation.展开更多
Growth hormone-secreting pituitary adenomas(GHPAs)cause acromegaly,a condition characterized by persistent excess of growth hormone(GH)and its target hormone,insulin-like growth factor 1(IGF-1).This hormonal imbalance...Growth hormone-secreting pituitary adenomas(GHPAs)cause acromegaly,a condition characterized by persistent excess of growth hormone(GH)and its target hormone,insulin-like growth factor 1(IGF-1).This hormonal imbalance gives rise to diverse comorbidities,ultimately resulting in a shortened lifespan compared to the general population(Piccard et al.,2012).Extensive research has demonstrated that tumors exert a pivotal promoting effects on inflammation,and conversely,inflammatory responses exert reciprocal influence on various biological processes of tumors(Fridlender et al.,2009;Piccard et al.,2012).The microbiome profoundly impacts brain function,behavior,and neuroendocrine responses to stress.Through the hypothalamic-pituitary-adrenal(HPA)axis,the neuroendocrine system modulates the composition and permeability of the gastrointestinal tract,indicating a bidirectional network between gut microbiome and neuroendocrine system(Farzi et al.,2018).In the present study,we explored the microbiome profile in patients with GH adenomas and its potential role in inflammation,utilizing Mendelian randomization(MR)to reveal the casual relationship between microbiome and inflammation markers.展开更多
Increased accumulation of oxytetracycline(OTC)in environmental water bodies could potentially lead to its accumulation in human body,thereby damaging human intestinal tract.Dietary interventions could be helpful for r...Increased accumulation of oxytetracycline(OTC)in environmental water bodies could potentially lead to its accumulation in human body,thereby damaging human intestinal tract.Dietary interventions could be helpful for recovery of intestinal morphology and function.Therefore,this study set zebrafish as model to explore the potential of kefir supplementation in the recovery of intestinal damage caused by exposure to OTC.In experiments by zebrafish,the rearing units used were glass tanks,each with volume of 5 L.The tanks were stocked with 12 zebrafish each.For each treatment,there were 8 replicate tanks.The zebrafish were treated with OTC followed by the addition of kefir to the food.The results showed positive improvements with kefir supplementation.Kefir treatment mitigated intestinal inflammation by reducing the levels of TNF-α,IL-6,and IL-1β;enhancing the activity of the antioxidant enzymes catalase,superoxide dismutase,glutathione peroxidase and increasing the gene expression of intestinal tight junction proteins(ZO-1a and ZO-1b).These effects were beneficial for reversing reduced integrity of intestinal barrier caused by OTC.Moreover,kefir helped to reverse the disruption of gut microbiota caused by OTC and further impacted host metabolism.Specifically,Lactobacillus kefiranofaciens and Lactobacillus kefiri,which were derived from the kefir microbiota,were found to be enriched in the zebrafish intestine.This helped to inhibit the increased abundance of some Proteobacteria species induced by OTC treatment.Liver metabolomics analysis revealed that kefir improved OTC-induced disruptions in the tricarboxylic acid cycle,glycerophospholipid and amino acid metabolism.The differentially abundant metabolites identified included a total of 80 types after OTC exposure,with the abundance of 74 kinds significantly reversed following kefir treatment.Correlation analysis revealed that certain Proteobacteria species and above Lactobacillus species were closely linked with metabolic inhibition in zebrafish caused by OTC and metabolic restoration caused by kefir treatment,respectively.展开更多
Heat stress(HS)has become a significant challenge for poultry farming due to an increase in global temperatures.Existing literature suggests that the health effects of HS in chickens are related to its impact on the g...Heat stress(HS)has become a significant challenge for poultry farming due to an increase in global temperatures.Existing literature suggests that the health effects of HS in chickens are related to its impact on the gastrointestinal tract.While there is evidence of the detrimental consequences of HS on the gut structure,little is known about the effects of HS on the microbial population inhabiting this organ.Fortunately,recent advancements in"omics"technologies have made investigating the interaction between HS and the gut microbiota possible.Therefore,a systematic review was conducted to assess the effects of HS on chicken gut microbiota.In July 2024,a comprehensive literature search was performed across scientific repositories,including Scopus,PubMed,Science Direct,and Google Scholar.Eighteen studies met the eligibility criteria for inclusion and a qualitative synthesis of their results was conducted according to the PRISMA guidelines.Current evidence indicates that HS poses a significant challenge to the gastrointestinal system of chickens,resulting in a range of physiological reactions.These changes trigger fierce competition among beneficial microbial species for limited nutrients,promote microbial shifts from obligate to facultative anaerobes,and increase the abundance of microbial species with high resistance to elevated environmental temperatures.Furthermore,the proliferation of pathogens is exacerbated.Ultimately,gut microbiota profiling highlights changes in microbial diversity,alterations in the composition of microbial populations,disruptions in specific microbial functional pathways(tricarboxylic acid cycle,amino acid metabolism,antioxidant biosynthesis,and fatty acid degradation),and the breakdown of complex networks that govern microbial interactions.Understanding the complex relationship between HS and microbial shifts within the chicken gut can provide valuable insights for the development of sustainable mitigation strategies.Further research is needed to expand the current knowledge and employ more advanced literature synthesis techniques such as meta-analyses.展开更多
文摘Increased circulating branched-chain amino acids(BCAAs)have been involved in the pathogenesis of obesity and insulin resistance.However,evidence relating berberine(BBR),gut microbiota,BCAAs,and insulin resis⁃tance is limited.Here,we showed that BBR could effectively rectify steatohepatitis and glucose intolerance in high-fat diet(HFD)-fed mice.BBR reorganized gut microbiota populations under both the normal chow diet(NCD)and HFD.Particu⁃larly,BBR noticeably decreased the relative abundance of BCAA-producing bacteria,including order Clostridiales;fami⁃lies Streptococcaceae,Clostridiaceae,and Prevotellaceae;and genera Streptococcus and Prevotella.Compared with the HFD group,predictive metagenomics indicated a reduction in the proportion of gut microbiota genes involved in BCAA biosynthesis but the enrichment genes for BCAA degradation and transport by BBR treatment.Accordingly,the elevated serum BCAAs of HFD group were significantly decreased by BBR.Furthermore,the Western blotting results implied that BBR could promote the BCAA catabolism in the liver and epididymal white adipose tissues of HFD-fed mice by acti⁃vation of the multienzyme branched-chain α-ketoacid dehydrogenase complex,whereas by inhibition of the phosphoryla⁃tion state of BCKDHA(E1α subunit)and branched-chain α-ketoacid dehydrogenase kinase.The ex vivo assay further confirmed that BBR could increase BCAA catabolism in both AML12 hepatocytes and 3T3-L1 adipocytes.Finally,data from healthy subjects and diabetics confirmed that BBR could improve glycemic control and modulate circulating BCAAs.Besides,functional microbiomics integrated high-throughput microbial genomics,metabolomics and molecular biotechnology has also been successfully applied to reveal the anti-obesity mechanism of hydroxysafflor yellow A.
基金supported by the National Natural Science Foundation of China(No.82072557)National Key Research and Development Program of China(No.2021YFC2500900)+5 种基金Fundamental Research Funds for the Central Universities(Grant No.YG2023QNB04)Shanghai Municipal Education Commission-Gaofeng Clinical Medicine Grant of China(No.20172005)support was provided by the Program of Shanghai Academic Research Leader from the Science and Technology Commission of Shanghai Municipality,China(No.20XD1402300)Novel Interdisciplinary Research Project from the Shanghai Municipal Health Commission,China(No.2022JC023)Interdisciplinary Program of Shanghai Jiao Tong University,China(No.YG2023ZD04)Clinical Research Project in Health Services of the Shanghai Municipal Health Commission of China(No.202240089).
文摘Esophageal cancer is a prevalent and aggressive malignancy associated with a poor prognosis.Metabolomics and microbiomics have emerged as promising approaches for investigating the tumor microenvironment and monitoring dynamic changes throughout the treatment process.These methodologies facilitate the direct observation of phenotypic alterations with high sensitivity,throughput,and adaptability across diverse sample types.Microbial genomic data play a crucial role in predicting the metabolic potential of microorganisms,whereas metabolomics offers direct evidence of active metabolic pathways under specific conditions.This review presents novel insights into the pathogenesis,diagnosis,and treatment of esophageal cancer through the application of metabolomics and microbiomics.Future advancements in the integration of multi-omics data are expected to further elucidate the metabolic mechanisms and pathophysiological processes underlying esophageal cancer,thereby laying a robust scientific foundation for early diagnosis,prognostic assessment,and personalized treatment strategies.
基金supported by grants from the Natural Science Foundation of Chongqing(Grant No.CSTB2024NSCQ-MSX0478).
文摘Colorectal cancer(CRC)is a common malignant tumor with a high mortality rate worldwide.Advanced CRC often leads to liver metastasis,which has a poor prognosis,highlighting the need to investigate the underlying mechanisms.Omics,encompassing genomics,epigenomics,transcriptomics,proteomics,metabolomics,and microbiomics,enables comprehensive molecular analysis of cells and tissues.Tumor-omics research has advanced rapidly,with growing attention on CRC-related omics.However,systematic reviews on omics research specific to colorectal cancer liver metastasis(CRLM)are limited.This review summarizes the current status and progress of multi-omics research on CRLM and discusses the application of multi-omics technologies in basic research and the significant clinical implications.
基金funded by the National Key Research and Development Program of China (2023YFE0124400)the Specific university discipline construction project (2023B10564001)+1 种基金grants administered by the Arkansas Biosciences Institute and the USDAa core grant (P20GM121293, proteogenomics core)。
文摘Background Sow longevity and reproductivity are essential in the modern swine industry.Although many studies have focused on the genetic and genomic factors for selection,little is known about the associations between the microbiome and sows with longevity in reproduction.Results In this study,we collected and sequenced rectal and vaginal swabs from 48 sows,nine of which completed up to four parities(U4P group),exhibiting reproductive longevity.We first identified predictors of sow longevity in the rectum(e.g.,Akkermansia)and vagina(e.g.,Lactobacillus)of the U4P group using RandomForest in the early breeding stage of the first parity.Interestingly,these bacteria in the U4P group showed decreased predicted KEGG gene abundance involved in the biosynthesis of amino acids.Then,we tracked the longitudinal changes of the micro-biome over four parities in the U4P sows.LEfSe analysis revealed parity-associated bacteria that existed in both the rectum and vagina(e.g.,Streptococcus in Parity 1,Lactobacillus in Parity 2,Veillonella in Parity 4).We also identi-fied patterns of bacterial change between the early breeding stage(d 0)and d 110,such as Streptococcus,which was decreased in all four parties.Furthermore,sows in the U4P group with longevity potential also showed better reproductive performance.Finally,we discovered bacterial predictors(e.g.,Prevotellaceae NK3B31 group)for the total number of piglets born throughout the four parities in both the rectum and vagina.Conclusions This study highlights how the rectal and vaginal microbiome in sows with longevity in reproduc-tion changes within four parities.The identification of parity-associated,pregnancy-related,and reproductive performance-correlated bacteria provides the foundation for targeted microbiome modulation to improve animal production.
文摘BACKGROUND Colorectal cancer is the third most common malignancy and the fourth leading cause of cancer-related deaths worldwide.Several studies have shown an association between gut microbiota and colorectal cancer.Gut microbiota is unique and can be influenced by geographic factors and habits.This study aimed to determine the diversity and composition of colonic mucosal microbiota in patients with and without colorectal cancer.AIM To determine the diversity and composition of colonic mucosal microbiota in patients with and without colorectal cancer in Indonesia.METHODS This case-control study included 59 subjects(35 colorectal cancer patients and 24 non-colorectal cancer patients indicated for colonoscopy at Dr.Cipto Mangunkusumo Gastrointestinal Endoscopy Center and Fatmawati Hospital.Microbiota examination was performed using 16S rRNA sequencing.Bioinformatics analysis was performed using the wf-metagenomics pipeline from EPI2Me-Labs(Oxford Nanopore Technologies platform).RESULTS Patients with colorectal cancer had a higher median index value on the Shannon index(3.28 vs 2.82,P>0.05)and a lower value on the Simpson index(0.050 vs 0.060,P>0.05).Significant differences in beta diversity were observed at the genus(P=0.002)and species levels(P=0.001).Firmicutes,Proteobacteria,Bacteroidetes,and Fusobacteria were the dominant phyla.The genera Bacteroides,Campylobacter,Peptostreptococcus,and Parvimonas were found more frequently in colorectal cancer,while Faecalibacterium,Haemophilus,and Phocaeicola were more frequently found in non-colorectal cancer.The relative abundance of Fusobacterium nucleatum,Bacteroides fragilis,Enterococcus faecalis,Campylobacter hominis,and Enterococcus faecalis species was significantly elevated in patients with colorectal cancer.Meanwhile,Faecalibacterium prausnitzii,Faecalibacterium duncaniae,and Prevotella copri were more commonly found in non-colorectal cancer.CONCLUSION Patients with colorectal cancer exhibit distinct differences in the composition and diversity of their colonic mucosal microbiota compared to those with non-colorectal cancer.This study was reviewed and approved by the Ethics Committee of Faculty of Medicine,Universitas Indonesia(No.KET-1517/UN2.F1/ETIK/PPM.00.02/2023).
基金financially supported by the National Key Research and Development Program of China(2023YFD2000701)the Natural Science Foundation of Heilongjiang Province,China(YQ2023C011)+1 种基金the Key Research and Development Program of Heilongjiang Province,China(Grant no.2022ZX01A24)the Key Laboratory of Low-carbon Green Agriculture in Northeastern China,Ministry of Agriculture and Rural Affairs of China(LCGANE14)。
文摘As a major contributor to methane production in agriculture,there is a need for a suitable methane inhibitor to reduce ruminant methane emissions and minimize the impact on the climate.This work aimed to explore the influence of cordycepin on rumen fermentation,gas production,microbiome and their metabolites.A total of 0.00,0.08,0.16,0.32,and 0.64 g L^(–1)cordycepin were added into fermentation bottles containing 2 g total mixed ration for in vitro ruminal fermentation,and then the gas produced and fermentation parameters were measured for each bottle.Samples from the 0 and 0.64 g L^(–1)cordycepin addition were selected for 16S rRNA gene sequencing and metabolome analysis.The result of this experiment indicated that the addition of cordycepin could linearly increase the concentration of total volatile fatty acid,ammonia nitrogen,the proportion of propionate,valerate,and isovalerate,and linearly reduce ruminal pH and methane,carbon dioxide,hydrogen and total gas production,as well as the methane proportion,carbon dioxide proportion and proportion of butyrate.In addition,there was a quadratic relationship between hydrogen and cordycepin addition.At the same time,the relative abundance of Succiniclasticum,Prevotella,Rikenellaceae_RC9_gut_group,NK4A214_group,Christensenellaceae_R_(7)_group,unclassified_F082,Veillonellaceae_UCG_001,Dasytricha,Ophryoscolex,Isotricha,unclassified_Eukaryota,Methanobrevibacter,and Piromyces decreased significantly after adding the maximum dose of cordycepin.In contrast,the relative abundance of Succinivibrio,unclassified_Succinivibrionaceae,Prevotellaceae_UCG_001,unclassified_Lachnospiraceae,Lachnospira,Succinivibrionaceae_UCG_002,Pseudobutyrivibrio,Entodinium,Polyplastron,unclassified_Methanomethylophilaceae,Methanosphaera,and Candidatus_Methanomethylophilus increased significantly.Metabolic pathways such as biosynthesis of unsaturated fatty acids and purine metabolism and metabolites such as arachidonic acid,adenine,and 2′-deoxyguanosine were also affected by the addition of cordycepin.Based on this,we conclude that cordycepin is an effective methane emission inhibitor that can change the rumen metabolites and fermentation parameters by influencing the rumen microbiome,thus regulating rumen methane production.This experiment may provide a potential theoretical reference for developing Cordyceps byproduct or additives containing cordycepin as methane inhibitors.
基金supported by the National Natural Science Foundation of China(32371596)Key Natural Science Foundation of Zhejiang Province(Z25C030002)+2 种基金Science and Technology Innovation Yongjiang 2035 Key Research and Development Project of Ningbo(2024Z279)One Health Interdisciplinary Research Project(HZ202404)K.C.Wong Magna Fund in Ningbo University。
文摘Probiotic supplementation enhances the abundance of gutassociated Rhodobacteraceae species,critical symbionts contributing to the health and physiological fitness of Litopenaeus vannamei.Understanding the role of Rhodobacteraceae in shaping the shrimp gut microbiota is essential for optimizing probiotic application.This study investigated whether probiotics benefit shrimp health and fitness via the recruitment of Rhodobacteraceae commensals in the gut.Probiotic supplementation significantly enhanced feed conversion efficiency,digestive enzyme activity,and immune responses,thereby promoting shrimp growth.Additionally,probiotics induced pronounced shifts in gut microbial composition,enriched gut Rhodobacteraceae abundance,and reduced community variability,leading to a more stable gut microbiome.Network analysis revealed that the removal of Rhodobacteraceae nodes disrupted gut microbial connectivity more rapidly than the removal of nonRhodobacteraceae nodes,indicating a disproportionate role of Rhodobacteraceae in maintaining network stability.Probiotic supplementation facilitated the migration of Rhodobacteraceae taxa from the aquatic environment to the shrimp gut while reinforcing deterministic selection in gut microbiota assembly.Transcriptomic analysis revealed that up-regulation of amino acid metabolism and NF-κB signaling pathways was positively correlated with Rhodobacteraceae abundance.These findings demonstrate that probiotic supplementation enriches key Rhodobacteraceae taxa,stabilizes gut microbial networks,and enhances host digestive and immune functions,ultimately improving shrimp growth performance.This study provides novel perspectives on the ecological and molecular mechanisms underlying the beneficial effects of probiotics on shrimp fitness.
基金Supported by the Natural Science Foundation of Jilin Province,No.YDZJ202401182ZYTSJilin Provincial Key Laboratory of Precision Infectious Diseases,No.20200601011JCJilin Provincial Engineering Laboratory of Precision Prevention and Control for Common Diseases,Jilin Province Development and Reform Commission,No.2022C036.
文摘Artificial intelligence(AI)is driving a paradigm shift in gastroenterology and hepa-tology by delivering cutting-edge tools for disease screening,diagnosis,treatment,and prognostic management.Through deep learning,radiomics,and multimodal data integration,AI has achieved diagnostic parity with expert cli-nicians in endoscopic image analysis(e.g.,early gastric cancer detection,colorectal polyp identification)and non-invasive assessment of liver pathologies(e.g.,fibrosis staging,fatty liver typing)while demonstrating utility in personalized care scenarios such as predicting hepatocellular carcinoma recurrence and opti-mizing inflammatory bowel disease treatment responses.Despite these advance-ments challenges persist including limited model generalization due to frag-mented datasets,algorithmic limitations in rare conditions(e.g.,pediatric liver diseases)caused by insufficient training data,and unresolved ethical issues related to bias,accountability,and patient privacy.Mitigation strategies involve constructing standardized multicenter databases,validating AI tools through prospective trials,leveraging federated learning to address data scarcity,and de-veloping interpretable systems(e.g.,attention heatmap visualization)to enhance clinical trust.Integrating generative AI,digital twin technologies,and establishing unified ethical/regulatory frameworks will accelerate AI adoption in primary care and foster equitable healthcare access while interdisciplinary collaboration and evidence-based implementation remain critical for realizing AI’s potential to redefine precision care for digestive disorders,improve global health outcomes,and reshape healthcare equity.
基金supported by the National Natural Science Foundation of China(Nos.52150056 and 51838005)the Basic and Applied Basic Research Foundation of Guangdong Province(No.2023A1515111061).
文摘The kitchen-oil wastewater is characterized by a high concentration of organicmatter,complex composition and refractory pollutants,which make wastewater treatment more difficult.Based on the study of using micro-electric field characteristic catalyst HCLL-S8-M to enhance the electron transfer between microorganisms in kitchen-oil wastewater which further improved the COD removal rate,we focus on themicrobial community,intracellular metabolism and extracellular respiration,and make an in-depth analysis of the molecular biological mechanisms to microbial treatment in wastewater.It is found that electroactive microorganisms are enriched on the material surface,and the expression levels of cytochrome c and riboflavin genes related to electron transfer are up-regulated,confirming that the surface micro-electric field structure could enhance the electron transfer between microbial species and improve the efficiency ofwastewater degradation.This study provides a new idea for the treatment of refractory organic wastewater.
基金Sanming Project of Medicine in Shenzhen:the First Affiliated Hospital of Guangzhou University of Traditional Chinese Medicine,Luo Songping National Famous Chinese Medicine Practitioner Female Reproductive Disorders Prevention and Treatment Team(SZZYSM202311010)Guangdong Provincial Administration of Traditional Chinese Medicine:Investigation of the Mechanism of Regulating Ren-Tong-Du Acupuncture on Ovarian Granulosa Cells in Polycystic Ovary Syndrome based on Activin A/Smads Signalling Pathway(No.20181229)+1 种基金Guangdong Provincial Administration of Traditional Chinese Medicine:Evaluation of the Efficacy of Menstrual Regulation and Pregnancy Promotion by Acupuncture in the Treatment of Premature Ovarian Insufficiency(No.20201294)Shenzhen Science and Innovation Commission:Investigating the Mechanism of Action of Acupuncture in Regulating the Gut Microbiome to Inhibit Apoptosis of Ovarian Granulosa Cells in Premature Ovarian Insufficiency Mice based on the Rictor/Torepamycin Target Protein C2 Pathway(No.JCYJ20210324130001004)。
文摘PURPOSE:To investigate the differences in gut microbial characteristics between two traditional Chinese syndromes of premature ovarian insufficiency(POI).METHODS:Forty women with POI were recruited from the Department of Traditional Chinese Medicine at Shenzhen Maternity and Child Healthcare Hospital between June and December 2020.Women with POI were divided into the kidney deficiency and blood stasis syndrome(SDBS)and Qi and blood deficiency syndrome(QBDS)groups.Gut microbial community profiles were analyzed by 16S rRNA gene sequencing using an Illumina Mi Seq system.A retrospective study comparing hormone levels and gut microbiota information was performed between the SDBS and QBDS groups.RESULTS:Compared with the QBDS group,the serum levels of estradiol(E2)and anti-Müllerian hormone(AMH)were significantly decreased in the SDBS group.The quantities of Adlercreutzia,Eggerthella,Klebsiella,and Paraprevotella significantly increased in the SDBS group,whereas Lactobacillus decreased significantly.Moreover,alterations in the microbiome in the SDBS and QBDS groups were closely related to the levels of E2 and AMH.The area under the receiver operating characteristic curve for the classification of the two syndromes by the gut microbiome was 0.71.CONCLUSIONS:There were significant differences in the dominant microbiota between the SDBS and QBDS groups,and the change in Proteobacteria in the QBDS group was more significant.The characteristics of gut microbiota help us differentiate between the SDBS and QBDS groups,which may provide a basis for the objectification of TCM syndrome types.
文摘This article comments on the work by Soresi and Giannitrapani.The authors have stated that one of the most novel and promising treatments for metabolic dysfunction-associated steatotic liver disease(MASLD)is the use of glucagon-like peptide 1 receptor agonists,especially when used in combination therapy.However,despite their notable efficacy,these drugs were not initially designed to target MASLD directly.In a groundbreaking development,the Food and Drug Administration has recently approved resmetirom,the first treatment specifically aimed at reducing liver fibrosis in metabolic-associated steatohepatitis.Resmetirom,an orally administered,liver-directed thyroid hormone beta-selective agonist,acts directly on intrahepatic pathways,enhancing its therapeutic potential and marking the beginning of a new era in the treatment of MASLD.Furthermore,the integration of lifestyle modifications into liver disease management is an essential component that should be considered and reinforced.By incorporating dietary changes and regular physical exercise into treatment,patients may achieve improved outcomes,reducing the need for pharmacological interventions and/or improving treatment efficacy.As a complement to medical therapies,lifestyle factors should not be overlooked in the broader strategy for managing MASLD.
文摘Extensive research has investigated the etiology of Crohn’s disease(CD),encompassing genetic predisposition,lifestyle factors,and environmental triggers.Recently,the gut microbiome,recognized as the human body’s second-largest gene pool,has garnered significant attention for its crucial role in the patho-genesis of CD.This paper investigates the mechanisms underlying CD,focusing on the role of‘creeping fat’in disease progression and exploring emerging therapeutic strategies,including fecal microbiota transplantation,enteral nutri-tion,and therapeutic diets.Creeping fat has been identified as a unique patho-logical feature of CD and has recently been found to be associated with dysbiosis of the gut microbiome.We characterize this dysbiotic state by identi-fying key microbiome-bacteria,fungi,viruses,and archaea,and their contributions to CD pathogenesis.Additionally,this paper reviews contemporary therapies,empha-sizing the potential of biological therapies like fecal microbiota transplantation and dietary interventions.By elucidating the complex interactions between host-microbiome dynamics and CD pathology,this article aims to advance our under-standing of the disease and guide the development of more effective therapeutic strategies for managing CD.
文摘The onset and progression of type 2 diabetes mellitus(T2DM)are strongly associated with imbalances in gut bacteria,making the gut microbiome a new potential therapeutic focus.This commentary examines the recent publication in World Journal of Diabetes.The article explores the association between T2DM and gut microbiota,with a focus on the pathophysiological changes related to dysbiosis.It proposes innovative microbiome-targeted therapeutic strategies and evaluates the challenges and future directions of such approaches.This editorial summarizes the key points of their discussion of the role of the gut microbiome in T2DM and elaborates on the influence of specific gut microbial species on the disease through the host–microbiota metabolic axis.It provides new insights for future research on gut-microbiota-based interventions for T2DM.
基金The National Natural Science Foundation of China under contract Nos 42206157,42030502,and 42090041the Natural Science Foundation of Guangxi Province under contract No.2022GXNSFBA035449the Self-Topic Project of Guangxi Laboratory on the Study of Coral Reefs in the South China Sea under contract No.GXLSCRSCS2022103.
文摘The environments of tropical and subtropical coral reef regions(CRR)differ from each other;however,it is not known if these environmental differences influence coral polyp and skeleton microbiome composition.In this study,Coelastrea palauensis corals were collected from tropical and subtropical CRR in the South China Sea,and bacterial,archaeal,and fungal communities in polyps and skeletons were analyzed.Results showed that the microbial diversity and composition of C.palauensis significantly differed between the polyps and skeletons,and between the tropical and subtropical CRR.Regarding bacteria associated with corals,C.palauensis was mainly associated with bacteria closely related to the nitrogen cycle in the subtropical CRR.The relative abundances of Terasakiellaceae and Chlorobium in both coral polyps and skeletons in the subtropical CRR were higher than those in the tropical CRR.In the tropical CRR,C.palauensis was mainly associated with opportunistic pathogenic bacteria.The relative abundances of Tenacibaculum and Vibrio in coral polyps and skeletons in the tropical CRR were higher than those in the subtropical CRR.Regarding archaea associated with corals,polyps and skeletons of C.palauensis in both tropical and subtropical reef areas were dominated by n_Woesearchaeales,and the relative abundance of n_Woesearchaeales in skeletons is significantly higher than that in polyps.In addition,the relative abundances of n_Woesearchaeales in polyps and skeletons in the subtropical CRR were significantly higher than those in the tropical CRR.Regarding fungi associated with corals,Ascomycota was dominant in polyps and skeletons in the subtropical CRR,while Sordariomycetes,Periconia,Cladosporium,and Aspergillus were dominant in polyps and skeletons in the tropical CRR.Besides,the diversity differences of coral-associated microorganisms were related to environmental factors such as nutrients and temperature that may affect the survival of coral-associated microorganisms.These results implied that corals may adjust the composition of microorganisms,conducive the coral holobiont to better adapting the environment.Our research will be beneficial in understanding the differences and adaptations of coral polyp and skeletal microbiome.
文摘This study investigates the diversity of gut microbiota in Metaphire peguana,an earthworm species commonly found in agricultural areas of Thailand.Earthworms play a critical role in soil ecosystems by supporting nutrient cycling and breaking down organic matter.Understanding the microbial diversity in their gut is essential for exploring their ecological contributions.Using Next Generation Sequencing(NGS),we analyzed the mycobiome in the gut of M.peguana.Our findings revealed a high diversity of fungal species,primarily belonging to two major phyla:Ascomycota and Basidiomycota.Ascomycota was the most abundant phylum,comprising 40.1% of the total fungal species identified.A total of 33 distinct fungal species were identified,which underscores the richness of microbial life within the earthworm gut.This study successfully created the first genetic database of the microbial community in M.peguana,providing a foundation for future research in agricultural applications.The microbial species identified,particularly siderophoreproducing fungi,could have significant implications for improving soil fertility and promoting sustainable agricultural practices.The use of NGS technology has enabled comprehensive profiling of microbial communities,allowing for precise identification of fungi that may play essential roles in soil health.Furthermore,the study paves the way for future studies on the potential applications of earthworm gut microbiomes in biotechnology,especially in enhancing soil nutrient availability and plant growth.The findings of this research contribute to the broader understanding of the ecological roles of earthworms and their microbiomes in soil ecosystems.
基金supported by Science&Technology Fundamental Resources Investigation Program(2022FY100800)the CAMS Innovation Fund for Medical Sciences(CIFMS)(2021-12M-1-023/2023-12M-C&T-B-005)+1 种基金Funding for Reform and Development of Beijing Municipal Health Commissionthe National High Level Hospital Clinical Research Funding(2022-PUMCH-B-094).
文摘Menopause is characterized by the cessation of menstruation and a decline in reproductive function,which is an intrinsic component of the aging process.However,it has been a frequently overlooked field of women’s health.The oral and gut microbiota,constituting the largest ecosystem within the human body,are important for maintaining human health and notably contribute to the healthy aging of menopausal women.Therefore,a comprehensive review elucidating the impact of the gut and oral microbiota on menopause for healthy aging is of paramount importance.This paper presents the current understanding of the microbiome during menopause,with a particular focus on alterations in the oral and gut microbiota.Our study elucidates the complex interplay between the microbiome and sex hormone levels,explores microbial crosstalk dynamics,and investigates the associations between the microbiome and diseases linked to menopause.Additionally,this review explores the potential of microbiome-targeting therapies for managing menopause-related diseases.Given that menopause can last for approximately 30 years,gaining insights into how the microbiome and menopause interact could pave the way for innovative interventions,which may result in symptomatic relief from menopause and an increase in quality of life in women.
基金supported by the National Natural Science Foundation of China(Nos.42177008,and 42377005)the fellowship of China Postdoctoral Science Foundation(No.2022M712770)the Fundamental Research Funds for the Central Universities.
文摘Phyllosphere microbiome plays an irreplaceable role in maintaining plant health under stress,but its structure and functions in heavy metal-hyperaccumulating plants remain elusive.Here,the phyllosphere microbiome,inhabiting hyperaccumulating(HE)and non-hyperaccumulating ecotype(NHE)of Sedum alfredii grown in soils with varying heavy metal concentration,was characterized.Compared with NHE,the microbial communityα-diversity was greater in HE.Core phyllosphere taxa with high relative abundance(>10%),including Streptomyces and Nocardia(bacteria),Cladosporium and Acremonium(fungi),were significantly related to cadmium(Cd)and zinc(Zn)concentration and biomass of host plants.Moreover,microbial co-occurrence networks in HE exhibited greater complexity than those in NHE.Additionally,proportions of positive associations in HE bacterial networks increased with the rising heavy metal concentration,indicating a higher resistance of HE phyllosphere microbiome to heavy metal stress.Furthermore,in contrast to NHE,microbial community functions,primarily involved in heavy metal stress resistance,were more abundant in HE,in which microbiome assisted hosts to resist heavy metal stress better.Collectively,this study indicated that phyllosphere microbiome of the hyperaccumulator played an indispensable role in assisting hosts to resist heavy metal stress,and provided new insights into phyllosphere microbial application potential in phytoremediation.
基金supported by the National Natural Science Foundation of China(82372624 to X.J.)Guangdong Basic and Applied Basic Research Foundation(2024A1515013102 and 2022A1515012430 to X.J.)The funders had no role in study design,data collection and interpretation,or the decision to submit the work for publication.
文摘Growth hormone-secreting pituitary adenomas(GHPAs)cause acromegaly,a condition characterized by persistent excess of growth hormone(GH)and its target hormone,insulin-like growth factor 1(IGF-1).This hormonal imbalance gives rise to diverse comorbidities,ultimately resulting in a shortened lifespan compared to the general population(Piccard et al.,2012).Extensive research has demonstrated that tumors exert a pivotal promoting effects on inflammation,and conversely,inflammatory responses exert reciprocal influence on various biological processes of tumors(Fridlender et al.,2009;Piccard et al.,2012).The microbiome profoundly impacts brain function,behavior,and neuroendocrine responses to stress.Through the hypothalamic-pituitary-adrenal(HPA)axis,the neuroendocrine system modulates the composition and permeability of the gastrointestinal tract,indicating a bidirectional network between gut microbiome and neuroendocrine system(Farzi et al.,2018).In the present study,we explored the microbiome profile in patients with GH adenomas and its potential role in inflammation,utilizing Mendelian randomization(MR)to reveal the casual relationship between microbiome and inflammation markers.
基金financially supported by the Zhejiang Zhongmengchang Health Technology Co.,Ltd.
文摘Increased accumulation of oxytetracycline(OTC)in environmental water bodies could potentially lead to its accumulation in human body,thereby damaging human intestinal tract.Dietary interventions could be helpful for recovery of intestinal morphology and function.Therefore,this study set zebrafish as model to explore the potential of kefir supplementation in the recovery of intestinal damage caused by exposure to OTC.In experiments by zebrafish,the rearing units used were glass tanks,each with volume of 5 L.The tanks were stocked with 12 zebrafish each.For each treatment,there were 8 replicate tanks.The zebrafish were treated with OTC followed by the addition of kefir to the food.The results showed positive improvements with kefir supplementation.Kefir treatment mitigated intestinal inflammation by reducing the levels of TNF-α,IL-6,and IL-1β;enhancing the activity of the antioxidant enzymes catalase,superoxide dismutase,glutathione peroxidase and increasing the gene expression of intestinal tight junction proteins(ZO-1a and ZO-1b).These effects were beneficial for reversing reduced integrity of intestinal barrier caused by OTC.Moreover,kefir helped to reverse the disruption of gut microbiota caused by OTC and further impacted host metabolism.Specifically,Lactobacillus kefiranofaciens and Lactobacillus kefiri,which were derived from the kefir microbiota,were found to be enriched in the zebrafish intestine.This helped to inhibit the increased abundance of some Proteobacteria species induced by OTC treatment.Liver metabolomics analysis revealed that kefir improved OTC-induced disruptions in the tricarboxylic acid cycle,glycerophospholipid and amino acid metabolism.The differentially abundant metabolites identified included a total of 80 types after OTC exposure,with the abundance of 74 kinds significantly reversed following kefir treatment.Correlation analysis revealed that certain Proteobacteria species and above Lactobacillus species were closely linked with metabolic inhibition in zebrafish caused by OTC and metabolic restoration caused by kefir treatment,respectively.
基金Open access funding provided by Swiss Federal Institute of Technology Zurich.
文摘Heat stress(HS)has become a significant challenge for poultry farming due to an increase in global temperatures.Existing literature suggests that the health effects of HS in chickens are related to its impact on the gastrointestinal tract.While there is evidence of the detrimental consequences of HS on the gut structure,little is known about the effects of HS on the microbial population inhabiting this organ.Fortunately,recent advancements in"omics"technologies have made investigating the interaction between HS and the gut microbiota possible.Therefore,a systematic review was conducted to assess the effects of HS on chicken gut microbiota.In July 2024,a comprehensive literature search was performed across scientific repositories,including Scopus,PubMed,Science Direct,and Google Scholar.Eighteen studies met the eligibility criteria for inclusion and a qualitative synthesis of their results was conducted according to the PRISMA guidelines.Current evidence indicates that HS poses a significant challenge to the gastrointestinal system of chickens,resulting in a range of physiological reactions.These changes trigger fierce competition among beneficial microbial species for limited nutrients,promote microbial shifts from obligate to facultative anaerobes,and increase the abundance of microbial species with high resistance to elevated environmental temperatures.Furthermore,the proliferation of pathogens is exacerbated.Ultimately,gut microbiota profiling highlights changes in microbial diversity,alterations in the composition of microbial populations,disruptions in specific microbial functional pathways(tricarboxylic acid cycle,amino acid metabolism,antioxidant biosynthesis,and fatty acid degradation),and the breakdown of complex networks that govern microbial interactions.Understanding the complex relationship between HS and microbial shifts within the chicken gut can provide valuable insights for the development of sustainable mitigation strategies.Further research is needed to expand the current knowledge and employ more advanced literature synthesis techniques such as meta-analyses.