Antimicrobial resistance has become a global problem that poses great threats to human health. Antimicrobials are widely used in broiler chicken production and consequently affect their gut microbiota and resistome. T...Antimicrobial resistance has become a global problem that poses great threats to human health. Antimicrobials are widely used in broiler chicken production and consequently affect their gut microbiota and resistome. To better understand how continuous antimicrobial use in farm animals alters their microbial ecology, we used a metagenomic approach to investigate the effects of pulsed antimicrobial administration on the bacterial community, antibiotic resistance genes(ARGs) and ARG bacterial hosts in the feces of broiler chickens. Chickens received three 5-day courses of individual or combined antimicrobials, including amoxicillin, chlortetracycline and florfenicol. The florfenicol administration significantly increased the abundance of mcr-1 gene accompanied by floR gene, while amoxicillin significantly increased the abundance of genes encoding the AcrAB-tolC multidrug efflux pump(marA, soxS, sdiA, rob, evgS and phoP).These three antimicrobials all led to an increase in Proteobacteria. The increase in ARG host, Escherichia, was mainly attributed to the β-lactam, chloramphenicol and tetracycline resistance genes harbored by Escherichia under the pulsed antimicrobial treatments. These results indicated that pulsed antimicrobial administration with amoxicillin,chlortetracycline, florfenicol or their combinations significantly increased the abundance of Proteobacteria and enhanced the abundance of particular ARGs. The ARG types were occupied by the multidrug resistance genes and had significant correlations with the total ARGs in the antimicrobial-treated groups. The results of this study provide comprehensive insight into pulsed antimicrobial-mediated alteration of chicken fecal microbiota and resistome.展开更多
Direct-fed microbials(DFM) are considered as a promising technique to improve animal productivity without affecting animal health or harming the environment.The potential of three bacterial DFM to reduce methane(CH4)e...Direct-fed microbials(DFM) are considered as a promising technique to improve animal productivity without affecting animal health or harming the environment.The potential of three bacterial DFM to reduce methane(CH4)emissions,modulate ruminal fermentation,milk production and composition of primiparous dairy cows was examined in this study.As previous reports have shown that DFM respond differently to different diets,two contrasting diets were used in this study.Eight lactating primiparous cows were randomly divided into two groups that were fed a corn silage-based,high-starch diet(HSD) or a grass silage-based,high-fiber diet(HFD).Cows in each dietary group were randomly assigned to four treatments in a 4 × 4 Latin square design.The bacterial DFM used were selected for their proven CH4-reducing effect in vitro.Treatments included control(without DFM) and 3 DFM treatments: Propionibacterium freudenreichii 53-W(2.9 × 10^10 colony forming units(CFU)/cow per day),Lactobacillus pentosus D31(3.6 × 10^11 CFU/cow per day) and Lactobacillus bulgaricus D1(4.6 × 10^10 CFU/cow per day).Each experimental period included 4 weeks of treatment and 1 week of wash-out,with measures performed in the fourth week of the treatment period.Enteric CH4 emissions were measured during 3 consecutive days using respiration chambers.Rumen samples were collected for ruminal fermentation parameters and quantitative microbial analyses.Milk samples were collected for composition analysis.Body weight of cows were recorded at the end of each treatment period.Irrespective of diet,no mitigating effect of DFM was observed on CH4 emissions in dairy cows.In contrast,Propionibacterium increased CH4 intensity by 27%(g CH4/kg milk) in cows fed HSD.There was no effect of DFM on other fermentation parameters and on bacterial,archaeal and protozoal numbers.Similarly,the effect of DFM on milk fatty acid composition was negligible.Propionibacterium and L.pentosus DFM tended to increase body weight gain with HSD.We conclude that,contrary to the effect previously observed in vitro,bacterial DFM Propionibacterium freudenreichii 53-W,Lactobacillus pentosus D31 and Lactobacillus bulgaricus D1 did not alter ruminal fermentation and failed to reduce CH4 emissions in lactating primiparous cows fed high-starch or high-fiber diets.展开更多
BACKGROUND:Breast hyperplasia is a common benign breast disease mainly caused by endocrine disorders,manifested as abnormal hyperplasia of breast tissue.In recent years,traditional Chinese medicine compounds and probi...BACKGROUND:Breast hyperplasia is a common benign breast disease mainly caused by endocrine disorders,manifested as abnormal hyperplasia of breast tissue.In recent years,traditional Chinese medicine compounds and probiotics have shown good potential in regulating the endocrine system and improving the intestinal microecology,providing new ideas for the treatment of breast hyperplasia.OBJECTIVE:To explore the effects and mechanisms of traditional Chinese medicine compounds and fermented probiotic compounds on breast hyperplasia in mice,providing new theoretical and experimental bases for the clinical treatment and prevention of breast hyperplasia.METHODS:(1)Network pharmacology tools were used to predict the anti-breast-hyperplasia activity of Herba Gueldenstaedtiae(Euphorbia humifusa),as well as its potential targets and signaling pathways.The databases included:TCMSP,OMIM,GeneCards database,UniProt website,Venny2.1.0 website,Metascape,HERB website,and STRING database,all of which are open-access databases.Network pharmacology can predict and screen key information such as the targets corresponding to the active ingredients of traditional Chinese medicine,disease targets,and action pathways through network analysis and computer-system analysis.Therefore,it has been increasingly widely used in the research of traditional Chinese medicine.(2)A breast hyperplasia model was induced in mice by injecting estrogen and progesterone.Mice in the normal blank group were injected intraperitoneally with normal saline every day.Mice in the model group and drugadministration groups were injected intraperitoneally with estradiol benzoate injection at a concentration of 0.5 mg/kg every day for 25 days.From the 26th day,the injection of estradiol benzoate injection was stopped.Mice in the normal blank group were injected intramuscularly with normal saline every day,and mice in the model group and drug-administration groups were injected intramuscularly with progesterone injection at a concentration of 5 mg/kg for 5 days.After the model was established,each group was given drugs respectively.The normal blank group and the model group were gavaged with 0.2 mL/d of normal saline;the positive blank group(Xiaozheng Pill group)was gavaged with an aqueous solution of Xiaozheng Pill at 0.9 mg/g;the low-,medium-and high-dose groups of Compound Herba Gueldenstaedtiae were gavaged with an aqueous solution of the compound medicine at 0.75,1.5,and 3.0 mg/(g·d)respectively;the low-,medium-and high-dose groups of traditional Chinese medicine-bacteria fermentation were gavaged with an aqueous solution of the compound medicine at 0.75,1.5,and 3.0 mg/(g·d)respectively.The administration was continuous for 30 days.RESULTS AND CONCLUSION:(1)The results of network pharmacology research showed that the Compound Herba Gueldenstaedtiae(Euphorbia humifusa)contained 46 active ingredients,which were related to 1213 potential targets.After comparison with 588 known breast-hyperplasia targets,it was speculated that 50 of these targets might be related to the direct effect of the compound on breast hyperplasia.(2)After drug intervention,there was no significant change in the high-dose group of Compound Herba Gueldenstaedtiae compared with the normal blank group.The liver indicators of the other intervention groups all significantly decreased(P<0.05).(3)In terms of kidney and uterine indicators,the medium-dose group of Compound Herba Gueldenstaedtiae decreased significantly compared with the normal blank group(P<0.05).In terms of the uterine index,the model group increased significantly compared with the normal blank group(P<0.01).(4)After 1-month drug treatment,the number of lobules and acini in the breast tissue of the Xiaozheng Pill group,the low,medium,and high-dose group of Compound Herba Gueldenstaedtiae,the low,medium,and highdose groups of traditional Chinese medicine-bacteria fermentation decreased,and the duct openings narrowed.With the increase of drug dose,diffuse hyperplasia of breast tissue was significantly improved.(5)The ELISA results showed that compared with the model group,the estrogen level was lower in the medium-dose group of traditional Chinese medicine-bacteria fermentation after the intervention(P<0.05).In addition,the follicle-stimulating hormone level in the low-dose group of Compound Herba Gueldenstaedtiae was lower than that of the model group(P<0.05).(6)The intervention in the mouse model led to changes in the abundance of short chain fatty acids and intestinal flora in all groups.To conclude,the Compound Herba Gueldenstaedtiae and its probiotic fermentation products significantly improved mammary gland hyperplasia in mice by regulating hormone levels,improving the structure of the gut microbiota,and increasing the content of shortchain fatty acids,providing new ideas and potential sources of drugs for the treatment of breast hyperplasia.展开更多
The gut microbiota:The human body is colonized by a diverse and complex microbial community–including bacteria,viruses,archaea,and unicellular eukaryotes–that plays a central role in human wellbeing.Indeed,microbiot...The gut microbiota:The human body is colonized by a diverse and complex microbial community–including bacteria,viruses,archaea,and unicellular eukaryotes–that plays a central role in human wellbeing.Indeed,microbiota is crucial for several functions,including host metabolism,physiology,maintenance of the intestinal epithelial integrity,nutrition,and immune function,earning it the designation of a“vital organ”(Guinane and Cotter,2013).展开更多
Recently,Prevotella spp.,a major genus of gram-negative commensal bacteria in humans,have emerged as a key microbial contributor to host metabolism due to its ability to ferment dietary fibers,produce beneficial short...Recently,Prevotella spp.,a major genus of gram-negative commensal bacteria in humans,have emerged as a key microbial contributor to host metabolism due to its ability to ferment dietary fibers,produce beneficial short-chain fatty acids,and influence immune responses.However,their diversity and functional differences have created challenges for their development and therapeutic use.Recent studies have shown that specific Prevotella species,such as P.copri,P.intestinalis,and P.histicola,can strengthen gut barrier integrity and reduce metabolic imbalances.Notably,Prevotella populations can be increased through high-fiber or herbal-based treatments.Traditional herbal medicines,including fiber-rich decoctions,also demonstrate the potential to boost endogenous Prevotella communities,enhance microbial fermentation,and improve glucose and lipid balance.This perspective examines the context-dependent roles of Prevotella spp.,with emphasis on the functional heterogeneity of key species such as P.copri,suggests a framework for combining herbal modulation with species-level microbiota profiling,and outlines a research plan to explore microbe-herb synergy in treating obesity,type 2 diabetes,and related metabolic disorders.This strategy offers a new,ecology-based approach to complement standard metabolic interventions.展开更多
With the rapidly aging human population,age-related cognitive decline and dementia are becoming increasingly prevalent worldwide.Aging is considered the main risk factor for cognitive decline and acts through alterati...With the rapidly aging human population,age-related cognitive decline and dementia are becoming increasingly prevalent worldwide.Aging is considered the main risk factor for cognitive decline and acts through alterations in the composition of the gut microbiota,microbial metabolites,and the functions of astrocytes.The microbiota–gut–brain axis has been the focus of multiple studies and is closely associated with cognitive function.This article provides a comprehensive review of the specific changes that occur in the composition of the gut microbiota and microbial metabolites in older individuals and discusses how the aging of astrocytes and reactive astrocytosis are closely related to age-related cognitive decline and neurodegenerative diseases.This article also summarizes the gut microbiota components that affect astrocyte function,mainly through the vagus nerve,immune responses,circadian rhythms,and microbial metabolites.Finally,this article summarizes the mechanism by which the gut microbiota–astrocyte axis plays a role in Alzheimer’s and Parkinson’s diseases.Our findings have revealed the critical role of the microbiota–astrocyte axis in age-related cognitive decline,aiding in a deeper understanding of potential gut microbiome-based adjuvant therapy strategies for this condition.展开更多
Age-related macular degeneration is a serious neurodegenerative disease of the retina that significantly impacts vision.Unfortunately,the specific pathogenesis remains unclear,and effective early treatment options are...Age-related macular degeneration is a serious neurodegenerative disease of the retina that significantly impacts vision.Unfortunately,the specific pathogenesis remains unclear,and effective early treatment options are consequently lacking.The microbiome is defined as a large ecosystem of microorganisms living within and coexisting with a host.The intestinal microbiome undergoes dynamic changes owing to age,diet,genetics,and other factors.Such dysregulation of the intestinal flora can disrupt the microecological balance,resulting in immunological and metabolic dysfunction in the host,and affecting the development of many diseases.In recent decades,significant evidence has indicated that the intestinal flora also influences systems outside of the digestive tract,including the brain.Indeed,several studies have demonstrated the critical role of the gut-brain axis in the development of brain neurodegenerative diseases,including Alzheimer’s disease and Parkinson’s disease.Similarly,the role of the“gut-eye axis”has been confirmed to play a role in the pathogenesis of many ocular disorders.Moreover,age-related macular degeneration and many brain neurodegenerative diseases have been shown to share several risk factors and to exhibit comparable etiologies.As such,the intestinal flora may play an important role in age-related macular degeneration.Given the above context,the present review aims to clarify the gut-brain and gut-eye connections,assess the effect of intestinal flora and metabolites on age-related macular degeneration,and identify potential diagnostic markers and therapeutic strategies.Currently,direct research on the role of intestinal flora in age-related macular degeneration is still relatively limited,while studies focusing solely on intestinal flora are insufficient to fully elucidate its functional role in age-related macular degeneration.Organ-on-a-chip technology has shown promise in clarifying the gut-eye interactions,while integrating analysis of the intestinal flora with research on metabolites through metabolomics and other techniques is crucial for understanding their potential mechanisms.展开更多
This study investigated the physicochemical properties,enzyme activities,volatile flavor components,microbial communities,and sensory evaluation of high-temperature Daqu(HTD)during the maturation process,and a standar...This study investigated the physicochemical properties,enzyme activities,volatile flavor components,microbial communities,and sensory evaluation of high-temperature Daqu(HTD)during the maturation process,and a standard system was established for comprehensive quality evaluation of HTD.There were obvious changes in the physicochemical properties,enzyme activities,and volatile flavor components at different storage periods,which affected the sensory evaluation of HTD to a certain extent.The results of high-throughput sequencing revealed significant microbial diversity,and showed that the bacterial community changed significantly more than did the fungal community.During the storage process,the dominant bacterial genera were Kroppenstedtia and Thermoascus.The correlation between dominant microorganisms and quality indicators highlighted their role in HTD quality.Lactococcus,Candida,Pichia,Paecilomyces,and protease activity played a crucial role in the formation of isovaleraldehyde.Acidic protease activity had the greatest impact on the microbial community.Moisture promoted isobutyric acid generation.Furthermore,the comprehensive quality evaluation standard system was established by the entropy weight method combined with multi-factor fuzzy mathematics.Consequently,this study provides innovative insights for comprehensive quality evaluation of HTD during storage and establishes a groundwork for scientific and rational storage of HTD and quality control of sauce-flavor Baijiu.展开更多
Pollution accident of nonferrous metallurgy industry often lead to serious heavy metal pollution of the surrounding soil.Phytoremediation of contaminated soil is an environmental and sustainable technology,and soil na...Pollution accident of nonferrous metallurgy industry often lead to serious heavy metal pollution of the surrounding soil.Phytoremediation of contaminated soil is an environmental and sustainable technology,and soil native microorganisms in the process of phytoremediation also participate in the remediation of heavy metals.However,the effects of high concentrations of multiple heavy metals(HCMHMs)on plants and native soil microorganisms remain uncertain.Thus,further clarification of themechanism of phytoremediation of HCMHMs soil by plants and native soil microorganisms is required.Using the plant Sedum alfredii(S.alfredii)to restore HCMHM-contaminated soil,we further explored the mechanism of S.alfredii and native soil microorganisms in the remediation of HCMHM soils.The results showed that(i)S.alfredii can promote heavy metals from non-rhizosphere soil to rhizosphere soil,which is conducive to the effect of plants on heavy metals.In addition,it can also enrich the absorbed heavy metals in its roots and leaves;(ii)native soil bacteria can increase the abundance of signal molecule-synthesizing enzymes,such as trpE,trpG,bjaI,rpfF,ACSL,and yidC,and promote the expression of the pathway that converts serine to cysteine,then synthesize substances to chelate heavy metals.In addition,we speculated that genes such as K19703,K07891,K09711,K19703,K07891,and K09711 in native bacteria may be involved in the stabilization or absorption of heavy metals.The results provide scientific basis for S.alfredii to remediate heavy metals contaminated soils,and confirm the potential of phytoremediation of HCMHM contaminated soil.展开更多
Addressing the global challenge of uranium(U)-contaminated groundwater requires innovative bioremediation strategies.This study investigates Desulfovibrio desulfuricans,a neutrophilic and mesophilic sulfate-reducing b...Addressing the global challenge of uranium(U)-contaminated groundwater requires innovative bioremediation strategies.This study investigates Desulfovibrio desulfuricans,a neutrophilic and mesophilic sulfate-reducing bacteria(SRB)strain optimized for lowtemperature(15℃)and acidic(initial pH 4)conditions,to validate its bioaugmentation potential for uranium decontamination in groundwater.Our research aimed to assess its efficacy in treating U-contaminated groundwater and elucidate the optimal growth conditions for this strain in acidic and sulfate-enriched environments.We found that D.desulfuricans was phylogenetically distinct from the native microbial community in acidic Ucontaminated groundwater,while it maintained appreciable activity in sulfate reduction under contaminated groundwater conditions after accumulation.Acid-tolerant D.desulfuricans removed 75.87%of uranium and 30.64%of sulfate from acidic U-contaminated groundwater(pH 4.0)at 15℃ within 14 days.Furthermore,we explored the optimal sulfate concentration for bacterial growth,which was found to be 2000 mg/L,and an elevated Fe^(2+) concentration from 100 to 1000 mg/L increasingly stimulated sulfate-reducing activity.These findings provide a novel insight into the application of neutrophilic and mesophilic SRB in bioremediation of acidic and low-temperature groundwater after accumulation and underscore the feasibility of bioremediation by using exogenously pure SRB.展开更多
Rice seedling blight,caused by various fungi,including Fusarium oxysporum,poses a severe threat to rice production.As awareness grows regarding the environmental and safety hazards associated with the application of f...Rice seedling blight,caused by various fungi,including Fusarium oxysporum,poses a severe threat to rice production.As awareness grows regarding the environmental and safety hazards associated with the application of fungicides for managing rice seedling blight,there has been a shift in focus towards biological control agents.In this study,we isolated biocontrol bacteria from paddy fields that significantly inhibited the growth of F.oxysporum in vitro and identified the strains as Bacillus amyloliquefaciens T40 and Bacillus pumilus T208.Additionally,our findings indicated that the combined application of these Bacillus strains in soil was more effective in reducing the incidence of rice seedling blight than their individual use.Analysis of 16S and internal transcribed spacer rRNA gene sequencing data revealed that the mixture of the T40 and T208 strains exhibited the lowest average clustering coefficients,which were negatively correlated with the biomass of F.oxysporum-inoculated rice seedlings.Furthermore,this mixture led to higher stochastic assembly(average|βNTI|<2)and reduced selection pressures on rice rhizosphere bacteria compared with individual strain applications.The mixture of the T40 and T208 strains also significantly increased the expression of defense-related genes.In conclusion,the mixture of the T40 and T208 strains effectively modulates microbial community structures,enhances microbial network stability,and boosts the resistance against rice seedling blight.Our study supports the development and utilization of biological resources for crop protection.展开更多
Arsenic(As)methylation in soils affects the environmental behavior of As,excessive accumulation of dimethylarsenate(DMA)in rice plants leads to straighthead disease and a serious drop in crop yield.Understanding the m...Arsenic(As)methylation in soils affects the environmental behavior of As,excessive accumulation of dimethylarsenate(DMA)in rice plants leads to straighthead disease and a serious drop in crop yield.Understanding the mobility and transformation of methylated arsenic in redox-changing paddy fields is crucial for food security.Here,soils including unarsenic contaminated(N-As),low-arsenic(L-As),medium-arsenic(M-As),and high-arsenic(H-As)soils were incubated under continuous anoxic,continuous oxic,and consecutive anoxic/oxic treatments respectively,to profile arsenic methylating process and microbial species involved in the As cycle.Under anoxic-oxic(A-O)treatment,methylated arsenic was significantly increased once oxygen was introduced into the incubation system.The methylated arsenic concentrations were up to 2-24 times higher than those in anoxic(A),oxic(O),and oxic-anoxic(O-A)treatments,under which arsenic was methylated slightly and then decreased in all four As concentration soils.In fact,the most plentiful arsenite S-adenosylmethionine methyltransferase genes(arsM)contributed to the increase in As methylation.Proteobacteria(40.8%-62.4%),Firmicutes(3.5%-15.7%),and Desulfobacterota(5.3%-13.3%)were the major microorganisms related to this process.These microbial increasedmarkedly and played more important roles after oxygen was introduced,indicating that they were potential keystone microbial groups for As methylation in the alternating anoxic(flooding)and oxic(drainage)environment.The novel findings provided newinsights into the reoxidation-driven arsenic methylation processes and the model could be used for further risk estimation in periodically flooded paddy fields.展开更多
The organic compound composition ofwastewater,serves as a crucial indicator for the operational performance of activated sludge processes and has a major influence on the development of filamentous bulking in activate...The organic compound composition ofwastewater,serves as a crucial indicator for the operational performance of activated sludge processes and has a major influence on the development of filamentous bulking in activated sludge.This study focused on the impact of typical soluble and slowly-biodegradable organic compounds,investigating the pathways through which these substrates affect the occurrence of filamentous bulking in systems operated under both high-and low-oxygen conditions.Results showed that slowly-biodegradable organic compounds lead to a concentrated distribution of microorganisms within flocs,with inward growth of filamentous bacteria.Both Tween-80 and granular starch treated systems exhibited a significant increase in protein content.The glucose system,utilizing soluble substrates,exhibited a markedly higher total polysaccharide content.Microbial communities in the Tween-80 and granular starch treated systems were characterized by a higher abundance of bacteria known to enhance sludge flocculation and settling,such as Competibacter,Xanthomonadaceae and Zoogloea.These findings are of high significance for controlling the operational performance and stability of activated sludge systems,deepening our understanding and providing a novel perspective for the improvement of wastewater treatment processes.展开更多
Bioelectrochemical regulation has been proved to enhance the traditional anaerobic digestion(AD)of organic wastes.However,few investigations have explored whether it is possible to enhance the production of biomethane...Bioelectrochemical regulation has been proved to enhance the traditional anaerobic digestion(AD)of organic wastes.However,few investigations have explored whether it is possible to enhance the production of biomethane from raw corn stover(CS).A single-chamber microbial electrolysis cell(MEC)was incorporated with an AD to form a new system(MEC-AD)with aiming at more efficient bioconversion of CS to biomethane.The performance and microbiological characteristics of MEC-AD was investigated,and compared with conventional AD,which were inoculated with original inoculum(UAD)and electrically domesticated inoculum(EAD),respectively.The results showed that MEC-AD achieved the highest CH_(4)yield of 239.13 ml·g^(-1)volatile solids(VS),which was 29.28%and 12.44%higher than those of UAD and EAD,respectively.MEC-AD also achieved higher substance conversion rates of 73.24%VS,91.16%cellulose,and 77.24%hemicellulose,respectively.The community characteristics of microorganisms revealed that the relative abundance and interactions of functional microorganisms in MEC-AD were obviously different from UAD and EAD.In MEC-AD,Electroactive bacteria(Sedimentibacter)with electrotrophic methanogens(Methanosarcina and Methanosaeta)in anodic biofilms established electrotrophic methanogenesis through direct interspecies electron transfer(DIET).The process of methanotrophic methanogenesis was facilitated by the interactions between fermentative acid-producing bacteria(FABs),syntrophic organic acid oxidation bacteria(SOBs),and methylotrophic methanogens(Methyl-HMs)in MEC-AD suspensions.Efficient synergistic interactions between these functional microorganisms improved the performance of MEC-AD in converting CS to produce biomethane.The study could provide an effective means for achieving higher AD biomethane production from raw CS.展开更多
This letter addresses the recently published manuscript by Darnindro et al,which investigates the diversity and composition of colonic mucosal microbiota in Indonesian patients with and without colorectal cancer(CRC)....This letter addresses the recently published manuscript by Darnindro et al,which investigates the diversity and composition of colonic mucosal microbiota in Indonesian patients with and without colorectal cancer(CRC).Although the analysis revealed no statistically significant differences in alpha diversity between the CRC and non-CRC groups,the authors identified notable distinctions in the composition and diversity of colonic mucosal microbiota among patients with CRC compared to those without.At the genus level,a statistically significant difference in microbiota composition was documented between the two cohorts.Specifically,the genera Bacteroides,Campylobacter,Peptostreptococcus,and Parvimonas were found to be elevated in individuals with CRC,while Faecalibacterium,Haemophilus,and Phocaeicola were more prevalent in the non-CRC group.展开更多
The removal of ammonia nitrogen(NH_(4)^(+)-N)and bacteria from aquaculture wastewater holds paramount ecological and production significance.In this study,Pt/RuO_(2)/g-C_(3)N_(4)photocatalysts were prepared by deposit...The removal of ammonia nitrogen(NH_(4)^(+)-N)and bacteria from aquaculture wastewater holds paramount ecological and production significance.In this study,Pt/RuO_(2)/g-C_(3)N_(4)photocatalysts were prepared by depositing Pt and RuO_(2)particles onto g-C_(3)N_(4).The physicochemical properties of photocatalysts were explored by X-ray photoelectron spectroscopy(XPS),scanning electron microscopy(SEM),X-ray diffraction(XRD),and UV–vis diffuse reflectance spectrometer(UV–vis DRS).The photocatalysts were then applied to the removal of both NH_(4)^(+)-N and bacteria from simulated mariculture wastewater.The results clarified that the removals of both NH_(4)^(+)-N and bacteria were in the sequence of g-C_(3)N_(4)<RuO_(2)/g-C_(3)N_(4)<Pt/g-C_(3)N_(4)<Pt/RuO_(2)/g-C_(3)N_(4).This magnificent photocatalytic ability of Pt/RuO_(2)/g-C_(3)N_(4)can be interpreted by the transfer of holes from g-C_(3)N_(4)to RuO_(2)to facilitate the in situ generation of HClO from Cl^(−)in wastewater,while Pt extracts photogenerated electrons for H_(2)formation to enhance the reaction.The removal of NH_(4)^(+)-N and disinfection effect were more pronounced in simulated seawater than in purewater.The removal efficiency ofNH_(4)^(+)-N increases with an increase in pH of wastewater,while the bactericidal effect was more significant under a lower pH in a pH range of 6–9.In actual seawater aquaculture wastewater,Pt/RuO_(2)/g-C_(3)N_(4)still exhibits effective removal efficiency of NH_(4)^(+)-N and bactericidal performance under sunlight.This study provides an alternative avenue for removement of NH_(4)^(+)-N and bacteria from saline waters under sunlight.展开更多
Nicosulfuron(NSR),a sulfonylurea herbicide,readily infiltrates water bodies,potentially compromising aquatic ecosystems and human health.In this study,bacteria consortium YM2 was isolated and cultivated from pesticide...Nicosulfuron(NSR),a sulfonylurea herbicide,readily infiltrates water bodies,potentially compromising aquatic ecosystems and human health.In this study,bacteria consortium YM2 was isolated and cultivated from pesticide plant active sludge for NSR wastewater bioremediation.Response surface methodology analysis demonstrated that under optimal cultivation conditions(9.41 g L^(-1)maltodextrin,21.37 g L^(-1)yeast extract,and 12.45 g L^(-1)NaCl),the YM2 bacteria consortium achieved 97.49%NSR degradation within 4 d.Optimal degradation parameters were established at 30℃,pH 6.0,1%inoculum,and 20 mg L^(-1)initial NSR concentration.The degradation system demonstrated resistance to heavy metal ions including Cd^(2+),Pb^(2+),Ni^(2+),and Zn^(2+),with degradation primarily occurring through bacterial extracellular enzymes(92.17%).During the degradation process,reactive oxygen species,oxidative stress,cell membrane permeability,cell surface hydrophobicity,and apoptosis rate exhibited initial increases followed by decreases.Additionally,bioflm formation-related genes luxS,waaE,spo0A,and wza showed temporal and concentration-dependent expression patterns.NSR concentrations in wastewater and soil were reduced to 1.92 and 2.72 mg L^(-1),respectively.In a simulated wastewater treatment unit with a 12-h hydraulic retention time,YM2 achieved 84.55%NSR degradation after 10 d.These fndings provide a theoretical foundation for microbial remediation of NSR contamination.展开更多
The production of cement and concrete using carbonated steel slag as a supplementary cementitious material achieves the dual benefits of efficient steel slag utilization and CO_(2)fixation.In this study,a combination ...The production of cement and concrete using carbonated steel slag as a supplementary cementitious material achieves the dual benefits of efficient steel slag utilization and CO_(2)fixation.In this study,a combination of microbial technology and a rotary kiln process was employed to expedite the carbonation of steel slag for fixation from cement kiln flue gas.This approach resulted in a significant increase in the CO_(2)-fixation rate,with a CO_(2)-fixation ratio of approximately 10%achieved within 1 h and consistent performance across different seasons throughout the year.Investigation revealed that both the CO_(2)-fixation ratio and the particle fineness are pivotal for increasing the soundness and reactivity of steel slag.When the CO_(2)-fixation ratio exceeds 8%and the specific surface area is at least 300 m2∙kg−1,the soundness issue of steel slag can be effectively addressed,facilitating the safe utilization of steel slag.Residual microbes present in the carbonated steel slag powder act as nucleating sites,increasing the hydration rate of the silicate phases in Portland cement to form more hydration products.Microbial regulation results in the biogenic calcium carbonate having smaller crystal sizes,which facilitates the formation of monocarboaluminate to increase the strength of hardened cement paste.At the same CO_(2)-fixation ratio,microbial mineralized steel slag powder exhibits greater hydration activity than carbonated steel slag powder.With a CO_(2)-fixation ratio of 10%and a specific surface area of 600 m^(2)∙kg^(−1),replacing 30%of cement clinker with microbial mineralized steel slag powder yields an activity index of 87.7%.This study provides a sustainable solution for reducing carbon emissions and safely and efficiently utilizing steel slag in the construction materials sector,while expanding the application scope of microbial technology.展开更多
BACKGROUND Irritable bowel syndrome with predominant constipation(IBS-C)is a chronic gastrointestinal disorder that significantly impacts the quality of life of patients and currently lacks a definitive treatment.The ...BACKGROUND Irritable bowel syndrome with predominant constipation(IBS-C)is a chronic gastrointestinal disorder that significantly impacts the quality of life of patients and currently lacks a definitive treatment.The use of electroacupuncture(EA)has demonstrated clinical efficacy in treating IBS-C and the gut-brain axis modulation,though its mechanisms remain unclear.AIM To investigate gut-brain-microbiota axis alteration and EA-associated microbial changes in IBS-C patients and treatment responders.METHODS This study consisted of two phases.The first phase was a cross-sectional study recruiting sixteen IBS-C patients and 16 healthy controls.Baseline fecal samples were collected to assess gut microbiota profiles between the two groups.The second phase was an observational longitudinal study in which the 16 IBS-C patients underwent nine EA sessions over one month.Gut microbiota profiles and clinical outcomes were assessed post-treatment course and at a one-month follow-up.RESULTS IBS-C patients exhibited significant gut dysbiosis,as indicated by altered beta diversity compared to healthy controls.EA significantly improved clinical outcomes and gut dysbiosis,with sustained therapeutic effects and normalization of neurotransmitter-related metabolic pathways observed at one-month follow-up.Notably,the gut bacterium Senegalimassilia was positively associated with symptom improvement,suggesting its potential as a predictive biomarker of EA responsiveness.CONCLUSION These findings support the integration of EA into IBS-C management and highlight Senegalimassilia as a candidate microbial biomarker for treatment response.展开更多
Rice-fish coculture(RFC)has aroused extensive concern for its contribution to food security and resource conservation,but whether it can improve soil phosphorus(P)availability and affect microbe-mediated P turnover re...Rice-fish coculture(RFC)has aroused extensive concern for its contribution to food security and resource conservation,but whether it can improve soil phosphorus(P)availability and affect microbe-mediated P turnover remains elusive.Herein,we conducted a microcosm experiment to assess the impacts of RFC combined with(50 mg P kg^(-1)as KH2PO4)and without inorganic P addition on P fractions,P availability,and phoD-harboring bacterial community composition.The results revealed that RFC without P addition significantly improved P availability and phosphatase activity in paddy soil,while soil available P(AP),pH,and microbial biomass P(MBP)contributed to regulating P fractions.Moreover,the phoD-harboring bacterial abundance was linked to phosphatase activity,AP,total carbon(TC),and total P(TP)contents,and the ratios of TC to total nitrogen(TN)and TN to TP.We also found that the keystone taxa of phoD-harboring bacteria contributed to phosphatase production as well as organic P mineralization,thereby improving P availability.Our findings suggest that RFC without P addition is beneficial for promoting the expression of phoD-harboring bacterial functions to improve the capacity of P mineralization.Overall,our study provides insights into the responses of phoD-harboring bacterial functions for P turnover to RFC combined with and without P addition,showing the potential utilization of P resources in agricultural soil and the contribution of phosphatase activity to P acquisition in agriculture ecosystem.展开更多
基金supported by the Laboratory of Lingnan Modern Agriculture Project, China (NT2021006)the Foundation for Innovative Research Groups of the National Natural Science Foundation of China (32121004)the Local Innovative and Research Teams Project of Guangdong Pearl River Talents Program, China (2019BT02N054)。
文摘Antimicrobial resistance has become a global problem that poses great threats to human health. Antimicrobials are widely used in broiler chicken production and consequently affect their gut microbiota and resistome. To better understand how continuous antimicrobial use in farm animals alters their microbial ecology, we used a metagenomic approach to investigate the effects of pulsed antimicrobial administration on the bacterial community, antibiotic resistance genes(ARGs) and ARG bacterial hosts in the feces of broiler chickens. Chickens received three 5-day courses of individual or combined antimicrobials, including amoxicillin, chlortetracycline and florfenicol. The florfenicol administration significantly increased the abundance of mcr-1 gene accompanied by floR gene, while amoxicillin significantly increased the abundance of genes encoding the AcrAB-tolC multidrug efflux pump(marA, soxS, sdiA, rob, evgS and phoP).These three antimicrobials all led to an increase in Proteobacteria. The increase in ARG host, Escherichia, was mainly attributed to the β-lactam, chloramphenicol and tetracycline resistance genes harbored by Escherichia under the pulsed antimicrobial treatments. These results indicated that pulsed antimicrobial administration with amoxicillin,chlortetracycline, florfenicol or their combinations significantly increased the abundance of Proteobacteria and enhanced the abundance of particular ARGs. The ARG types were occupied by the multidrug resistance genes and had significant correlations with the total ARGs in the antimicrobial-treated groups. The results of this study provide comprehensive insight into pulsed antimicrobial-mediated alteration of chicken fecal microbiota and resistome.
基金Funding for the study was from Danone Research,Palaiseau,France.MP and DM acknowledge support from METHLAB a FACCE ERA-GAS project in collaboration with the French National Research Agency(ANR)
文摘Direct-fed microbials(DFM) are considered as a promising technique to improve animal productivity without affecting animal health or harming the environment.The potential of three bacterial DFM to reduce methane(CH4)emissions,modulate ruminal fermentation,milk production and composition of primiparous dairy cows was examined in this study.As previous reports have shown that DFM respond differently to different diets,two contrasting diets were used in this study.Eight lactating primiparous cows were randomly divided into two groups that were fed a corn silage-based,high-starch diet(HSD) or a grass silage-based,high-fiber diet(HFD).Cows in each dietary group were randomly assigned to four treatments in a 4 × 4 Latin square design.The bacterial DFM used were selected for their proven CH4-reducing effect in vitro.Treatments included control(without DFM) and 3 DFM treatments: Propionibacterium freudenreichii 53-W(2.9 × 10^10 colony forming units(CFU)/cow per day),Lactobacillus pentosus D31(3.6 × 10^11 CFU/cow per day) and Lactobacillus bulgaricus D1(4.6 × 10^10 CFU/cow per day).Each experimental period included 4 weeks of treatment and 1 week of wash-out,with measures performed in the fourth week of the treatment period.Enteric CH4 emissions were measured during 3 consecutive days using respiration chambers.Rumen samples were collected for ruminal fermentation parameters and quantitative microbial analyses.Milk samples were collected for composition analysis.Body weight of cows were recorded at the end of each treatment period.Irrespective of diet,no mitigating effect of DFM was observed on CH4 emissions in dairy cows.In contrast,Propionibacterium increased CH4 intensity by 27%(g CH4/kg milk) in cows fed HSD.There was no effect of DFM on other fermentation parameters and on bacterial,archaeal and protozoal numbers.Similarly,the effect of DFM on milk fatty acid composition was negligible.Propionibacterium and L.pentosus DFM tended to increase body weight gain with HSD.We conclude that,contrary to the effect previously observed in vitro,bacterial DFM Propionibacterium freudenreichii 53-W,Lactobacillus pentosus D31 and Lactobacillus bulgaricus D1 did not alter ruminal fermentation and failed to reduce CH4 emissions in lactating primiparous cows fed high-starch or high-fiber diets.
文摘BACKGROUND:Breast hyperplasia is a common benign breast disease mainly caused by endocrine disorders,manifested as abnormal hyperplasia of breast tissue.In recent years,traditional Chinese medicine compounds and probiotics have shown good potential in regulating the endocrine system and improving the intestinal microecology,providing new ideas for the treatment of breast hyperplasia.OBJECTIVE:To explore the effects and mechanisms of traditional Chinese medicine compounds and fermented probiotic compounds on breast hyperplasia in mice,providing new theoretical and experimental bases for the clinical treatment and prevention of breast hyperplasia.METHODS:(1)Network pharmacology tools were used to predict the anti-breast-hyperplasia activity of Herba Gueldenstaedtiae(Euphorbia humifusa),as well as its potential targets and signaling pathways.The databases included:TCMSP,OMIM,GeneCards database,UniProt website,Venny2.1.0 website,Metascape,HERB website,and STRING database,all of which are open-access databases.Network pharmacology can predict and screen key information such as the targets corresponding to the active ingredients of traditional Chinese medicine,disease targets,and action pathways through network analysis and computer-system analysis.Therefore,it has been increasingly widely used in the research of traditional Chinese medicine.(2)A breast hyperplasia model was induced in mice by injecting estrogen and progesterone.Mice in the normal blank group were injected intraperitoneally with normal saline every day.Mice in the model group and drugadministration groups were injected intraperitoneally with estradiol benzoate injection at a concentration of 0.5 mg/kg every day for 25 days.From the 26th day,the injection of estradiol benzoate injection was stopped.Mice in the normal blank group were injected intramuscularly with normal saline every day,and mice in the model group and drug-administration groups were injected intramuscularly with progesterone injection at a concentration of 5 mg/kg for 5 days.After the model was established,each group was given drugs respectively.The normal blank group and the model group were gavaged with 0.2 mL/d of normal saline;the positive blank group(Xiaozheng Pill group)was gavaged with an aqueous solution of Xiaozheng Pill at 0.9 mg/g;the low-,medium-and high-dose groups of Compound Herba Gueldenstaedtiae were gavaged with an aqueous solution of the compound medicine at 0.75,1.5,and 3.0 mg/(g·d)respectively;the low-,medium-and high-dose groups of traditional Chinese medicine-bacteria fermentation were gavaged with an aqueous solution of the compound medicine at 0.75,1.5,and 3.0 mg/(g·d)respectively.The administration was continuous for 30 days.RESULTS AND CONCLUSION:(1)The results of network pharmacology research showed that the Compound Herba Gueldenstaedtiae(Euphorbia humifusa)contained 46 active ingredients,which were related to 1213 potential targets.After comparison with 588 known breast-hyperplasia targets,it was speculated that 50 of these targets might be related to the direct effect of the compound on breast hyperplasia.(2)After drug intervention,there was no significant change in the high-dose group of Compound Herba Gueldenstaedtiae compared with the normal blank group.The liver indicators of the other intervention groups all significantly decreased(P<0.05).(3)In terms of kidney and uterine indicators,the medium-dose group of Compound Herba Gueldenstaedtiae decreased significantly compared with the normal blank group(P<0.05).In terms of the uterine index,the model group increased significantly compared with the normal blank group(P<0.01).(4)After 1-month drug treatment,the number of lobules and acini in the breast tissue of the Xiaozheng Pill group,the low,medium,and high-dose group of Compound Herba Gueldenstaedtiae,the low,medium,and highdose groups of traditional Chinese medicine-bacteria fermentation decreased,and the duct openings narrowed.With the increase of drug dose,diffuse hyperplasia of breast tissue was significantly improved.(5)The ELISA results showed that compared with the model group,the estrogen level was lower in the medium-dose group of traditional Chinese medicine-bacteria fermentation after the intervention(P<0.05).In addition,the follicle-stimulating hormone level in the low-dose group of Compound Herba Gueldenstaedtiae was lower than that of the model group(P<0.05).(6)The intervention in the mouse model led to changes in the abundance of short chain fatty acids and intestinal flora in all groups.To conclude,the Compound Herba Gueldenstaedtiae and its probiotic fermentation products significantly improved mammary gland hyperplasia in mice by regulating hormone levels,improving the structure of the gut microbiota,and increasing the content of shortchain fatty acids,providing new ideas and potential sources of drugs for the treatment of breast hyperplasia.
基金supported by the European Union-Next Generation EU,Mission 4 Component 1,Project Title:“Gut and Neuro Muscular system:investigating the impact of microbiota on nerve regeneration and muscle reinnervation after peripheral nerve injury”,CUP D53D23007770006,MUR:20227YB93W,to GR。
文摘The gut microbiota:The human body is colonized by a diverse and complex microbial community–including bacteria,viruses,archaea,and unicellular eukaryotes–that plays a central role in human wellbeing.Indeed,microbiota is crucial for several functions,including host metabolism,physiology,maintenance of the intestinal epithelial integrity,nutrition,and immune function,earning it the designation of a“vital organ”(Guinane and Cotter,2013).
基金supported by the National Research Foundation of Korea(2020R1F1A1074155).
文摘Recently,Prevotella spp.,a major genus of gram-negative commensal bacteria in humans,have emerged as a key microbial contributor to host metabolism due to its ability to ferment dietary fibers,produce beneficial short-chain fatty acids,and influence immune responses.However,their diversity and functional differences have created challenges for their development and therapeutic use.Recent studies have shown that specific Prevotella species,such as P.copri,P.intestinalis,and P.histicola,can strengthen gut barrier integrity and reduce metabolic imbalances.Notably,Prevotella populations can be increased through high-fiber or herbal-based treatments.Traditional herbal medicines,including fiber-rich decoctions,also demonstrate the potential to boost endogenous Prevotella communities,enhance microbial fermentation,and improve glucose and lipid balance.This perspective examines the context-dependent roles of Prevotella spp.,with emphasis on the functional heterogeneity of key species such as P.copri,suggests a framework for combining herbal modulation with species-level microbiota profiling,and outlines a research plan to explore microbe-herb synergy in treating obesity,type 2 diabetes,and related metabolic disorders.This strategy offers a new,ecology-based approach to complement standard metabolic interventions.
基金supported by the Haihe Laboratory of Cell Ecosystem Innovation Foundation,No.22HHXBSS00047(to PL)Graduate Science and Technology Innovation Project of Tianjin,No.2022BKY173(to LZ)Tianjin Municipal Science and Technology Bureau Foundation,No.20201194(to PL).
文摘With the rapidly aging human population,age-related cognitive decline and dementia are becoming increasingly prevalent worldwide.Aging is considered the main risk factor for cognitive decline and acts through alterations in the composition of the gut microbiota,microbial metabolites,and the functions of astrocytes.The microbiota–gut–brain axis has been the focus of multiple studies and is closely associated with cognitive function.This article provides a comprehensive review of the specific changes that occur in the composition of the gut microbiota and microbial metabolites in older individuals and discusses how the aging of astrocytes and reactive astrocytosis are closely related to age-related cognitive decline and neurodegenerative diseases.This article also summarizes the gut microbiota components that affect astrocyte function,mainly through the vagus nerve,immune responses,circadian rhythms,and microbial metabolites.Finally,this article summarizes the mechanism by which the gut microbiota–astrocyte axis plays a role in Alzheimer’s and Parkinson’s diseases.Our findings have revealed the critical role of the microbiota–astrocyte axis in age-related cognitive decline,aiding in a deeper understanding of potential gut microbiome-based adjuvant therapy strategies for this condition.
基金supported by the National Natural Science Foundation of China,No.82171080Nanjing Medical Science and Technology Development Project,No.YKK23264Postgraduate Research&Practice Innovation Program of Jiangsu Province,Nos.JX10414151,JX10414152(all to KL)。
文摘Age-related macular degeneration is a serious neurodegenerative disease of the retina that significantly impacts vision.Unfortunately,the specific pathogenesis remains unclear,and effective early treatment options are consequently lacking.The microbiome is defined as a large ecosystem of microorganisms living within and coexisting with a host.The intestinal microbiome undergoes dynamic changes owing to age,diet,genetics,and other factors.Such dysregulation of the intestinal flora can disrupt the microecological balance,resulting in immunological and metabolic dysfunction in the host,and affecting the development of many diseases.In recent decades,significant evidence has indicated that the intestinal flora also influences systems outside of the digestive tract,including the brain.Indeed,several studies have demonstrated the critical role of the gut-brain axis in the development of brain neurodegenerative diseases,including Alzheimer’s disease and Parkinson’s disease.Similarly,the role of the“gut-eye axis”has been confirmed to play a role in the pathogenesis of many ocular disorders.Moreover,age-related macular degeneration and many brain neurodegenerative diseases have been shown to share several risk factors and to exhibit comparable etiologies.As such,the intestinal flora may play an important role in age-related macular degeneration.Given the above context,the present review aims to clarify the gut-brain and gut-eye connections,assess the effect of intestinal flora and metabolites on age-related macular degeneration,and identify potential diagnostic markers and therapeutic strategies.Currently,direct research on the role of intestinal flora in age-related macular degeneration is still relatively limited,while studies focusing solely on intestinal flora are insufficient to fully elucidate its functional role in age-related macular degeneration.Organ-on-a-chip technology has shown promise in clarifying the gut-eye interactions,while integrating analysis of the intestinal flora with research on metabolites through metabolomics and other techniques is crucial for understanding their potential mechanisms.
文摘This study investigated the physicochemical properties,enzyme activities,volatile flavor components,microbial communities,and sensory evaluation of high-temperature Daqu(HTD)during the maturation process,and a standard system was established for comprehensive quality evaluation of HTD.There were obvious changes in the physicochemical properties,enzyme activities,and volatile flavor components at different storage periods,which affected the sensory evaluation of HTD to a certain extent.The results of high-throughput sequencing revealed significant microbial diversity,and showed that the bacterial community changed significantly more than did the fungal community.During the storage process,the dominant bacterial genera were Kroppenstedtia and Thermoascus.The correlation between dominant microorganisms and quality indicators highlighted their role in HTD quality.Lactococcus,Candida,Pichia,Paecilomyces,and protease activity played a crucial role in the formation of isovaleraldehyde.Acidic protease activity had the greatest impact on the microbial community.Moisture promoted isobutyric acid generation.Furthermore,the comprehensive quality evaluation standard system was established by the entropy weight method combined with multi-factor fuzzy mathematics.Consequently,this study provides innovative insights for comprehensive quality evaluation of HTD during storage and establishes a groundwork for scientific and rational storage of HTD and quality control of sauce-flavor Baijiu.
基金supported by the Fundamental Research Funds for Central PublicWelfare Scientific Research Institutes of China(No.2021-JY-37)the Yellow River Basin Ecological Protection and High-quality Development Joint Study(Phase I)(No.2022-YRUC-01-0202).
文摘Pollution accident of nonferrous metallurgy industry often lead to serious heavy metal pollution of the surrounding soil.Phytoremediation of contaminated soil is an environmental and sustainable technology,and soil native microorganisms in the process of phytoremediation also participate in the remediation of heavy metals.However,the effects of high concentrations of multiple heavy metals(HCMHMs)on plants and native soil microorganisms remain uncertain.Thus,further clarification of themechanism of phytoremediation of HCMHMs soil by plants and native soil microorganisms is required.Using the plant Sedum alfredii(S.alfredii)to restore HCMHM-contaminated soil,we further explored the mechanism of S.alfredii and native soil microorganisms in the remediation of HCMHM soils.The results showed that(i)S.alfredii can promote heavy metals from non-rhizosphere soil to rhizosphere soil,which is conducive to the effect of plants on heavy metals.In addition,it can also enrich the absorbed heavy metals in its roots and leaves;(ii)native soil bacteria can increase the abundance of signal molecule-synthesizing enzymes,such as trpE,trpG,bjaI,rpfF,ACSL,and yidC,and promote the expression of the pathway that converts serine to cysteine,then synthesize substances to chelate heavy metals.In addition,we speculated that genes such as K19703,K07891,K09711,K19703,K07891,and K09711 in native bacteria may be involved in the stabilization or absorption of heavy metals.The results provide scientific basis for S.alfredii to remediate heavy metals contaminated soils,and confirm the potential of phytoremediation of HCMHM contaminated soil.
基金supported by the Centralized R&D Project of China National Nuclear Corporation(CNNC[2021]No.144)the Key Research and Development Program of Hunan Province(Nos.2022SK2076 and 2020WK2022)+2 种基金the Natural Science Foundation of Changsha(No.kq2202089)the Postdoctoral Fellowship Program of CPSF(No.BX20230437)the Natural Science Foundation of Hunan Province(No.2023JJ30658).
文摘Addressing the global challenge of uranium(U)-contaminated groundwater requires innovative bioremediation strategies.This study investigates Desulfovibrio desulfuricans,a neutrophilic and mesophilic sulfate-reducing bacteria(SRB)strain optimized for lowtemperature(15℃)and acidic(initial pH 4)conditions,to validate its bioaugmentation potential for uranium decontamination in groundwater.Our research aimed to assess its efficacy in treating U-contaminated groundwater and elucidate the optimal growth conditions for this strain in acidic and sulfate-enriched environments.We found that D.desulfuricans was phylogenetically distinct from the native microbial community in acidic Ucontaminated groundwater,while it maintained appreciable activity in sulfate reduction under contaminated groundwater conditions after accumulation.Acid-tolerant D.desulfuricans removed 75.87%of uranium and 30.64%of sulfate from acidic U-contaminated groundwater(pH 4.0)at 15℃ within 14 days.Furthermore,we explored the optimal sulfate concentration for bacterial growth,which was found to be 2000 mg/L,and an elevated Fe^(2+) concentration from 100 to 1000 mg/L increasingly stimulated sulfate-reducing activity.These findings provide a novel insight into the application of neutrophilic and mesophilic SRB in bioremediation of acidic and low-temperature groundwater after accumulation and underscore the feasibility of bioremediation by using exogenously pure SRB.
基金supported by the Zhejiang Provincial Natural Science Foundation,China(Grant No.LQ24C010007)Zhejiang Science and Technology Major Program on Rice New Variety Breeding,China(Grant No.2021C02063)+4 种基金the Agricultural Sciences and Technologies Innovation Program,China(Grant No.CAAS-CSCB-202301)the Key Projects of Zhejiang Provincial Natural Science Foundation,China(Grant No.LZ23C130002)the Youth Innovation Program of Chinese Academy of Agricultural Sciences(Grant No.Y2023QC22)the Joint Open Competitive Project of the Yazhou Bay Seed Laboratory and China National Seed Company Limited(Grant Nos.B23YQ1514 and B23CQ15EP)the External Cooperation Projects of Biotechnology Research Institute,Fujian Academy of Agricultural Sciences,China(Grant No.DWHZ2024-07).
文摘Rice seedling blight,caused by various fungi,including Fusarium oxysporum,poses a severe threat to rice production.As awareness grows regarding the environmental and safety hazards associated with the application of fungicides for managing rice seedling blight,there has been a shift in focus towards biological control agents.In this study,we isolated biocontrol bacteria from paddy fields that significantly inhibited the growth of F.oxysporum in vitro and identified the strains as Bacillus amyloliquefaciens T40 and Bacillus pumilus T208.Additionally,our findings indicated that the combined application of these Bacillus strains in soil was more effective in reducing the incidence of rice seedling blight than their individual use.Analysis of 16S and internal transcribed spacer rRNA gene sequencing data revealed that the mixture of the T40 and T208 strains exhibited the lowest average clustering coefficients,which were negatively correlated with the biomass of F.oxysporum-inoculated rice seedlings.Furthermore,this mixture led to higher stochastic assembly(average|βNTI|<2)and reduced selection pressures on rice rhizosphere bacteria compared with individual strain applications.The mixture of the T40 and T208 strains also significantly increased the expression of defense-related genes.In conclusion,the mixture of the T40 and T208 strains effectively modulates microbial community structures,enhances microbial network stability,and boosts the resistance against rice seedling blight.Our study supports the development and utilization of biological resources for crop protection.
基金supported by the Shandong Province Natural Science Foundation of Major Basic Research Program (No.ZR2020ZD34)the Key Projects of the National Natural Science Foundation of China (No.42230706)+3 种基金the National Natural Science Foundation of China (No.42307164)the China Postdoctoral Science Foundation (Nos.2023TQ0191 and 2023M732060)the Shandong Postdoctoral Science Foundation (No.SDBX2023041)and the Qingdao Postdoctoral Science Foundation (No.QDBSH20230202052).
文摘Arsenic(As)methylation in soils affects the environmental behavior of As,excessive accumulation of dimethylarsenate(DMA)in rice plants leads to straighthead disease and a serious drop in crop yield.Understanding the mobility and transformation of methylated arsenic in redox-changing paddy fields is crucial for food security.Here,soils including unarsenic contaminated(N-As),low-arsenic(L-As),medium-arsenic(M-As),and high-arsenic(H-As)soils were incubated under continuous anoxic,continuous oxic,and consecutive anoxic/oxic treatments respectively,to profile arsenic methylating process and microbial species involved in the As cycle.Under anoxic-oxic(A-O)treatment,methylated arsenic was significantly increased once oxygen was introduced into the incubation system.The methylated arsenic concentrations were up to 2-24 times higher than those in anoxic(A),oxic(O),and oxic-anoxic(O-A)treatments,under which arsenic was methylated slightly and then decreased in all four As concentration soils.In fact,the most plentiful arsenite S-adenosylmethionine methyltransferase genes(arsM)contributed to the increase in As methylation.Proteobacteria(40.8%-62.4%),Firmicutes(3.5%-15.7%),and Desulfobacterota(5.3%-13.3%)were the major microorganisms related to this process.These microbial increasedmarkedly and played more important roles after oxygen was introduced,indicating that they were potential keystone microbial groups for As methylation in the alternating anoxic(flooding)and oxic(drainage)environment.The novel findings provided newinsights into the reoxidation-driven arsenic methylation processes and the model could be used for further risk estimation in periodically flooded paddy fields.
基金supported by the Opening Project of National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology,and the National Natural Science Foundation of China(No.52270017).
文摘The organic compound composition ofwastewater,serves as a crucial indicator for the operational performance of activated sludge processes and has a major influence on the development of filamentous bulking in activated sludge.This study focused on the impact of typical soluble and slowly-biodegradable organic compounds,investigating the pathways through which these substrates affect the occurrence of filamentous bulking in systems operated under both high-and low-oxygen conditions.Results showed that slowly-biodegradable organic compounds lead to a concentrated distribution of microorganisms within flocs,with inward growth of filamentous bacteria.Both Tween-80 and granular starch treated systems exhibited a significant increase in protein content.The glucose system,utilizing soluble substrates,exhibited a markedly higher total polysaccharide content.Microbial communities in the Tween-80 and granular starch treated systems were characterized by a higher abundance of bacteria known to enhance sludge flocculation and settling,such as Competibacter,Xanthomonadaceae and Zoogloea.These findings are of high significance for controlling the operational performance and stability of activated sludge systems,deepening our understanding and providing a novel perspective for the improvement of wastewater treatment processes.
基金supports from the Fundamental Research Funds for the Central Universities(NO.JD2402).
文摘Bioelectrochemical regulation has been proved to enhance the traditional anaerobic digestion(AD)of organic wastes.However,few investigations have explored whether it is possible to enhance the production of biomethane from raw corn stover(CS).A single-chamber microbial electrolysis cell(MEC)was incorporated with an AD to form a new system(MEC-AD)with aiming at more efficient bioconversion of CS to biomethane.The performance and microbiological characteristics of MEC-AD was investigated,and compared with conventional AD,which were inoculated with original inoculum(UAD)and electrically domesticated inoculum(EAD),respectively.The results showed that MEC-AD achieved the highest CH_(4)yield of 239.13 ml·g^(-1)volatile solids(VS),which was 29.28%and 12.44%higher than those of UAD and EAD,respectively.MEC-AD also achieved higher substance conversion rates of 73.24%VS,91.16%cellulose,and 77.24%hemicellulose,respectively.The community characteristics of microorganisms revealed that the relative abundance and interactions of functional microorganisms in MEC-AD were obviously different from UAD and EAD.In MEC-AD,Electroactive bacteria(Sedimentibacter)with electrotrophic methanogens(Methanosarcina and Methanosaeta)in anodic biofilms established electrotrophic methanogenesis through direct interspecies electron transfer(DIET).The process of methanotrophic methanogenesis was facilitated by the interactions between fermentative acid-producing bacteria(FABs),syntrophic organic acid oxidation bacteria(SOBs),and methylotrophic methanogens(Methyl-HMs)in MEC-AD suspensions.Efficient synergistic interactions between these functional microorganisms improved the performance of MEC-AD in converting CS to produce biomethane.The study could provide an effective means for achieving higher AD biomethane production from raw CS.
基金Supported by Research Project of the Chinese Digestive Early Cancer Physicians'Joint Growth Program,No.GTCZ-2021-AH-34-0012.
文摘This letter addresses the recently published manuscript by Darnindro et al,which investigates the diversity and composition of colonic mucosal microbiota in Indonesian patients with and without colorectal cancer(CRC).Although the analysis revealed no statistically significant differences in alpha diversity between the CRC and non-CRC groups,the authors identified notable distinctions in the composition and diversity of colonic mucosal microbiota among patients with CRC compared to those without.At the genus level,a statistically significant difference in microbiota composition was documented between the two cohorts.Specifically,the genera Bacteroides,Campylobacter,Peptostreptococcus,and Parvimonas were found to be elevated in individuals with CRC,while Faecalibacterium,Haemophilus,and Phocaeicola were more prevalent in the non-CRC group.
基金supported by the Science and Technology Planning Project of Fujian Province(No.2023Y4015)the Marine and Fishery Development Special Fund of Xiamen(No.23YYST064QCB36)the Natural Science Foundation of Fujian Province(No.2021J011210).
文摘The removal of ammonia nitrogen(NH_(4)^(+)-N)and bacteria from aquaculture wastewater holds paramount ecological and production significance.In this study,Pt/RuO_(2)/g-C_(3)N_(4)photocatalysts were prepared by depositing Pt and RuO_(2)particles onto g-C_(3)N_(4).The physicochemical properties of photocatalysts were explored by X-ray photoelectron spectroscopy(XPS),scanning electron microscopy(SEM),X-ray diffraction(XRD),and UV–vis diffuse reflectance spectrometer(UV–vis DRS).The photocatalysts were then applied to the removal of both NH_(4)^(+)-N and bacteria from simulated mariculture wastewater.The results clarified that the removals of both NH_(4)^(+)-N and bacteria were in the sequence of g-C_(3)N_(4)<RuO_(2)/g-C_(3)N_(4)<Pt/g-C_(3)N_(4)<Pt/RuO_(2)/g-C_(3)N_(4).This magnificent photocatalytic ability of Pt/RuO_(2)/g-C_(3)N_(4)can be interpreted by the transfer of holes from g-C_(3)N_(4)to RuO_(2)to facilitate the in situ generation of HClO from Cl^(−)in wastewater,while Pt extracts photogenerated electrons for H_(2)formation to enhance the reaction.The removal of NH_(4)^(+)-N and disinfection effect were more pronounced in simulated seawater than in purewater.The removal efficiency ofNH_(4)^(+)-N increases with an increase in pH of wastewater,while the bactericidal effect was more significant under a lower pH in a pH range of 6–9.In actual seawater aquaculture wastewater,Pt/RuO_(2)/g-C_(3)N_(4)still exhibits effective removal efficiency of NH_(4)^(+)-N and bactericidal performance under sunlight.This study provides an alternative avenue for removement of NH_(4)^(+)-N and bacteria from saline waters under sunlight.
基金financially supported by the Jilin Province Development and Reform Commission(Innovation Capacity Building)Project,China(20231036-3)the Key R&D Project of the Science and Technology Development Plan of Jilin,China(20230203014SF)。
文摘Nicosulfuron(NSR),a sulfonylurea herbicide,readily infiltrates water bodies,potentially compromising aquatic ecosystems and human health.In this study,bacteria consortium YM2 was isolated and cultivated from pesticide plant active sludge for NSR wastewater bioremediation.Response surface methodology analysis demonstrated that under optimal cultivation conditions(9.41 g L^(-1)maltodextrin,21.37 g L^(-1)yeast extract,and 12.45 g L^(-1)NaCl),the YM2 bacteria consortium achieved 97.49%NSR degradation within 4 d.Optimal degradation parameters were established at 30℃,pH 6.0,1%inoculum,and 20 mg L^(-1)initial NSR concentration.The degradation system demonstrated resistance to heavy metal ions including Cd^(2+),Pb^(2+),Ni^(2+),and Zn^(2+),with degradation primarily occurring through bacterial extracellular enzymes(92.17%).During the degradation process,reactive oxygen species,oxidative stress,cell membrane permeability,cell surface hydrophobicity,and apoptosis rate exhibited initial increases followed by decreases.Additionally,bioflm formation-related genes luxS,waaE,spo0A,and wza showed temporal and concentration-dependent expression patterns.NSR concentrations in wastewater and soil were reduced to 1.92 and 2.72 mg L^(-1),respectively.In a simulated wastewater treatment unit with a 12-h hydraulic retention time,YM2 achieved 84.55%NSR degradation after 10 d.These fndings provide a theoretical foundation for microbial remediation of NSR contamination.
基金sponsored by the National Key Research and Development Program of China(2021YFB3802000 and 2021YFB3802004)the National Natural Science Foundation of China(52172016).
文摘The production of cement and concrete using carbonated steel slag as a supplementary cementitious material achieves the dual benefits of efficient steel slag utilization and CO_(2)fixation.In this study,a combination of microbial technology and a rotary kiln process was employed to expedite the carbonation of steel slag for fixation from cement kiln flue gas.This approach resulted in a significant increase in the CO_(2)-fixation rate,with a CO_(2)-fixation ratio of approximately 10%achieved within 1 h and consistent performance across different seasons throughout the year.Investigation revealed that both the CO_(2)-fixation ratio and the particle fineness are pivotal for increasing the soundness and reactivity of steel slag.When the CO_(2)-fixation ratio exceeds 8%and the specific surface area is at least 300 m2∙kg−1,the soundness issue of steel slag can be effectively addressed,facilitating the safe utilization of steel slag.Residual microbes present in the carbonated steel slag powder act as nucleating sites,increasing the hydration rate of the silicate phases in Portland cement to form more hydration products.Microbial regulation results in the biogenic calcium carbonate having smaller crystal sizes,which facilitates the formation of monocarboaluminate to increase the strength of hardened cement paste.At the same CO_(2)-fixation ratio,microbial mineralized steel slag powder exhibits greater hydration activity than carbonated steel slag powder.With a CO_(2)-fixation ratio of 10%and a specific surface area of 600 m^(2)∙kg^(−1),replacing 30%of cement clinker with microbial mineralized steel slag powder yields an activity index of 87.7%.This study provides a sustainable solution for reducing carbon emissions and safely and efficiently utilizing steel slag in the construction materials sector,while expanding the application scope of microbial technology.
文摘BACKGROUND Irritable bowel syndrome with predominant constipation(IBS-C)is a chronic gastrointestinal disorder that significantly impacts the quality of life of patients and currently lacks a definitive treatment.The use of electroacupuncture(EA)has demonstrated clinical efficacy in treating IBS-C and the gut-brain axis modulation,though its mechanisms remain unclear.AIM To investigate gut-brain-microbiota axis alteration and EA-associated microbial changes in IBS-C patients and treatment responders.METHODS This study consisted of two phases.The first phase was a cross-sectional study recruiting sixteen IBS-C patients and 16 healthy controls.Baseline fecal samples were collected to assess gut microbiota profiles between the two groups.The second phase was an observational longitudinal study in which the 16 IBS-C patients underwent nine EA sessions over one month.Gut microbiota profiles and clinical outcomes were assessed post-treatment course and at a one-month follow-up.RESULTS IBS-C patients exhibited significant gut dysbiosis,as indicated by altered beta diversity compared to healthy controls.EA significantly improved clinical outcomes and gut dysbiosis,with sustained therapeutic effects and normalization of neurotransmitter-related metabolic pathways observed at one-month follow-up.Notably,the gut bacterium Senegalimassilia was positively associated with symptom improvement,suggesting its potential as a predictive biomarker of EA responsiveness.CONCLUSION These findings support the integration of EA into IBS-C management and highlight Senegalimassilia as a candidate microbial biomarker for treatment response.
基金supported by the Key-Area Research and Development Program of Guangdong Province,China(No.2021B0202030002)the Science and Technology Planning Project of Guangdong Province,China(No.2019B030301007)+2 种基金the Guangdong Provincial Special Project of Rural Revitalization Strategy,China(No.(2021)12)the Joint Team Project of Guangdong Laboratory for Lingnan Modern Agriculture,China(No.NT2021010)the Innovation Team Construction Project of Modern Agricultural Industry Technology Systems of Guangdong Province,China(No.2022KJ105).
文摘Rice-fish coculture(RFC)has aroused extensive concern for its contribution to food security and resource conservation,but whether it can improve soil phosphorus(P)availability and affect microbe-mediated P turnover remains elusive.Herein,we conducted a microcosm experiment to assess the impacts of RFC combined with(50 mg P kg^(-1)as KH2PO4)and without inorganic P addition on P fractions,P availability,and phoD-harboring bacterial community composition.The results revealed that RFC without P addition significantly improved P availability and phosphatase activity in paddy soil,while soil available P(AP),pH,and microbial biomass P(MBP)contributed to regulating P fractions.Moreover,the phoD-harboring bacterial abundance was linked to phosphatase activity,AP,total carbon(TC),and total P(TP)contents,and the ratios of TC to total nitrogen(TN)and TN to TP.We also found that the keystone taxa of phoD-harboring bacteria contributed to phosphatase production as well as organic P mineralization,thereby improving P availability.Our findings suggest that RFC without P addition is beneficial for promoting the expression of phoD-harboring bacterial functions to improve the capacity of P mineralization.Overall,our study provides insights into the responses of phoD-harboring bacterial functions for P turnover to RFC combined with and without P addition,showing the potential utilization of P resources in agricultural soil and the contribution of phosphatase activity to P acquisition in agriculture ecosystem.