期刊文献+
共找到5,124篇文章
< 1 2 250 >
每页显示 20 50 100
Reduction of iron oxide nanoparticles by Geobacter sulfurreducens PCA involves outer membrane proteins and secreted redox-active substances
1
作者 Yifan Cui Xiaoyan Zhang +7 位作者 Peijie Yang Yanwei Liu Maoyong Song Yingying Guo Wentao Jiao Yongguang Yin Yong Cai Guibin Jiang 《Journal of Environmental Sciences》 2026年第1期767-774,共8页
Fe reducing bacteria(FRB),through extracellular electron transfer(EET)pathway,can reduce Fe(III)nanoparticles,thereby affecting the migration,transformation,and degradation of pollutants.However,the interaction of Fe(... Fe reducing bacteria(FRB),through extracellular electron transfer(EET)pathway,can reduce Fe(III)nanoparticles,thereby affecting the migration,transformation,and degradation of pollutants.However,the interaction of Fe(III)nanoparticles with the most commonly identified FRB,Geobacter sulfurreducens PCA,remains poorly understood.Herein,we demonstrated that the synergistic role of outer membrane proteins and periplasmic proteins in the EET process for-Fe_(2)O_(3),Fe3O4,and𝛽α-FeOOH nanoparticles by construction of multiple gene knockout strain.oxpG(involved in the type II secretion system)and omcST(outer membrane c-type cytochrome)medi-ated pathways accounted for approximately 67%of the total reduction of𝛼α-Fe_(2)O_(3) nanoparticles.The residual reduction of𝛼α-Fe_(2)O_(3) nanoparticles in∆oxpG-omcST strain was likely caused by redox-active substances in cell supernatant.Conversely,the reduction of dissolved Fe(III)was almost unaffected in∆oxpG-omcST strain at the same concentration.However,at high dissolved Fe(III)concentration,the reduction significantly decreased due to the formation of Fe(III)nanoparticles,suggesting that this EET process is specific to Fe(III)nanoparticles.Overall,our study provided a more comprehensive understanding for the EET pathways between G.sulfurreducens PCA and different Fe(III)species,enriching our knowledge on the role of microorganisms in iron biogeochemical cycles and remediation strategies of pollutants. 展开更多
关键词 microbial Fe(III)reduction Fe(III)nanoparticles Extracellular electron transfer Redox-active substances Geobacter sulfurreducens PCA
原文传递
Influences of Microbial Oxidation/Reduction on Mineral Transformation in Sulfide Tailings and Environmental Consequence in Shizishan Cu-Au Mine, Tongling, Eastern China
2
作者 LU Xiancai LU Jianjun +4 位作者 WANG Rucheng WANG Hongmei LI Juan ZHU Tingting OUYANG Bingjie 《矿物学报》 CAS CSCD 北大核心 2013年第S1期64-64,共1页
Mining activities have created great wealth, but they have also discharged large quantities of tailings. As an important source of heavy metal contamination, sulfide tailings are usually disposed of in open-air impoun... Mining activities have created great wealth, but they have also discharged large quantities of tailings. As an important source of heavy metal contamination, sulfide tailings are usually disposed of in open-air impoundments and thus are exposed to microbial oxidation. Microbial activities greatly enhance sulfide oxidation and result in the release of heavy metals and the precipitation of iron (oxy) hydroxides and sulfates. These secondary minerals in turn influence the mobility of dissolved metals and play important roles in the natural attenuation of heavy metals. Elucidating the microbe–mineral interactions in tailings will improve our understanding of the environmental consequence of mining activities. 展开更多
关键词 microbial reduction/oxidation sulphide TAILINGS MINERALOGICAL composition heavy metals Shizishan CU-AU MINE
原文传递
Effects of superheated steam treatment on the inactivation of microbial counts,enzyme activity and the inhibition of lipid oxidation of rape bee pollen
3
作者 Yanxiang Bi Zidan Zhou +7 位作者 Jiabao Ni Sara Zielińska Zhihao Zhang Chunliang Luo Wenjun Peng Na Ma Wenli Tian Xiaoming Fang 《Food Science and Human Wellness》 2025年第10期4188-4199,共12页
The effect of superheated steam(SHS)treatment on the quality characteristics of rape bee pollen were studied,and the efficiency of inactivation and inhibition of lipid oxidation were analyzed to investigate the differ... The effect of superheated steam(SHS)treatment on the quality characteristics of rape bee pollen were studied,and the efficiency of inactivation and inhibition of lipid oxidation were analyzed to investigate the differences between SHS and cobalt-60 isotope(^(60)Co)radiation treatment.The number of total plate count(TPC)and mold colonies(MC)remained within the limits of the standards after SHS treatment at 140℃for 2 min.Neither TPC nor MC were detected after^(60)Co irradiation.Peroxidase(POD)and polyphenol oxidase(PPO)activities significantly decreased with increasing temperature and duration of SHS,while^(60)Co radiation completely inactivated PPO.Compared to^(60)Co radiation,SHS treatment inhibited the deterioration of rape bee pollen by avoiding hydroperoxide production and lipid oxidation due to lack of oxygen.These results suggested SHS under 140℃for 2 min was the most suitable to inactivate the microorganisms and enzymes in rape bee pollen with minimal lipid oxidation. 展开更多
关键词 Rape bee pollen Superheated steam Cobalt-60 isotope radiation microbial counts Enzymatic activity Lipid oxidation
在线阅读 下载PDF
Rare earth-rich sublayer tuned Pd-skin for methanol and CO tolerance oxygen reduction and hydrogen oxidation reaction
4
作者 Felix Kwofie Jinfan Chen +8 位作者 Yujing Liu Ying Zhang Junsong Zhang Yang Yang Quentin Meyer Chuan Zhao Zhenjiang He Yunjiao Li Yi Cheng 《Advanced Powder Materials》 2025年第4期129-141,共13页
Storing hydrogen in green methanol is a well-known and cost-effective way for long-term energy storage.However,using green methanol in fuel cell technologies requires electrocatalysts with superior resistance to poiso... Storing hydrogen in green methanol is a well-known and cost-effective way for long-term energy storage.However,using green methanol in fuel cell technologies requires electrocatalysts with superior resistance to poisoning induced by intermediate species.This study introduces a new class of palladium-based rare earth(RE)alloys with exceptional resistance to methanol for the oxygen reduction reaction(ORR)and outstanding resistance to carbon monoxide poisoning for the hydrogen oxidation reaction(HOR).The PdEr catalyst achieved unparalleled ORR activity amongst the Pd-based rare earth alloys and demonstrated remarkable resistance to methanol poisoning,which is two orders of magnitude higher than commercial Pt/C catalysts.Furthermore,the PdEr catalyst shows high hydrogen oxidation activity under 100 ppm CO.Comprehensive analysis demonstrates that the RE element-enriched sublayer tuning of the Pd-skin's surface strain is responsible for the enhanced ORR and HOR capabilities.This modification allows for precise control over the adsorption strength of critical intermediates while concurrently diminishing the adsorption energy of methanol and CO on the PdEr surface. 展开更多
关键词 Palladium-rare earth Oxygen reduction reaction Methanol resistance Hydrogen oxidation reaction CO resistance
在线阅读 下载PDF
The application of low-valent sulfur oxy-acid salts in advanced oxidation and reduction processes:A review
5
作者 Xin Zhou Xuejia Li +8 位作者 Yujia Xiang Heng Zhang Chuanshu He Zhaokun Xiong Wei Li Peng Zhou Hongyu Zhou Yang Liu Bo Lai 《Chinese Chemical Letters》 2025年第9期104-111,共8页
Low-valent sulfur oxy-acid salts(LVSOs)represent a category of oxygen-containing salts characterized by their potent reducing capabilities.Notably,sulfite,dithionite,and thiosulfate are prevalent reducing agents that ... Low-valent sulfur oxy-acid salts(LVSOs)represent a category of oxygen-containing salts characterized by their potent reducing capabilities.Notably,sulfite,dithionite,and thiosulfate are prevalent reducing agents that are readily available,cost-effective,and exhibit minimal ecological toxicity.These LVSOs have the ability to generate or promote the generation of strong oxidants or reductants,which makes them widely used in advanced oxidation processes(AOPs)and advanced reduction processes(ARPs).This article provides a comprehensive review of the recent advancements in AOPs and ARPs involving LVSOs,alongside an examination of the fundamental principles governing the generation of active species within these processes.LVSOs fulfill three primary functions in AOPs:Serving as sources of reactive oxygen species(ROS),auxiliary agents,and activators.Particular attention is devoted to elucidating the reaction mechanisms through which LVSOs,in conjunction with metal ions,metal oxides,ultraviolet light(UV),and ozone,produce potent oxidizing agents in both homogeneous and heterogeneous systems.Regarding ARPs,this review delineates the mechanisms by which LVSOs generate strong reducing agents,including hydrated electrons,hydrogen radicals,and sulfite radicals,under UV irradiation,while also exploring the interactions between these reductants and pollutants.The review identifies existing gaps within the current framework and proposes future research avenues to address these challenges. 展开更多
关键词 Low-valent sulfur oxy-acid salts Advanced oxidation process Advanced reduction process Reaction mechanism Water treatment
原文传递
Efficient and economic H_(2)O_(2)electrosynthesis via two-electron oxygen reduction reaction enabled by dynamically reconstructed Mn(^(*)OH)-N_(3)O-C motif and coupled alcohol oxidation
6
作者 Wei Liu Rui Chen +7 位作者 Zhiyuan Sang Min Zheng Zhenxin Li Jiahuan Nie Qiao Jiang Lichang Yin Feng Hou Ji Liang 《Journal of Energy Chemistry》 2025年第9期675-684,I0018,共11页
Hydrogen peroxide(H_(2)O_(2))electrosynthesis via two-electron oxygen reduction reaction(2e-ORR)is a promising alternative for the energy-intensive anthraquinone process.However,the instability of the catalytic metal ... Hydrogen peroxide(H_(2)O_(2))electrosynthesis via two-electron oxygen reduction reaction(2e-ORR)is a promising alternative for the energy-intensive anthraquinone process.However,the instability of the catalytic metal sites in the state-of-the-art metal single-atom catalysts(M-SACs)hinders their further industrial applications,and the high potential and valueless oxygen product of the conventional anodic oxygen evolution reaction(OER)further limit the economic efficiency of this technology.To address this,a dynamically local structure reconstruction strategy is proposed to in situ transfer the active sites from unstable metal sites to the stable surrounding carbon sites for efficient and durable 2e^(-)ORR electrocatalysis.For the as-designed Mn-N_(3)O-C catalyst,by reconstructing Mn sites into Mn(^(*)OH),the Mn sites were passivated and carbon sites adjacent to the O atom were verified to be the actual active sites by in situ characterization and theoretical calculation.Consequently,Mn-N_(3)O-C exhibited>80%Faradaic efficiency and superior long-term durability over 100 h for H_(2)O_(2)electrosynthesis at~120 mA cm^(-2).In addition,coupling anodic ethylene glycol oxidation reaction(EGOR)further improves the efficiency and economic viability of the H_(2)O_(2)electrosynthesis system.This two-pronged strategy thus opens up a new opportunity for the development of stable H_(2)O_(2)electrosynthesis with low energy consumption and superior economic performance. 展开更多
关键词 Hydrogen peroxide Two-electron oxygen reduction reaction Single-atom catalysts Local structure reconstruction Ethylene glycol oxidation reaction
在线阅读 下载PDF
Understanding oxidation state of Cu-based catalysts for electrocatalytic CO_(2) reduction
7
作者 Ping Zhu Yuan-Chu Qin +7 位作者 Xin-Hao Cai Wen-Min Wang Ying Zhou Lin-Lin Zhou Peng-Hui Liu Lu Peng Wen-Long Wang Qian-Yuan Wu 《Journal of Materials Science & Technology》 2025年第15期1-24,共24页
Electrocatalytic CO_(2) reduction(ECR)is a promising approach for achieving carbon neutrality due to its ability to convert CO_(2) to valuable chemicals.Recent advances have significantly enhanced the ECR performance ... Electrocatalytic CO_(2) reduction(ECR)is a promising approach for achieving carbon neutrality due to its ability to convert CO_(2) to valuable chemicals.Recent advances have significantly enhanced the ECR performance of various catalysts by tuning their oxidation states,particularly for Cu-based catalysts that can reduce CO_(2) to multiple products.However,the oxidation state of copper(OSCu),especially Cu+,changes during the reaction process,posing significant challenges for both catalyst characterization and performance.In this review,the current understanding of the effect of oxidation states on product selectivity was first discussed.A comprehensive overview of in situ/operando characterization techniques,used to monitor the dynamic evolution of oxidation states during ECR,was then provided.Various strategies for stabilizing oxidation states through modification of catalysts and manipulation of external conditions were discussed.This review aimed to deepen the understanding of oxidation states in ECR and enlighten the development of more efficient electrocatalysts. 展开更多
关键词 Electrocatalytic CO_(2)reduction Cu-based catalysts oxidation state In situ/operando characterization techniques Stabilization strategies
原文传递
Dual electric fields in Ni-CdS@Ni(OH)_(2) heterojunction: A synergistic spatial charge separation approach for enhanced coupled CO_(2) photoreduction and selective toluene oxidation
8
作者 Khakemin Khan Ahmed Mahmood Idris +4 位作者 Haseebul Hassan Sajjad Haider Salah Ud-Din Khan Antonio Miotello Ihsanullah Khan 《Advanced Powder Materials》 2025年第3期1-11,共11页
Simultaneously inducing dual built-in electric fields(EFs)both within a single component and at the heterojunction interface creates a dual-driving force that is crucial for promoting spatial charge separation.This is... Simultaneously inducing dual built-in electric fields(EFs)both within a single component and at the heterojunction interface creates a dual-driving force that is crucial for promoting spatial charge separation.This is particularly significant in challenging coupled systems,such as CO_(2)photoreduction integrated with selective oxidation of toluene to benzaldehyde.However,developing such a system is quite challenging and often requires a precise design and engineering.Herein,we demonstrate a unique Ni-CdS@Ni(OH)_(2)heterojunction synthesized via an in-situ self-assembly method.Comprehensive mechanistic and theoretical investigations reveal that the NiCdS@Ni(OH)_(2)heterojunction induces dual electric fields(EFs):an intrinsic polarized electric-field within the CdS lattice from Ni doping and an interfacial electric-field from the growth of ultrathin nanosheets of Ni(OH)_(2)on NiCdS nanorods,enabling efficient spatial charge separation and enhanced redox potential.As proof of concept,the Ni-CdS@Ni(OH)_(2)heterojunction simultaneously exhibits outstanding bifunctional photocatalytic performance,producing CO at a rate of 427μmol g^(-1)h^(-1)and selectively oxidizing toluene to benzaldehyde at a rate of 1476μmol g^(-1)h^(-1)with a selectivity exceeding 85%.This work offers a promising strategy to optimize the utilization of photogenerated carriers in heterojunction photocatalysts,advancing synergistic photocatalytic redox systems. 展开更多
关键词 Dual built-in electric fields Spatial charge separation Integrated redox reactions CO_(2)reduction Toluene oxidation Semiconductor photocatalysis
在线阅读 下载PDF
Unraveling the Ni-Co synergy in bifunctional hydroxide cocatalysts for better cooperation of CO_(2)reduction and H_(2)O oxidation in 2D S-scheme photosynthetic systems
9
作者 Lingxuan Hu Yan Zhang +7 位作者 Qian Lin Fengying Cao Weihao Mo Shuxian Zhong Hongjun Lin Liyan Xie Leihong Zhao Song Bai 《Chinese Journal of Catalysis》 2025年第1期311-325,共15页
Layered transition metal hydroxides show distinct advantages in separately co-catalyzing CO_(2)reduction and H_(2)O oxidation at the electron-accumulating and hole-accumulating sites of wrapped heterojunction photocat... Layered transition metal hydroxides show distinct advantages in separately co-catalyzing CO_(2)reduction and H_(2)O oxidation at the electron-accumulating and hole-accumulating sites of wrapped heterojunction photocatalysts,while concurrently preventing side reactions and photocorrosion on the semiconductor surface.Herein,Ni-Co bimetallic hydroxides with varying Ni/Co molar ratios(Ni_(x)Co_(1-x)(OH)_(2),x=1,0.75,0.5,0.25,and 0)were grown in situ on a model 2D/2D S-scheme heterojunction composed of Cu_(2)O nanosheets and Fe_(2)O_(3)nanoplates to form a series of Cu_(2)O/Fe_(2)O_(3)@Ni_(x)Co_(1-x)(OH)_(2)(CF@NiCo)photocatalysts.The combined experimental and theoretical investigation demonstrates that incorporating an appropriate amount of Co into Ni(OH)_(2)not only modulates the energy band structure of Ni_(x)Co_(1-x)(OH)_(2),balances the electron-and hole-trapping abilities of the bifunctional cocatalyst and maximizes the charge separation efficiency of the heterojunction,but also regulates the d-band center of Ni_(x)Co_(1-x)(OH)_(2),reinforcing the adsorption and activation of CO_(2)and H_(2)O on the cocatalyst surface and lowering the rate-limiting barriers in the CO_(2)-to-CO and H_(2)O-to-O_(2)conversion.Benefiting from the Ni-Co synergy,the redox reactions proceed stoichiometrically.The optimized CF@Ni_(0.75)Co_(0.25)achieves CO and O_(2)yields of 552.7 and 313.0μmol gcat^(-1)h^(-1),respectively,11.3/9.9,1.6/1.7,and 4.5/5.9-fold higher than those of CF,CF@Ni,and CF@Co.This study offers valuable insights into the design of bifunctional noble-metal-free cocatalysts for high-performance artificial photosynthesis. 展开更多
关键词 Ni-Co synergy Bifunctional cocatalyst CO_(2)reduction H20oxidation 2D/2D heterojunction S-scheme photosynthetic system
在线阅读 下载PDF
Efficient photoelectrochemical cell composed of Ni single atoms/P,N-doped amorphous NiFe_(2)O_(4) as anode catalyst and Ag NPs@CuO/Cu_(2)O nanocubes as cathode catalyst for microplastic oxidation and CO_(2)reduction
10
作者 Hong-Rui Zhu Xi-Lun Wang +3 位作者 Juan-Juan Zhao Meng-Han Yin Hui-Min Xu Gao-Ren Li 《Chinese Journal of Catalysis》 2025年第9期159-172,共14页
Plastics are ubiquitous in human life and pose certain hazards to the environment and human body.The increasing amount of CO_(2)in the atmosphere will lead to the greenhouse effect.Therefore,it is urgent to treat micr... Plastics are ubiquitous in human life and pose certain hazards to the environment and human body.The increasing amount of CO_(2)in the atmosphere will lead to the greenhouse effect.Therefore,it is urgent to treat microplastic waste and CO_(2)by using environmentally friendly and efficient technologies.In this work,we developed an efficient photoelectrocatalytic system composed of Ni single atoms(Ni SAs)supported by P,N-doped amorphous NiFe_(2)O_(4)(Ni SAs/A-P-N-NFO)as anode and Ag nanoparticles(Ag NPs)supported by CuO/Cu_(2)O nanocubes(Ag NPs@CuO/Cu_(2)O NCs)as cathode for microplastic oxidation and CO_(2)reduction.The Ni SAs/A-P-N-NFO was synthesized by calcination-H_(2)reduction method,and it achieved a Faraday efficiency of 93%for the oxidation reaction of poly(ethylene terephthalate)(PET)solution under AM 1.5 G light.As a photocathode,the synthesized Ag NPs@CuO/Cu_(2)O NCs was utilized to reduce CO_(2)to ethylene and CO at 1.5 V vs.RHE with selectivity of 42%and 55%,respectively.This work shows that the photoelectrocatalysis,as an environmentally friendly technology,is a feasible strategy for reducing the environmental and biological hazards of light plastics,as well as for efficient CO_(2)reduction. 展开更多
关键词 Ni single atom NiFe_(2)O_(4) PHOTOELECTROCATALYSIS Poly(ethylene terephthalate)plastics oxidation CO_(2)reduction reaction
在线阅读 下载PDF
Effects of mechanical activation and oxidation-reduction on hydrochloric acid leaching of Panxi ilmenite concentration 被引量:8
11
作者 谭平 胡慧萍 张黎 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2011年第6期1414-1421,共8页
The effects of oxidation-reduction treatment and mechanical activation on the hydrochloric acid leaching performance of Panxi ilmenite concentration were investigated.The results show that both of oxidation-reduction ... The effects of oxidation-reduction treatment and mechanical activation on the hydrochloric acid leaching performance of Panxi ilmenite concentration were investigated.The results show that both of oxidation-reduction treatment and mechanical activation significantly accelerate the extraction of Fe,Ca and Mg from Panxi ilmenite concentration;however,the CaO and MgO contents of the calcined residues obtained from oxidized-reduced ilmenite concentration are higher than the standard values required by chlorination process.The Ca and Mg in oxidized-reduced ilmenite concentration can be leached much faster after mechanical activation,yielding a synthetic rutile which meets the requirements of chlorination process containing 90.50% TiO2 and 1.37% total iron as well as combined CaO and MgO of 1.00%.The optimum oxidation and reduction conditions are as follows:oxidization at 900 ℃ in the presence of oxygen for 15 min and reduction at 750 ℃ by hydrogen for 30 min. 展开更多
关键词 ilmenite concentration mechanical activation oxidation reduction hydrochloric acid leaching
在线阅读 下载PDF
Hydrothermal synthesis of titanium-supported nanoporous palladium-copper electrocatalysts for formic acid oxidation and oxygen reduction reaction
12
作者 易清风 肖兴中 刘云清 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2013年第4期1184-1190,共7页
Nanoporous Pd and binary Pd-Cu particles were prepared by a hydrothermal method using ethylene glycol as a reduction agent and they were directly immobilized on Ti substrates named as Ti-supported Pd-based catalysts. ... Nanoporous Pd and binary Pd-Cu particles were prepared by a hydrothermal method using ethylene glycol as a reduction agent and they were directly immobilized on Ti substrates named as Ti-supported Pd-based catalysts. Their electrocatalytic activity for formic acid oxidation and oxygen reduction reaction (ORR) in alkaline media was examined by voltammetric techniques. Among the as-prepared catalysts, nanoPdslCu19/Ti catalyst presents the highest current density of 39.8 mA/cm2 at -0.5 V or 66.4 mA/cm2 at -0.3 V for formic acid oxidation. The onset potential of ORR on the nanoPdslCU19/Ti catalyst presents an about 70 mV positive shift compared to that on the nanoPd/Ti, and the current density of ORR at -0.3 V is 2.12 mA/cm2, which is 3.7 times larger than that on the nanoPd/Ti. 展开更多
关键词 Pd electrode Pd-Cu electrode formic acid oxidation oxygen reduction reaction NANOPARTICLE ELECTROCATALYSIS
在线阅读 下载PDF
Electrocatalytic Nitric Oxide Reduction to Yield Ammonia over Fe_(3)C Nanocrystals
13
作者 Sen Lin Lang Zhang +4 位作者 Tong Hou Jun-Yang Ding Zi-Mo Peng Yi-Fan Liu Xi-Jun Liu 《电化学(中英文)》 北大核心 2025年第4期1-11,共11页
Nitric oxide(NO),which generally originates from vehicle exhaust and industrial flue gases,is one of the most serious air pollutants.In this case,the electrochemical NO reduction reaction(NORR)not only removes the atm... Nitric oxide(NO),which generally originates from vehicle exhaust and industrial flue gases,is one of the most serious air pollutants.In this case,the electrochemical NO reduction reaction(NORR)not only removes the atmospheric pollutant NO but also produces valuable ammonia(NH_(3)).Hence,through the synthesis and modification of Fe_(3)C nanocrystal cata-lysts,the as-obtained optimal sample of Fe_(3)C/C-900 was adopted as the NORR catalyst at ambient conditions.As a result,the Fe_(3)C/C-900 catalyst showed an NH_(3)Faraday efficiency of 76.5%and an NH_(3)yield rate of 177.5μmol·h^(-1)·cm^(-2)at the working potentials of-0.8 and-1.2 V versus reversible hydrogen electrode(vs.RHE),respectively.And it delivered a stable NORR activity during the electrolysis.Moreover,we attribute the high NORR properties of Fe_(3)C/C-900 to two aspects:one is the enhanced intrinsic activity of Fe_(3)C nanocrystals,including the lowering of the energy barrier of rate-limiting step(*NOH→*N)and the inhibition of hydrogen evolution;on the other hand,the favorable dispersion of active components,the effective adsorption of gaseous NO,and the release of liquid NH_(3)products facilitated by the porous carbon substrate. 展开更多
关键词 Nitric oxide reduction NH3 synthesis Fe_(3)C nanocrystal ELECTROLYSIS Theoretical calculation
在线阅读 下载PDF
Anaerobic oxidation of methane coupled to sulfate reduction: Consortium characteristics and application in co-removal of H_2S and methane 被引量:6
14
作者 Lin Li Song Xue Jingru Xi 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2019年第2期238-248,共11页
Anaerobic sludge from a sewage treatment plant was used to acclimatize microbial colonies capable of anaerobic oxidation of methane(AOM) coupled to sulfate reduction. Clone libraries and fluorescence in situ hybridiza... Anaerobic sludge from a sewage treatment plant was used to acclimatize microbial colonies capable of anaerobic oxidation of methane(AOM) coupled to sulfate reduction. Clone libraries and fluorescence in situ hybridization were used to investigate the microbial population.Sulfate-reducing bacteria(SRB)(e.g., Desulfotomaculum arcticum and Desulfobulbus propionicus)and anaerobic methanotrophic archaea(ANME)(e.g., Methanosaeta sp. and Methanolinea sp.)coexisted in the enrichment. The archaeal and bacterial cells were randomly or evenly distributed throughout the consortia. Accompanied by sulfate reduction, methane was oxidized anaerobically by the consortia of methane-oxidizing archaea and SRB. Moreover, CH_4 and SO_4^(2-) were consumed by methanotrophs and sulfate reducers with CO_2 and H_2S as products. The H_3CSH produced by methanotrophy was an intermediate product during the process. The methanotrophic enrichment was inoculated in a down-flow biofilter for the treatment of methane and H_2S from a landfill site. On average, 93.33% of H_2S and 10.71% of methane was successfully reduced in the biofilter. This study tries to provide effective method for the synergistic treatment of waste gas containing sulfur compounds and CH_4. 展开更多
关键词 ANAEROBIC METHANE oxidation Sulphate reduction microbial population 13C isotope-labelling Potential pathway LANDFILL gas
原文传递
Effect of Cr2O3 addition on oxidation induration and reduction swelling behavior of chromium-bearing vanadium titanomagnetite pellets with simulated coke oven gas 被引量:11
15
作者 Wei-dong Tang Song-tao Yang Xiang-xin Xue 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2019年第8期963-972,共10页
The oxidation induration and reduction swelling behavior of chromium-bearing vanadium titanomagnetite pellets(CVTP)with Cr2O3 addition were studied,and the reduction swelling index(RSI)and compressive strength(CS)of t... The oxidation induration and reduction swelling behavior of chromium-bearing vanadium titanomagnetite pellets(CVTP)with Cr2O3 addition were studied,and the reduction swelling index(RSI)and compressive strength(CS)of the reduced CVTP with simulated coke oven gas(COG)injection were investigated.The results showed that the CS of the CVTP decreases and the porosity of the CVTP increases with increasing amount of Cr2O3 added.The Cr2O3 mainly exists in the form of(Cr,Fe)2O3 solid solution in the CVTP and as Fe-Cr in the reduced CVTP.The CS of the reduced CVTP increases and the RSI of the reduced CVTP decreases with increasing amount of Cr2O3 added.The limited aggregation and diffusion of metallic iron contribute to the formation of dense lamellar crystals,which leads to the slight decrease for reduction swelling behavior of reduced CVTP.This work provides a theoretical and technical basis for the utilization of CVTP and other Cr-bearing ores such as chromite with COG recycling technology. 展开更多
关键词 CHROMIUM oxide oxidation INDURATION reduction swellability coke oven gas chromium-bearing VANADIUM TITANOMAGNETITE PELLETS
在线阅读 下载PDF
A strategy for enhancing anaerobic digestion of waste activated sludge: Driving anodic oxidation by adding nitrate into microbial electrolysis cell 被引量:4
16
作者 Hong Peng Zhiqiang Zhao +3 位作者 Hong Xiao Yafei Yang Huimin Zhao Yaobin Zhang 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2019年第7期34-42,共9页
Cathodic reduction of CO_2 and anodic oxidation of organic matters are crucial to methaneproducing microbial electrolysis cell(MEC) applied in anaerobic digestion of waste activated sludge. However, cathodic CO_2 redu... Cathodic reduction of CO_2 and anodic oxidation of organic matters are crucial to methaneproducing microbial electrolysis cell(MEC) applied in anaerobic digestion of waste activated sludge. However, cathodic CO_2 reduction is usually restrained by slow metabolism rates of H_2-utilizing methanogens and low electron-capturing capacity of CO_2, which consequently slows down the anodic oxidation that participates to sludge disintegration. Herein, a strategy with adding nitrate as electron acceptor to foster electronic transfer between the anode and cathode was proposed to improve anodic oxidation. Results showed that the average efficiency of anodic oxidation in the nitrate-added MEC increased by 55.9%. Accordingly,volatile suspended solid removal efficiency in the nitrate-added MEC was 21.9% higher than that of control MEC. Although the initial cumulative methane production in the nitrateadded MEC was lower than that of control MEC, the cumulative methane production in 24 days was 8.9% higher. Fourier transform infrared spectroscopy analysis indicated that anodic oxidation of MEC with nitrate accelerated the disintegration of sludge flocs and cell walls. Calculation on current signal further revealed that anodic oxidation driven by cathodic nitrate reduction was the main mechanism responsible for the improved sludge digestion. 展开更多
关键词 Waste ACTIVATED SLUDGE microbial ELECTROLYSIS cell NITRATE Anodic oxidation SLUDGE reduction
原文传递
Role of NO in Hg^0 oxidation over a commercial selective catalytic reduction catalyst V_2O_5–WO_3/TiO_2 被引量:6
17
作者 Ruihui Liu Wenqing Xu +1 位作者 Li Tong Tingyu Zhu 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2015年第12期126-132,共7页
Experiments were conducted in a fixed-bed reactor that contained a commercial catalyst,V2O5-WO3/TiO2,to investigate mercury oxidation in the presence of NO and O2.Mercury oxidation was improved by NO,and the efficienc... Experiments were conducted in a fixed-bed reactor that contained a commercial catalyst,V2O5-WO3/TiO2,to investigate mercury oxidation in the presence of NO and O2.Mercury oxidation was improved by NO,and the efficiency was increased by simultaneously adding NO and O2.With NO and O2 pretreatment at 350°C,the catalyst exhibited higher catalytic activity for Hg^0 oxidation,whereas NO pretreatment did not exert a noticeable effect.Decreasing the reaction temperature boosted the performance of the catalyst treated with NO and O2.Although NO promoted Hg^0 oxidation at the very beginning,excessive NO counteracted this effect.The results show that NO plays different roles in Hg^0oxidation; NO in the gaseous phase may directly react with the adsorbed Hg^0,but excessive NO hinders Hg^0 adsorption.The adsorbed NO was converted into active nitrogen species(e.g.,NO2) with oxygen,which facilitated the adsorption and oxidation of Hg^0.Hg^0 was oxidized by NO mainly by the Eley-Rideal mechanism.The Hg^0 temperature-programmed desorption experiment showed that weakly adsorbed mercury species were converted to strongly bound ones in the presence of NO and O2. 展开更多
关键词 MERCURY NO Mechanism Selective catalytic reduction catalyst oxidation Vanadium
原文传递
Rough-surfaced bimetallic copper–palladium alloy multicubes as highly bifunctional electrocatalysts for formic acid oxidation and oxygen reduction 被引量:6
18
作者 Dong Chen Linlin Xu +1 位作者 Hui Liu Jun Yang 《Green Energy & Environment》 SCIE CSCD 2019年第3期254-263,共10页
Engineering the morphology of nanomaterials and modifying their electronic structure are effective ways to improve their performance in electrocatalysis. Through combining the co-reduction of Pd2+ and Cu2+ precursors ... Engineering the morphology of nanomaterials and modifying their electronic structure are effective ways to improve their performance in electrocatalysis. Through combining the co-reduction of Pd2+ and Cu2+ precursors with a digestive ripening process in oleylamine, we report the synthesis of copper-palladium(Cu-Pd) alloy multicubes with rough surfaces. Benefiting from their alloy and unique rough-surfaced structure,which provides ample edge/corner and step atoms as well as the electronic coupling between Cu and Pd leading to the lower of d-band center, the rough-surfaced Cu-Pd alloy multicubes show much better electrocatalytic performance not only for formic acid oxidation but also for oxygen reduction in comparison with those of spherical Cu-Pd alloy nanoparticles and commercial Pd/C catalyst. In contrast, we confirm that the rough-surfaced Cu-Pd alloy multicubes only exhibit very low Faradaic efficiency(34.3%) for electrocatalytic conversion of carbon dioxide(CO2) to carbon monoxide(CO) due to the presence of strong competing hydrogen evolution reaction, which results in their very poor selectivity for the reduction of CO2 to CO. The findings in this study not only offer a promising strategy to produce highly effective electrocatalysts for direct formic acid fuel cells, but also enlighten the ideas to design efficient electrocatalysts for CO2 reduction. 展开更多
关键词 Copper–palladium Multicube Formic acid oxidation Oxygen reduction CO2 reduction
在线阅读 下载PDF
Computational insights and strategic choices of nitrate and nitric oxide electroreduction to ammonia
19
作者 Pu Guo Shaoxue Yang +3 位作者 Huijuan Jing Dong Luan Jun Long Jianping Xiao 《Chinese Journal of Catalysis》 2025年第10期220-226,共7页
Electrochemical nitrate reduction(eNO_(3)RR)and nitric oxide reduction(eNORR)to ammonia have emerged as promising and sustainable alternatives to the traditional Haber-Bosch method for ammonia production,particularly ... Electrochemical nitrate reduction(eNO_(3)RR)and nitric oxide reduction(eNORR)to ammonia have emerged as promising and sustainable alternatives to the traditional Haber-Bosch method for ammonia production,particularly within the recently proposed reverse artificial nitrogen cycle route:N_(2)→NO_(x)→NH_(3).Notably,experimental studies have demonstrated that eNORR exhibits superior performance over eNO_(3)RR on Cu6Sn5 catalysts.However,the fundamental mechanisms underlying this difference remain poorly understood.Herein,we performed systematic theoretical calculations to explore the reaction pathways,electronic structure effects,and potential-dependent Faradic efficiency associated with ammonia production via these two distinct electrochemical pathways(eNORR and eNO_(3)RR)on Cu6Sn5.By implementing an advanced‘adaptive electric field controlled constant potential(EFC-CP)’methodology combined with microkinetic modeling,we successfully reproduced the experimental observations and identified the key factors affecting ammonia production in both reaction pathways.It was found that eNORR outperforms eNO_(3)RR because it circumvents the ^(*)NO_(2) dissociation and ^(*)NO_(2) desorption steps,leading to distinct surface coverage of key intermediates between the two pathways.Furthermore,the reaction rates were found to exhibit a pronounced dependence on the surface coverage of ^(*)NO in eNORR and ^(*)NO_(2) in eNO_(3)RR.Specifically,the facile desorption of ^(*)NO_(2) on the Cu6Sn5 surface in eNO_(3)RR limits the attainable surface coverage of ^(*)NO,thereby impeding its performance.In contrast,the eNORR can maintain a high surface coverage of adsorbed ^(*)NO species,contributing to its enhanced ammonia production performance.These fundamental insights provide valuable guidance for the rational design of catalysts and the optimization of reaction routes,facilitating the development of more efficient,sustainable,and scalable techniques for ammonia production. 展开更多
关键词 Reverse ammonia production ELECTROCATALYSIS Nitric oxide reduction Nitrate reduction Constant potential Density functional theory calculation Microkinetic modeling
在线阅读 下载PDF
Integration of interface engineering and La doping to boost two-electron oxygen reduction to hydrogen peroxide over La_(2)Sn_(2)O_(7)@La-doped ZnSnO_(3) heterostructures
20
作者 Yan-Yan Sun Kun Li +3 位作者 Muhammad Arif Lei Han Amjad Nisar Ting Zhu 《Rare Metals》 2025年第6期3934-3942,共9页
Perovskite oxides have shown great potential application in fuel cells due to the unique crystal structures and tunable composition as well as effective capability toward the oxygen reduction reaction(ORR),whereas the... Perovskite oxides have shown great potential application in fuel cells due to the unique crystal structures and tunable composition as well as effective capability toward the oxygen reduction reaction(ORR),whereas the investigation on the electrocatalytic performance of perovskite oxides toward the two-electron ORR to H_(2)O_(2)production remains very limited.Herein,a facile synthetic method has been developed to prepare La_(2)Sn_(2)O_(7)@La-doped ZnSnO_(3)heterostructures comprising of amorphous La_(2)Sn_(2)O_(7)and crystalline La-doped ZnSnO_(3).The optimal La_(2)Sn_(2)O_(7)@Ladoped ZnSnO_(3)heterostructures catalyst exhibits a significantly improved two-electron ORR performance to H_(2)O_(2)production with onset potential of 0.77 V and large current density of 2.51 m A.cm^(-2)at 0.1 V compared to ZnSnO_(3)(0.75 V,1.80 m A.cm^(-2),0.11 m A) as well as maintains high H_(2)O_(2)selectivity of 80%,which has been theoretically demonstrated to be contributed to the synergistic effect of amorphous La_(2)Sn_(2)O_(7)and crystalline La-doped ZnSnO_(3).Moreover,high H_(2)O_(2)yield rate of 2.9 m M.h^(-1)at 0.1 V can be achieved with a superior turnover frequency(TOF) of3.31 × 10^(-2)s^(-1)compared to the ZnSnO_(3)catalyst(2.10 × 10^(-2)s^(-1)).This work reveals the great potential of perovskite oxide as promising candidates for the environmentally friendly synthesis of hydrogen peroxide. 展开更多
关键词 Hydrogen peroxide production Oxygen reduction reaction Perovskite oxide
原文传递
上一页 1 2 250 下一页 到第
使用帮助 返回顶部