期刊文献+
共找到14篇文章
< 1 >
每页显示 20 50 100
Quality enhancement and microbial reduction of mung bean(Vigna radiata)sprouts by non-thermal plasma pretreatment of seeds 被引量:2
1
作者 Dongjie CUI Xiaoxia HU +5 位作者 Yue YIN Yupan ZHU Jie ZHUANG Xiaojie WANG Ruonan MA Zhen JIAO 《Plasma Science and Technology》 SCIE EI CAS CSCD 2022年第4期164-176,共13页
Mung bean(Vigna radiata)sprouts are widely consumed worldwide due to their high nutritional value.However,the low yield and microbial contamination of mung bean sprouts seriously reduces their economic value.This stud... Mung bean(Vigna radiata)sprouts are widely consumed worldwide due to their high nutritional value.However,the low yield and microbial contamination of mung bean sprouts seriously reduces their economic value.This study investigates the effects of non-thermal plasma on the quality and microbial reduction of mung bean sprouts by pretreatment of seeds in water for different times(0,1,3 and 6 min).The quality results showed that short-time plasma treatment(1 and 3 min)promoted seed germination and seedling growth,whereas long-time plasma treatment(6 min)had inhibitory effects.Plasma also had a similar dose effects on the total flavonoid and phenolic contents of mung bean sprouts.The microbiological results showed that plasma treatment achieved a reduction of native microorganisms ranging from 0.54 to 7.09 log for fungi and 0.29 to 6.80 log for bacteria at 96 h incubation.Meanwhile,plasma treatment could also efficiently inactivate artificially inoculated Salmonella typhimurium(1.83–6.22 log)and yeast(0.53–3.19 log)on mung bean seeds.The results of seed coat permeability tests and scanning electron microscopy showed that plasma could damage the seed coat structure,consequently increasing the electrical conductivity of mung bean seeds.The physicochemical analysis of plasma-treated water showed that plasma generated various long-and short-lived active species[nitric oxide radicals(NO·),hydroxyl radicals(·OH),singlet oxygen(1O2),hydrogen peroxide(H_(2)O_(2)),nitrate(NO_(3)^(-)),and nitrite(NO_(2)^(-))]in water,thus the oxidizability,acidity and conductivity of plasma-treated water were all increased in a treatment timedependent manner.The result for mimicked chemical mixtures confirmed the synergistic effect of activity of H_(2)O_(2),NO_(3)^(-)and NO_(2)^(-)on bacterial inactivation and plant growth promotion.Taken together,these results imply that plasma pretreatment of mung bean seeds in water with moderate oxidizability and acidity is an effective method to improve the yield of mung bean sprouts and reduce microbial contamination. 展开更多
关键词 non-thermal plasma mung bean sprout QUALITY microbial reduction reactive oxygen and nitrogen species
在线阅读 下载PDF
PREPARATION OF ENANTIOMERICALLY PURE SYN-4,5-DIHYDROXY CARBOXYLIC ACID LACTONES BY MICROBIAL REDUCTION
2
作者 Jian Xin GU Zu Yi LI GUo Qiang LIN 《Chinese Chemical Letters》 SCIE CAS CSCD 1991年第5期345-346,共2页
Enantiomerically pure syn-4,5-dihydroxy carboxylic acid lactones were prepared by microbial reduction of acyl lactones with resting cell of Aspergillus niger.
关键词 SYN PREPARATION OF ENANTIOMERICALLY PURE SYN-4 5-DIHYDROXY CARBOXYLIC ACID LACTONES BY microbial reduction ACID
在线阅读 下载PDF
Microbial reduction of graphene oxide and its application in microbial fuel cells and biophotovoltaics
3
作者 Jing-Ye Tee Fong-Lee Ng +2 位作者 Fiona Seh-Lin Keng G.Gnana kumar Siew-Moi Phang 《Frontiers of Materials Science》 SCIE CSCD 2023年第2期45-63,共19页
Despite more than a decade of study,there are still significant obstacles to overcome before graphene can be successfully produced on a large scale for commercial use.Chemical oxidation of graphite to produce graphene... Despite more than a decade of study,there are still significant obstacles to overcome before graphene can be successfully produced on a large scale for commercial use.Chemical oxidation of graphite to produce graphene oxide(GO),followed by a subsequent reduction process to synthesize reduced graphene oxide(rGO),is considered the most practical method for mass production.Microorganisms,which are abundant in nature and inexpensive,are one of the potential green reductants for rGO synthesis.However,there is no recent review discussing the reported microbial reduction of GO in detail.To address this,we present a comprehensive review on the reduction of GO by a range of microorganisms and compared their efficacies and reaction conditions.Also,presented were the mechanisms by which microorganisms reduce GO.We also reviewed the recent advancements in using microbially reduced GO as the anode and cathode material in the microbial fuel cell(MFC)and algal biophotovoltaics(BPV),as well as the challenges and future directions in microbial fuel cell research. 展开更多
关键词 reduced graphene oxide microbial reduction microbial fuel cell algal biophotovoltaics green chemistry
原文传递
Dissimilatory reduction of Fe^III (EDTA) with microorganisms in the system of nitric oxide removal from the flue gas by metal chelate absorption 被引量:3
4
作者 MABi-yao LIWei JINGGuo-hua SHIYao 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2004年第3期428-430,共3页
In the system of nitric oxide removal from the flue gas by metal chelate absorption, it is an obstacle that ferrous absorbents are easily oxidized by oxygen in the flue gas to ferric counterparts, which are not capabl... In the system of nitric oxide removal from the flue gas by metal chelate absorption, it is an obstacle that ferrous absorbents are easily oxidized by oxygen in the flue gas to ferric counterparts, which are not capable of binding NO. By adding iron metal or electrochemical method, Fe III (EDTA) can be reduced to Fe II (EDTA). However, there are various drawbacks associated with these techniques. The dissimilatory reduction of Fe III (EDTA) with microorganisms in the system of nitric oxide removal by metal chelate absorption was investigated. Ammonium salt instead of nitrate was used as the nitrogen source, as nitrates inhibited the reduction of Fe III due to the competition between the two electron acceptors. Supplemental glucose and lactate stimulated the formation of Fe II more than ethanol as the carbon sources. The microorganisms cultured at 50℃ were not very sensitive to the other experimental temperature, the reduction percentage of Fe III varied little with the temperature range of 30—50℃. Concentrated Na 2CO 3 solution was added to adjust the solution pH to an optimal pH range of 6—7 The overall results revealed that the dissimilatory ferric reducing microorganisms present in the mix culture are probably neutrophilic, moderately thermophilic Fe III reducers. 展开更多
关键词 dissimilatory ferric reducing microorganisms Fe III (EDTA) microbial reduction mix culture
在线阅读 下载PDF
Process control factors for continuous microbial perchlorate reduction in the presence of zero-valent iron 被引量:3
5
作者 Robert D. ARTHUR Jagadish TORLAPATI +3 位作者 Kyung-Hee SHIN Daniel K. CHA Yeomin YOON Ahjeong SON 《Frontiers of Environmental Science & Engineering》 SCIE EI CAS CSCD 2014年第3期386-393,共8页
Process control parameters influencing microbial perchlorate reduction via a flow-through zero-valent iron (ZVI) column reactor were investigated in order to optimize perchlorate removal from water. Mixed perchlorat... Process control parameters influencing microbial perchlorate reduction via a flow-through zero-valent iron (ZVI) column reactor were investigated in order to optimize perchlorate removal from water. Mixed perchlorate reducers were obtained from a wastewater treatment plant and inoculated into the reactor without further acclimation. Examined parameters included hydraulic residence time (HRT), pH, nutrients requirement, and perchlorate reduction kinetics. The minimum HRT for the system was concluded to be 8 hr. The removal efficiency of 10 mg. L-1 influent perchlorate concentration was reduced by 20%-80% without control to the neutral pH (HRT = 8 hr). Therefore pH was determined to be an important parameter for microbial perchlorate reduction. Furthermore, a viable alternative to pH buffer was discussed. The microbial perchlorate reduction followed the first order kinetics, with a rate constant (K) of 0.761 hr-1. The results from this study will contribute to the implementation of a safe, cost effective, and efficient system for perchlorate reduction to below regulated levels. 展开更多
关键词 PERCHLORATE zero-valent iron (ZVI) microbial reduction HYDROGEN
原文传递
Biochar regulates biogeochemical cycling of iron and chromium in a soil-rice system by stimulating Geobacter and Clostridium
6
作者 Min XU Yang LIN +7 位作者 Jing MA Lulu LONG Chao CHEN Gang YANG Chun SONG Jun WU Xiaohong ZHANG Peng GAO 《Pedosphere》 SCIE CAS CSCD 2024年第5期929-940,共12页
In soil-rice systems,microbial reduction of iron(Fe)has been recognized as a crucial biogeochemical process that regulates Fe and chromium(Cr)translocation;however,the underlying processes are unknown.To investigate t... In soil-rice systems,microbial reduction of iron(Fe)has been recognized as a crucial biogeochemical process that regulates Fe and chromium(Cr)translocation;however,the underlying processes are unknown.To investigate the impacts of biochar on the biochemical cycling of Fe and Cr and their toxicity to rice,maize straw biochar was applied at 1%(weight/weight)to a paddy soil spiked with 300 mg kg^(-1)Cr under two phosphorus(P)levels(0 or 90 mg kg^(-1))in a pot experiment.The key microbial groups affecting Fe dissimilatory reduction and their environmental drivers were explored.Biochar inhibited root Cr uptake by 36%,owing to the promoted iron plaque(IP)formation on the rice root surface.Correlation analysis showed that Fe concentration in pore water was strongly linked to the abundances of Geobacter(r=0.81-0.94,P<0.05)and Clostridium(r=0.83-0.95,P<0.05),indicating that Geobacter and Clostridium played essential roles in Fe reduction.Redundancy analysis showed that labile carbon and pore water P concentrations were the key determinants influencing Fe-reducing bacterial abundances,accounting for 42%and 32%of the variation in community composition,respectively.Besides,biochar increased Fe and P concentrations in root cell walls,which retained more Cr.Overall,Cr stress in rice under biochar treatment was relieved through increasing IP formation and altering subcellular distribution.These mechanistic insights had important implications for reducing Cr uptake by rice. 展开更多
关键词 chromium translocation iron plaque iron reduction maize straw biochar microbial reduction paddy soil phosphorus fertilization subcellular distribution
原文传递
Release of Pb adsorbed on graphene oxide surfaces under conditions of Shewanella putrefaciens metabolism
7
作者 Jianfeng Zhang ShichangWei +3 位作者 Zhenxing Liu Huang Tang Xiaoguang Meng Weihuang Zhu 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2022年第8期67-75,共9页
In this study, Pb(Ⅱ) was used as a target heavy metal pollutant, and the metabolism of Shewanella putrefaciens(S. putrefaciens) was applied to achieve reducing conditions to study the effect of microbial reduction on... In this study, Pb(Ⅱ) was used as a target heavy metal pollutant, and the metabolism of Shewanella putrefaciens(S. putrefaciens) was applied to achieve reducing conditions to study the effect of microbial reduction on lead that was preadsorbed on graphene oxide(GO) surfaces.The results showed that GO was transformed to its reduced form(r-GO) by bacteria, and this process induced the release of Pb(Ⅱ) adsorbed on the GO surfaces. After 72 hr of exposure in an S. putrefaciens system, 5.76% of the total adsorbed Pb(Ⅱ) was stably dispersed in solution in the form of a Pb(Ⅱ)-extracellular polymer substance(EPS) complex, while another portion of Pb(Ⅱ) released from GO-Pb(Ⅱ) was observed as lead phosphate hydroxide(Pb_(10)(PO_(4))_(6)(OH)_(2))precipitates or adsorbed species on the surface of the cell. Additionally, increasing pH induced the stripping of oxidative debris(OD) and elevated the content of dispersible Pb(Ⅱ)in aqueous solution under the conditions of S. putrefaciens metabolism. These research results provide valuable information regarding the migration of heavy metals adsorbed on GO under reducing conditions due to microbial metabolism. 展开更多
关键词 Graphene oxide Pb(Ⅱ) Shewanella putrefaciens Extracellular polymeric substances microbial reduction
原文传递
Effects of Cd on reductive transformation of lepidocrocite by Shewanella oneidensis MR-1
8
作者 Chaolei Yuan Fangbai Li +3 位作者 Rui Han Tongxu Liu Weimin Sun Weilin Huang 《Acta Geochimica》 EI CAS CSCD 2017年第3期479-481,共3页
We investigated the reduction of lepidocrocite(γ-FeOOH) by Shewanella oneidensis MR-1 in the presence and absence of Cd. The results showed that Cd^(2+) retarded microbial reduction of γ-Fe OOH and avoided formation... We investigated the reduction of lepidocrocite(γ-FeOOH) by Shewanella oneidensis MR-1 in the presence and absence of Cd. The results showed that Cd^(2+) retarded microbial reduction of γ-Fe OOH and avoided formation of magnetite. The inhibitory effect on γ-Fe OOH transformation may not result from Cd^(2+) toxicity to the bacterium; it rather was probably due to competitive adsorption between Cd^(2+) and Fe^(2+) on γ-Fe OOH as its surface reduction catalyzed by adsorbed Fe^(2+) was eliminated by adsorption of Cd^(2+). 展开更多
关键词 LEPIDOCROCITE CADMIUM microbial reduction
在线阅读 下载PDF
Reduction of iron oxide nanoparticles by Geobacter sulfurreducens PCA involves outer membrane proteins and secreted redox-active substances
9
作者 Yifan Cui Xiaoyan Zhang +7 位作者 Peijie Yang Yanwei Liu Maoyong Song Yingying Guo Wentao Jiao Yongguang Yin Yong Cai Guibin Jiang 《Journal of Environmental Sciences》 2026年第1期767-774,共8页
Fe reducing bacteria(FRB),through extracellular electron transfer(EET)pathway,can reduce Fe(III)nanoparticles,thereby affecting the migration,transformation,and degradation of pollutants.However,the interaction of Fe(... Fe reducing bacteria(FRB),through extracellular electron transfer(EET)pathway,can reduce Fe(III)nanoparticles,thereby affecting the migration,transformation,and degradation of pollutants.However,the interaction of Fe(III)nanoparticles with the most commonly identified FRB,Geobacter sulfurreducens PCA,remains poorly understood.Herein,we demonstrated that the synergistic role of outer membrane proteins and periplasmic proteins in the EET process for-Fe_(2)O_(3),Fe3O4,and𝛽α-FeOOH nanoparticles by construction of multiple gene knockout strain.oxpG(involved in the type II secretion system)and omcST(outer membrane c-type cytochrome)medi-ated pathways accounted for approximately 67%of the total reduction of𝛼α-Fe_(2)O_(3) nanoparticles.The residual reduction of𝛼α-Fe_(2)O_(3) nanoparticles in∆oxpG-omcST strain was likely caused by redox-active substances in cell supernatant.Conversely,the reduction of dissolved Fe(III)was almost unaffected in∆oxpG-omcST strain at the same concentration.However,at high dissolved Fe(III)concentration,the reduction significantly decreased due to the formation of Fe(III)nanoparticles,suggesting that this EET process is specific to Fe(III)nanoparticles.Overall,our study provided a more comprehensive understanding for the EET pathways between G.sulfurreducens PCA and different Fe(III)species,enriching our knowledge on the role of microorganisms in iron biogeochemical cycles and remediation strategies of pollutants. 展开更多
关键词 microbial Fe(III)reduction Fe(III)nanoparticles Extracellular electron transfer Redox-active substances Geobacter sulfurreducens PCA
原文传递
Microbially-mediated formation of Ca-Fe carbonates during dissimilatory ferrihydrite reduction:Implications for the origin of sedimentary ankerite 被引量:1
10
作者 Deng LIU Jinpeng CAO +8 位作者 Shanshan YANG Yating YIN Pengcong WANG Dominic PAPINEAU Hongmei WANG Xuan QIU Genming LUO Zongmin ZHU Fengping WANG 《Science China Earth Sciences》 SCIE EI CAS CSCD 2024年第1期208-221,共14页
The origin of sedimentary dolomite has become a long-standing problem in the Earth Sciences.Some carbonate minerals like ankerite have the same crystal structure as dolomite,hence their genesis may provide clues to he... The origin of sedimentary dolomite has become a long-standing problem in the Earth Sciences.Some carbonate minerals like ankerite have the same crystal structure as dolomite,hence their genesis may provide clues to help solving the dolomite problem.The purpose of this study was to probe whether microbial activity can be involved in the formation of ankerite.Bio-carbonation experiments associated with microbial iron reduction were performed in batch systems with various concentrations of Ca^(2+)(0–20 mmol/L),with a marine iron-reducing bacterium Shewanella piezotolerans WP3 as the reaction mediator,and with lactate and ferrihydrite as the respective electron donor and acceptor.Our biomineralization data showed that Ca-amendments expedited microbially-mediated ferrihydrite reduction by enhancing the adhesion between WP3 cells and ferrihydrite particles.After bioreduction,siderite occurred as the principal secondary mineral in the Ca-free systems.Instead,Ca-Fe carbonates were formed when Ca^(2+)ions were present.The CaCO_(3) content of microbially-induced Ca-Fe carbonates was positively correlated with the initial Ca2+concentration.The Ca-Fe carbonate phase produced in the 20 mmol/L Ca-amended biosystems had a chemical formula of Ca_(0.8)Fe_(1.2)(CO_(3))_(2),which is close to the theoretical composition of ankerite.This ankeritelike phase was nanometric in size and spherical,Ca-Fe disordered,and structurally defective.Our simulated diagenesis experiments further demonstrated that the resulting ankerite-like phase could be converted into ordered ankerite under hydrothermal conditions.We introduced the term“proto-ankerite”to define the Ca-Fe phases that possess near-ankerite stoichiometry but disordered cation arrangement.On the basis of the present study,we proposed herein that microbial activity is an important contributor to the genesis of sedimentary ankerite by providing the metastable Ca-Fe carbonate precursors. 展开更多
关键词 ANKERITE Proto-ankerite microbial iron reduction Dolomite problem Mineral transformation
原文传递
Characterization of iron diagenesis in marine sediments using refined iron speciation and quantized iron(Ⅲ)-oxide reactivity:a case study in the Jiaozhou Bay,China 被引量:2
11
作者 TAO Jing MA Weiwei +2 位作者 ZHU Maoxu LI Tie YANG Rujun 《Acta Oceanologica Sinica》 SCIE CAS CSCD 2017年第7期48-55,共8页
As a case study, refined iron(Fe) speciation and quantitative characterization of the reductive reactivity of Fe(Ⅲ)oxides are combined to investigate Fe diagenetic processes in a core sediment from the eutrophic ... As a case study, refined iron(Fe) speciation and quantitative characterization of the reductive reactivity of Fe(Ⅲ)oxides are combined to investigate Fe diagenetic processes in a core sediment from the eutrophic Jiaozhou Bay.The results show that a combination of the two methods can trace Fe transformation in more detail and offer nuanced information on Fe diagenesis from multiple perspectives. This methodology may be used to enhance our understanding of the complex biogeochemical cycling of Fe and sulfur in other studies. Microbial iron reduction(MIR) plays an important role in Fe(Ⅲ) reduction over the upper sediments, while a chemical reduction by reaction with dissolved sulfide is the main process at a deeper(〉 12 cm) layer. The most bioavailable amorphous Fe(Ⅲ) oxides [Fe(Ⅲ)am] are the main source of the MIR, followed by poorly crystalline Fe(Ⅲ) oxides [Fe(Ⅲ)pc)]and magnetite. Well crystalline Fe(Ⅲ) oxides [Fe(Ⅲ)wc] have barely participated in Fe diagenesis. The importance of the MIR over the upper layer may be a combined result of the high availability of highly reactive Fe oxides and low availability of labile organic matter, and the latter is also the ultimate factor limiting sulfate reduction and sulfide accumulation in the sediments. Microbially reducible Fe(Ⅲ) [MR-Fe(Ⅲ)], which is quantified by kinetics of Fe(II)-oxide reduction, mainly consists of the most reactive Fe(Ⅲ)am and less reactive Fe(Ⅲ)pc. The bulk reactivity of the MR-Fe(Ⅲ) pool is equivalent to aged ferrihydrite, and shows down-core decrease due to preferential reduction of highly reactive phases of Fe oxides. 展开更多
关键词 iron oxides Jiaozhou Bay in China marine sediments microbial iron reduction reactivity speciation
在线阅读 下载PDF
Advances in Fe(Ⅲ)bioreduction and its application prospect for groundwater remediation:A review 被引量:8
12
作者 Yu Jiang Beidou Xi +4 位作者 Rui Li Mingxiao Li Zheng Xu Yuning Yang Shaobo Gao 《Frontiers of Environmental Science & Engineering》 SCIE EI CAS CSCD 2019年第6期11-21,共11页
Microbial Fe(Ⅲ)reduction is a significant driving force for the biogeochemical cycles of C,O,P,S,N,and dominates the natural bio-purification of contaminants in groundwater(e.g.,petroleum hydrocarbons,chlorinated eth... Microbial Fe(Ⅲ)reduction is a significant driving force for the biogeochemical cycles of C,O,P,S,N,and dominates the natural bio-purification of contaminants in groundwater(e.g.,petroleum hydrocarbons,chlorinated ethane,and chromium).In this review,the mechanisms and environmental significance of Fe(Ⅲ)(hydro)oxides bioreduction are summarized.Compared with crystalline Fe(Ⅲ)(hydro)oxides,amorphous Fe(m)(hydro)oxides are more bioavailable.Ligand and electron shuttle both play an important role in microbial Fe(Ⅲ)reduction.The restrictive factors of Fe(Ⅲ)(hydro)oxides bioreduction should be further investigated to reveal the characteristics and mechanisms of the process.It will improve the bioavailability of crystalline Fe(Ⅲ)(hydro)oxides and accelerate the anaerobic oxidation efficiency of the reduction state pollutants.Furthermore,the approach to extract,culture,and incubate the functional Fe(Ⅲ)reducing bacteria from actual complicated environment,and applying it to the bioremediation of organic,ammonia,and heavy metals contaminated groundwater will become a research topic in the future.There are a broad application prospects of Fe(Ⅲ)(hydro)oxides bioreduction to groundwater bioremediation,which includes the in situ injection and permeable reactive barriers and the innovative Kariz wells system.The study provides an important reference for the treatment of reduced pollutants in contaminated groundwater. 展开更多
关键词 microbial Fe(Ⅲ)reduction Mechanism Groundwater contamination REMEDIATION
原文传递
Integration of microbial reductive dehalogenation with persulfate activation and oxidation(Bio-RD-PAO)for complete attenuation of organohalides 被引量:1
13
作者 Rifeng Wu Shanquan Wang 《Frontiers of Environmental Science & Engineering》 SCIE EI CSCD 2022年第2期87-108,共22页
Due to the toxicity of bioaccumulative organohalides to human beings and ecosystems,a variety of biotic and abiotic remediation methods have been developed to remove organohalides from contaminated environments.Biorem... Due to the toxicity of bioaccumulative organohalides to human beings and ecosystems,a variety of biotic and abiotic remediation methods have been developed to remove organohalides from contaminated environments.Bioremediation employing organohalide-respiring bacteria(OHRB)-mediated microbial reductive dehalogenation(Bio-RD)represents a cost-effective and environmentally friendly approach to attenuate highly-halogenated organohalides,specifically organohalides in soil,sediment and other anoxic environments.Nonetheless,many factors severely restrict the implications of OHRB-based bioremediation,including incomplete dehalogenation,low abundance of OHRB and consequent low dechlorination activity.Recently,the development of in situ chemical oxidation(ISCO)based on sulfate radicals(SO_(4)^(·−))via the persulfate activation and oxidation(PAO)process has attracted tremendous research interest for the remediation of lowly-halogenated organohalides due to its following advantages,e.g.,complete attenuation,high reactivity and no selectivity to organohalides.Therefore,integration of OHRB-mediated Bio-RD and subsequent PAO(Bio-RD-PAO)may provide a promising solution to the remediation of organohalides.In this review,we first provide an overview of current progress in Bio-RD and PAO and compare their limitations and advantages.We then critically discuss the integration of Bio-RD and PAO(Bio-RD-PAO)for complete attenuation of organohalides and its prospects for future remediation applications.Overall,Bio-RD-PAO opens up opportunities for complete attenuation and consequent effective in situ remediation of persistent organohalide pollution. 展开更多
关键词 Bio-RD-PAO microbial reductive dehalogenation PERSULFATE Organohalide respiration Complete attenuation
原文传递
Development and characterization of an anaerobic microcosm for reductive dechlorination of PCBs
14
作者 Dawei Liang Shanquan Wang 《Frontiers of Environmental Science & Engineering》 SCIE EI CAS CSCD 2017年第6期9-18,共10页
The toxic and recalcitrant polychlorinated biphenyls (PCBs) adversely affect human and biota by bioaccumulation and biomagnification through food chain. In this study, an anaerobic microcosm was developed to extensi... The toxic and recalcitrant polychlorinated biphenyls (PCBs) adversely affect human and biota by bioaccumulation and biomagnification through food chain. In this study, an anaerobic microcosm was developed to extensively dechlorinate hexa- and hepta-CBs in Aroclor 1260. After 4 months of incubation in defined mineral salts medium amended PCBs (70μmol· L^-1) and lactate (10 mmol· L^-1), the culture dechlorinated hexa-CBs from 40.2% to 8.7% and hepta-CBs 33.6% to 11.6%, with dechlorination efficiencies of 78.3% and 65.5%, respectively (all in moL ratio). This dechlorination process led to tetra-CBs (46.4%) as the predominant dechlorination products, followed by penta- (22.1%) and tri-CBs (5.4%). The number of meta chlorines per biphenyl decreased from 2.50 to 1.41. Results of quantitative real-time PCR show that Dehalococcoides cells increased from 2.39 × 10^5±0.5× 10^5 to 4.99 ×10^7±0.32 ×10^7 copies mL^-1 after 120 days of incubation, suggesting that Dehalococcoides play a major role in reductive dechlorination of PCBs. This study could prove the feasibility of anaerobic reductive culture enrichment for the dehalogenation of highly chlorinated PCBs, which is priorto be applied for in situ biorernediation of notorious halogenated compounds. 展开更多
关键词 Polychlorinated biphenyls (PCBs) microbial reductive dechlorination Dehalococcoides Pathway
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部