Paddy fields play an important role in global carbon(C) cycling and are an important source of methane(CH_(4)) emissions. Insights into the processes influencing the dynamics of soil organic C(SOC) in paddy fields are...Paddy fields play an important role in global carbon(C) cycling and are an important source of methane(CH_(4)) emissions. Insights into the processes influencing the dynamics of soil organic C(SOC) in paddy fields are essential for maintaining global soil C stocks and mitigating climate change. Periphytic biofilms composed of microalgae, bacteria, and other microorganisms are ubiquitous in paddy fields, where they directly mediate the transfer of elements at the soil-water interface. However, their contributions to C turnover and exchange have been largely neglected. Periphytic biofilms affect and participate in soil C dynamics by altering both abiotic(e.g., pH and redox potential) and biotic conditions(e.g., microbial community composition and metabolism). This review summarizes the contributions of periphytic biofilms to soil C cycling processes, including carbon dioxide fixation, SOC mineralization, and CH_(4) emissions. Future research should be focused on: i) the mechanisms underlying periphytic biofilm-induced C fixation and turnover and ii) quantifying the contributions of periphytic biofilms to soil C uptake, stabilization, and sequestration in paddy fields.展开更多
Rice paddies are unique waterlogged wetlands artificially constructed for agricultural production.Periphytic biofilms(PBs)at the soil–water interface play an important role in rice paddies characterized by high nutri...Rice paddies are unique waterlogged wetlands artificially constructed for agricultural production.Periphytic biofilms(PBs)at the soil–water interface play an important role in rice paddies characterized by high nutrient input but low utilization efficiency.PBs are composed of microbial aggregates,including a wide variety of microorganisms(algae,bacteria,fungi,protozoa,and metazoa),extracellular polymeric substances and minerals(iron,aluminum,and calcium),which form an integrated food web and energy flux within a relatively stable micro-ecosystem.PBs are crucial to regulate and streamline the nitrogen cycle by neutralizing nitrogen losses and improving rice production since PBs can serve as both a sink by capturing surplus nitrogen and a source by slowly re-releasing this nitrogen for reutilization.Here the ecological advantages of PBs in regulating the nitrogen cycle in rice paddies are illustrated.We summarize the key functional importance of PBs,including the intricate and delicate community structure,microbial interactions among individual phylotypes,a wide diversity of selfproduced organics,the active adaptation of PBs to constantly changing environments,and the intricate mechanisms by which PBs regulate the nitrogen cycle.We also identify the future challenges of microbial interspecific cooperation in PBs and their quantitative contributions to agricultural sustainability,optimizing nitrogen utilization and crop yields in rice paddies.展开更多
基金financial support from the National Natural Science Foundation of China(Nos.41825021 and 42207447)the National Key Research and Development Program of China(No.2021YFD17008)+3 种基金the Provincial Natural Science Foundation of Jiangsu,China(No.BK20220004)the Postdoctoral Science Foundation of China(Nos.BX2021325 and 2022M723242)the State Key Laboratory of Lake Science and Environment Foundation,China(No.2022SKL008)EJ was supported by the TüBITAK program BIDEB2232 of Türkiye(No.118C250)。
文摘Paddy fields play an important role in global carbon(C) cycling and are an important source of methane(CH_(4)) emissions. Insights into the processes influencing the dynamics of soil organic C(SOC) in paddy fields are essential for maintaining global soil C stocks and mitigating climate change. Periphytic biofilms composed of microalgae, bacteria, and other microorganisms are ubiquitous in paddy fields, where they directly mediate the transfer of elements at the soil-water interface. However, their contributions to C turnover and exchange have been largely neglected. Periphytic biofilms affect and participate in soil C dynamics by altering both abiotic(e.g., pH and redox potential) and biotic conditions(e.g., microbial community composition and metabolism). This review summarizes the contributions of periphytic biofilms to soil C cycling processes, including carbon dioxide fixation, SOC mineralization, and CH_(4) emissions. Future research should be focused on: i) the mechanisms underlying periphytic biofilm-induced C fixation and turnover and ii) quantifying the contributions of periphytic biofilms to soil C uptake, stabilization, and sequestration in paddy fields.
基金supported by the National Natural Science Foundation of China(41825021 and 41961144010)the Natural Science Foundation of Jiangsu Province(BE2020731)the Original Innovation Project of Chinese Academy of Sciences(ZDBS-LY-DQC024).
文摘Rice paddies are unique waterlogged wetlands artificially constructed for agricultural production.Periphytic biofilms(PBs)at the soil–water interface play an important role in rice paddies characterized by high nutrient input but low utilization efficiency.PBs are composed of microbial aggregates,including a wide variety of microorganisms(algae,bacteria,fungi,protozoa,and metazoa),extracellular polymeric substances and minerals(iron,aluminum,and calcium),which form an integrated food web and energy flux within a relatively stable micro-ecosystem.PBs are crucial to regulate and streamline the nitrogen cycle by neutralizing nitrogen losses and improving rice production since PBs can serve as both a sink by capturing surplus nitrogen and a source by slowly re-releasing this nitrogen for reutilization.Here the ecological advantages of PBs in regulating the nitrogen cycle in rice paddies are illustrated.We summarize the key functional importance of PBs,including the intricate and delicate community structure,microbial interactions among individual phylotypes,a wide diversity of selfproduced organics,the active adaptation of PBs to constantly changing environments,and the intricate mechanisms by which PBs regulate the nitrogen cycle.We also identify the future challenges of microbial interspecific cooperation in PBs and their quantitative contributions to agricultural sustainability,optimizing nitrogen utilization and crop yields in rice paddies.